首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
Diatoms have been classified historically as either centric or pennate based on a number of features, cell outline foremost among them. The consensus among nearly every estimate of the diatom phylogeny is that the traditional pennate diatoms (Pennales) constitute a well‐supported clade, whereas centric diatoms do not. The problem with the centric–pennate classification was highlighted by some recent analyses concerning the phylogenetic position of Toxarium, whereby it was concluded that this “centric” diatom independently evolved several pennate‐like characters including an elongate, pennate‐like cell outline. We performed several phylogenetic analyses to test the hypothesis that Toxarium evolved its elongate shape independently from Pennales. First, we reanalyzed the original data set used to infer the phylogenetic position of Toxarium and found that a more thorough heuristic search was necessary to find the optimal tree. Second, we aligned 181 diatom and eight outgroup SSU rDNA sequences to maximize the juxtapositioning of similar primary and secondary structure of the 18S rRNA molecule over a much broader sampling of diatoms. We then performed a number of phylogenetic analyses purposely based on disparate sets of assumptions and found that none of these analyses supported the conclusion that Toxarium acquired its pennate‐like outline independently from Pennales. Our results suggest that elongate outline is congruent with SSU rDNA data and may be synapomorphic for a larger, more inclusive clade than the traditional Pennales.  相似文献   

2.
The diatoms are one of the best characterised algal groups. Despite this, little is known of the evolution of the group from the earliest cell to the myriad of taxa known today. Relationships among taxa at the family or generic level have been recognised in some diatoms. However, relationships at higher taxonomic levels are poorly understood and have often been strongly influenced by the first appearances of key taxa in the fossil record. An independent assessment of relationships among the diatoms at these higher taxonomic levels has been made using rRNA sequence data to infer phylogenetic relationships. In this paper we present an analysis of 18S rRNA data from several chosen centric, araphid and raphid pennate taxa. The phylogenetic inferences from these 18S rRNA sequences are supported by evidence from the fossil record and evidence from ontogenetic data. Ribosomal RNA data indicate that both the centric and araphid pennate lineages may not be monophyletic.  相似文献   

3.
Xanthophyceae are a group of heterokontophyte algae. Few molecular studies have investigated the evolutionary history and phylogenetic relationships of this class. We sequenced the nuclear-encoded SSU rDNA and chloroplast-encoded rbcL genes of several xanthophycean species from different orders, families, and genera. Neither SSU rDNA nor rbcL genes show intraspecific sequence variation and are good diagnostic markers for characterization of problematic species. New sequences, combined with those previously available, were used to create different multiple alignments. Analyses included sequences from 26 species of Xanthophyceae plus three Phaeothamniophyceae and two Phaeophyceae taxa used as outgroups. Phylogenetic analyses were performed according to Bayesian inference, maximum likelihood, and maximum parsimony methods. We explored effects produced on the phylogenetic outcomes by both taxon sampling as well as selected genes. Congruent results were obtained from analyses performed on single gene multiple alignments as well as on a data set including both SSU rDNA and rbcL sequences. Trees obtained in this study show that several currently recognized xanthophycean taxa do not form monophyletic groups. The order Mischococcales is paraphyletic, while Tribonematales and Botrydiales are polyphyletic even if evidence for the second order is not conclusive. Botrydiales and Vaucheriales, both including siphonous taxa, do not form a clade. The families Botrydiopsidaceae, Botryochloridaceae, and Pleurochloridaceae as well as the genera Botrydiopsis and Chlorellidium are polyphyletic. The Centritractaceae and the genus Bumilleriopsis also appear to be polyphyletic but their monophyly cannot be completely rejected with current evidence. Our results support morphological convergence at any taxonomic rank in the evolution of the Xanthophyceae. Finally, our phylogenetic analyses exclude an origin of the Xanthophyceae from a Vaucheria-like ancestor and favor a single early origin of the coccoid cell form.  相似文献   

4.
The endosymbiotic origin of chloroplasts from cyanobacteria has long been suspected and has been confirmed in recent years by many lines of evidence. Debate now is centered on whether plastids are derived from a single endosymbiotic event or from multiple events involving several photosynthetic prokaryotes and/or eukaryotes. Phylogenetic analysis was undertaken using the inferred amino acid sequences from the genes psbA, rbcL, rbcS, tufA and atpB and a published analysis (Douglas and Turner, 1991) of nucleotide sequences of small subunit (SSU) rRNA to examine the relationships among purple bacteria, cyanobacteria and the plastids of non-green algae (including rhodophytes, chromophytes, a cryptophyte and a glaucophyte), green algae, euglenoids and land plants. Relationships within and among groups are generally consistent among all the trees; for example, prochlorophytes cluster with cyanobacteria (and not with green plastids) in each of the trees and rhodophytes are ancestral to or the sister group of the chromophyte algae. One notable exception is that Euglenophytes are associated with the green plastid lineage in psbA, rbcL, rbcS and tufA trees and with the non-green plastid lineage in SSU rRNA trees. Analysis of psbA, tufA, atpB and SSU rRNA sequences suggests that only a single bacterial endosympbiotic event occurred leading to plastids in the various algal and plant lineages. In contrast, analysis of rbcL and rbcS sequences strongly suggests that plastids are polyphyletic in origin, with plastids being derived independently from both purple bacteria and cyanobacteria. A hypothesis consistent with these discordant trees is that a single bacterial endosymbiotic event occurred leading to all plastids, followed by the lateral transfer of the rbcLS operon from a purple bacterium to a rhodophyte.  相似文献   

5.
The past several years have seen an abundance of molecular sequence data gathered on heterokont algae and other stramenopiles with the goal of resolving phylogenetic relationships among major groups. The original focus was on SSU rDNA sequence, but lately a significant number of sequences of plastid and mitochondrial encoded genes (specifically rbcL and coxI) have been made available. Of particular interest to us has been the origin of diatoms and the relationship of diatoms to other stramenopiles. According to most claims based on morphological data, typically viewed from a non-rigorous evolutionary taxonomy standpoint (i.e. not with explicit cladistic or phylogenetic systematic methodology), diatoms are closely related to silica-scaled golden brown algae (chrysophytes or synurophytes). SSU rDNA sequence data, however, often place diatoms at the base of the heterokont alga tree, and chryso/synurophytes at the tip with eustigmatophytes, for example, as the chryso/synurophyte sister group. More recent analysis of rbcL sequences, however, supports the traditional classification. It is not automatically to be assumed that there is incongruence between the sequences, however. Taxon sampling is different in the different analyses, methods of analysis are often different, assumptions used to "filter" data are different, etc. Moreover, the relative strength of signal appears to be different in the data sets. We will present an analysis of combined SSU, rbcL and coxI data, an analysis of taxon-sampling issues, and review underlying assumptions and methodologies in an attempt to a) better understand the results of prior studies and b) reconcile the different hypotheses.  相似文献   

6.
Partial sequences (1032 bp) of the nuclear-encoded large ribosomal RNA gene (LSU) were determined for 16 gelidialean species, and analyzed separately and in combination with plastid rbcL and nuclear SSU gene sequences. The number of informative characters and levels of sequence divergence among taxa are intermediate in LSU sequences as compared to that for rbcL and SSU. Analyses of the separate LSU, and a combined LSU, SSU, and rbcL data sets have identified early-diverging lineages within the Gelidiales including Gelidiella, Pterocladia, Pterocladiella, and a lineage including Gelidium and species classified in other genera. The relationships among most gelidialean taxa are well-resolved and well-supported by analyses of the combined data; however, the relationships of Ptilophora and Capreolia remain unclear. It is speculated that these two lineages have diverged from a common ancestor over an evolutionarily short period of time. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

7.
Evans KM  Wortley AH  Mann DG 《Protist》2007,158(3):349-364
Due to limited morphological differentiation, diatoms can be very difficult to identify and cryptic speciation is widespread. There is a need for a narrower species concept if contentious issues such as diatom biodiversities and biogeographies are to be resolved. We assessed the effectiveness of several genes (cox1, rbcL, 18S and ITS rDNA) to distinguish cryptic species within the model 'morphospecies', Sellaphora pupula agg. This is the first time that the suitability of cox1 as an identification tool for diatoms has been assessed. A range of cox1 primers was tested on Sellaphora and various outgroup taxa. Sequences were obtained for 34 isolates belonging to 22 Sellaphora taxa and three others (Pinnularia, Eunotia and Tabularia). Intraspecific divergences ranged from 0 to 5bp (=0.8%) and interspecific levels were at least 18bp (=c. 3%). Cox1 divergence was usually much greater than rbcL divergence and always much more variable than 18S rDNA. ITS rDNA sequences were more variable than cox1, but well-known problems concerning intragenomic variability caution against its use in identification. More information and less sequencing effort mean that cox1 can be a very useful aid in diatom identification. The usefulness of cox1 for determining phylogenetic relationships among Sellaphora species was also assessed and compared to rbcL. Tree topologies were very similar, although support values were generally lower for cox1.  相似文献   

8.
Proper taxon sampling is one of the greatest challenges to understanding phylogenetic relationships, perhaps as important as choice of optimality criterion or data type. This has been demonstrated in diatoms where centric diatoms may either be strongly supported as monophyletic or paraphyletic when analyzing SSU rDNA sequences using the same optimality criterion. The effect of ingroup and outgroup taxon sampling on relationships of diatoms is explored for diatoms as a whole and for the order Thalassiosirales. In the latter case, SSU rDNA and rbcL sequence data result in phylogenetic relationships that appear to be strongly incongruent with morphology and broadly incongruent with the fossil record. For example, Cyclotella stelligera Cleve & Grunow behaves like a rogue taxon, jumping from place to place throughout the tree. Morphological data place C. stelligera near the base of the freshwater group as sister to the extinct genus Mesodictyon Theriot and Bradbury, suggesting that it is an old, long branch that might be expected to "misbehave" in poorly sampled trees. Cyclotella stelligera and C. bodanica Grunow delimit the diameter of morphological diversity in Cyclotella , so increased sampling of intermediate taxa will be critical to resolving this part of the tree. Morphology is sampled for a much greater number of taxa and many transitional states of putative synapomorphies seem to suggest a robust morphological hypothesis. The Thalassiosirales are unstable with regards to taxon sampling in the genetic data, suggesting that perhaps the morphological hypothesis is (for now) preferable.  相似文献   

9.
Molecular data and the evolutionary history of dinoflagellates   总被引:10,自引:3,他引:7  
We have sequenced small-subunit (SSU) ribosomal RNA (rRNA) genes from 16 dinoflagellates, produced phylogenetic trees of the group containing 105 taxa, and combined small- and partial large-subunit (LSU) rRNA data to produce new phylogenetic trees. We compare phylogenetic trees based on dinoflagellate rRNA and protein genes with established hypotheses of dinoflagellate evolution based on morphological data. Protein-gene trees have too few species for meaningful in-group phylogenetic analyses, but provide important insights on the phylogenetic position of dinoflagellates as a whole, on the identity of their close relatives, and on specific questions of evolutionary history. Phylogenetic trees obtained from dinoflagellate SSU rRNA genes are generally poorly resolved, but include by far the most species and some well-supported clades. Combined analyses of SSU and LSU somewhat improve support for several nodes, but are still weakly resolved. All analyses agree on the placement of dinoflagellates with ciliates and apicomplexans (=Sporozoa) in a well-supported clade, the alveolates. The closest relatives to dinokaryotic dinoflagellates appear to be apicomplexans, Perkinsus, Parvilucifera, syndinians and Oxyrrhis. The position of Noctiluca scintillans is unstable, while Blastodiniales as currently circumscribed seems polyphyletic. The same is true for Gymnodiniales: all phylogenetic trees examined (SSU and LSU-based) suggest that thecal plates have been lost repeatedly during dinoflagellate evolution. It is unclear whether any gymnodinialean clades originated before the theca. Peridiniales appear to be a paraphyletic group from which other dinoflagellate orders like Prorocentrales, Dinophysiales, most Gymnodiniales, and possibly also Gonyaulacales originated. Dinophysiales and Suessiales are strongly supported holophyletic groups, as is Gonyaulacales, although with more modest support. Prorocentrales is a monophyletic group only in some LSU-based trees. Within Gonyaulacales, molecular data broadly agree with classificatory schemes based on morphology. Implications of this taxonomic scheme for the evolution of selected dinoflagellate features (the nucleus, mitosis, flagella and photosynthesis) are discussed.  相似文献   

10.
Proper taxon sampling is one of the greatest challenges to understanding phylogenetic relationships, perhaps as important as choice of optimality criterion or data type. This has been demonstrated in diatoms where centric diatoms may either be strongly supported as monophyletic or paraphyletic when analyzing SSU rDNA sequences using the same optimality criterion. The effect of ingroup and outgroup taxon sampling on relationships of diatoms is explored for diatoms as a whole and for the order Thalassiosirales. In the latter case, SSU rDNA and rbcL sequence data result in phylogenetic relationships that appear to be strongly incongruent with morphology and broadly incongruent with the fossil record. For example, Cyclotella stelligera Cleve & Grunow behaves like a rogue taxon, jumping from place to place throughout the tree. Morphological data place C. stelligera near the base of the freshwater group as sister to the extinct genus Mesodictyon Theriot and Bradbury, suggesting that it is an old, long branch that might be expected to “misbehave” in poorly sampled trees. Cyclotella stelligera and C. bodanica Grunow delimit the diameter of morphological diversity in Cyclotella, so increased sampling of intermediate taxa will be critical to resolving this part of the tree. Morphology is sampled for a much greater number of taxa and many transitional states of putative synapomorphies seem to suggest a robust morphological hypothesis. The Thalassiosirales are unstable with regards to taxon sampling in the genetic data, suggesting that perhaps the morphological hypothesis is (for now) preferable.  相似文献   

11.
Analyses of small subunit ribosomal RNA genes (SSU rDNAs) have significantly influenced our understanding of the composition of aquatic microbial assemblages. Unfortunately, SSU rDNA sequences often do not have sufficient resolving power to differentiate closely related species. To address this general problem for uncultivated bacterioplankton taxa, we analysed and compared sequences of polymerase chain reaction (PCR)-generated and bacterial artificial chromosome (BAC)-derived clones that contained most of the SSU rDNAs, the internal transcribed spacer (ITS) and the large subunit ribosomal RNA gene (LSU rDNA). The phylogenetic representation in the rRNA operon PCR library was similar to that reported previously in coastal bacterioplankton SSU rDNA libraries. We observed good concordance between the phylogenetic relationships among coastal bacterioplankton inferred from SSU or LSU rDNA sequences. ITS sequences confirmed the close intragroup relationships among members of the SAR11, SAR116 and SAR86 clades that were predicted by SSU and LSU rDNA sequence analyses. We also found strong support for homologous recombination between the ITS regions of operons from the SAR11 clade.  相似文献   

12.
Nearly complete ribulose-1,5-bisphosphate carboxylase/ oxygenase (rbcL)sequences from 27 taxa of heterokont algae were determined and combined with rbcL sequences obtained from GenBank for four other heterokont algae and three red algae. The phylogeny of the morphologically diverse haterokont algae was inferred from an unambiguously aligned data matrix using the red algae as the root, Significantly higher levels of mutational saturation in third codon positions were found when plotting the pair-wise substitutions with and without corrections for multiple substitutions at the same site for first and second codon positions only and for third positions only. In light of this observation, third codon positions were excluded from phylogenetic analyses. Both weighted-parsimony and maximum-likelihood analyses supported with high bootstrap values the monophyly of the nine currently recognized classes of heterokont algae. The Eustigmatophyceae were the most basal group, and the Dictyochophyceae branched off as the second most basal group. The branching pattern for the other classes was well supported in terms of bootstrap values in the weightedparsimony analysis but was weakly supported in the maximum-likelihood analysis (<50%). In the parsimony analysis, the diatoms formed a sister group to the branch containing the Chrysophyceae and Synurophyceae. This clade, charactetized by siliceous structures (frustules, cysts, scales), was the sister group to the Pelagophyceae/Sarcinochrysidales and Phaeo-/Xantho-/ Raphidophyceae clades. In the latter clade, the raphido-phytes were sister to the Phaeophyceae and Xanthophyceae. A relative rate test revealed that the rbcL gene in the Chrysophyceae and Synurophyceae has experienced a significantly different rate of substitutions compared to other classes of heterokont algae. The branch lengths in the maximum-likelihood reconstruction suggest that these two classes have evolved at an accelerated rate. Six major carotenoids were analyzed cladistically to study the usefulness of carotenoid pigmentation as a class-level character in the heterokont algae. In addition, each carotenoid was mapped onto both the rbcL tree and a consensus tree derived from nuclear-encoded small-subunit ribosomal DNA (SSU rDNA) sequences. Carotenoid pigmentation does not provide unambiguous phylogenetic information, whether analyzed cladistically by itself or when mapped onto phylogenetic trees based upon molecular sequence data.  相似文献   

13.
Although the combination of different genes in phylogenetic analyses is a promising approach, the methodology is not well established and analyses often suffer from inadequate, noncongruent taxon sampling, long-branch attraction, or conflicting evolutionary models of the genes analyzed. Conflicts or congruence between multigene and single-gene phylogenies, as well as the assumed superiority of the multigene approach, are often difficult to assess solely because of incongruent taxon sampling. In the present study, a data set of 43 nuclear-encoded SSU rDNA and plastid-encoded rbcL gene sequences was generated from the same strains of conjugating green algae (Zygnematophyceae, Streptophyta). Phylogenetic analyses used the genes individually and in combination, either as concatenated sequences or with the log-likelihood summation method. Single-gene analyses, although mostly congruent, revealed some conflicting nodes and showed different patterns of statistical support. Combined analyses confidently resolved the conflicts between the single-gene analyses, enhanced phylogenetic resolution, and were better supported by morphological information. Long-branch taxa were not the same for the two genes analyzed, and, thus, their effect on phylogenetic resolution was minimized in the combined analyses.  相似文献   

14.
The molecular phylogeny of parabasalids has mainly been inferred from small subunit (SSU) rRNA sequences and has conflicted substantially with systematics based on morphological and ultrastructural characters. This raises the important question, how congruent are protein and SSU rRNA trees? New sequences from seven diverse parabasalids (six trichomonads and one hypermastigid) were added to data sets of glyceraldehyde-3-phosphate dehydrogenase (GAPDH), enolase, alpha-tubulin and beta-tubulin and used to construct phylogenetic trees. The GAPDH tree was well resolved and identical in topology to the SSU rRNA tree. This both validates the rRNA tree and suggests that GAPDH should be a valuable tool in further phylogenetic studies of parabasalids. In particular, the GAPDH tree confirmed the polyphyly of Monocercomonadidae and Trichomonadidae and the basal position of Trichonympha agilis among parabasalids. Moreover, GAPDH strengthened the hypothesis of secondary loss of cytoskeletal structures in Monocercomonadidae such as Monocercomonas and Hypotrichomonas. In contrast to GAPDH, the enolase and both tubulin trees are poorly resolved and rather uninformative about parabasalian phylogeny, although two of these trees also identify T. agilis as representing the basal-most lineage of parabasalids. Although all four protein genes show multiple gene duplications (for 3-6 of the seven taxa examined), most duplications appear to be relatively recent (i.e., species-specific) and not a problem for phylogeny reconstruction. Only for enolase are there more ancient duplications that may confound phylogenetic interpretation.  相似文献   

15.
Marin B  Melkonian M 《Protist》1999,150(4):399-417
Complete nuclear-encoded SSU rRNA sequences have been obtained from three taxa of streptophyte green algae (Klebsormidium nitens, Nitella capillaris, Chaetosphaeridium globosum) and two strains of the scaly green flagellate Mesostigma viride. Phylogenetic analyses of 70 taxa of Viridiplantae (Chlorophyta and Streptophyta) and 57 taxa of streptophyte green algae and embryophyte plants using distance, parsimony and likelihood methods revealed a novel monophyletic lineage among the Streptophyta comprising the genera Mesostigma and Chaetosphaeridium. This lineage is described here as the Mesostigmatophyceae classis nova. Our analyses demonstrate that (1) scaly green flagellates (prasinophytes) are polyphyletic, (2) a scaly green flagellate is a member of the Streptophyta and forms a clade with the oogamous, filamentous Chaetosphaeridium to the exclusion of all other known streptophyte green algae, (3) a previously published SSU rRNA sequence of Chaetosphaeridium (AF113506) is chimeric and contains part of a fungal SSU rRNA, and (4) the phylogenetic relationships between the Mesostigmatophyceae and other streptophyte green algae remain unresolved by SSU rRNA sequence comparisons.  相似文献   

16.
Phylogenetic studies of ciliates are mainly based on the primary structure information of the nuclear genes. Some regions of the small subunit ribosomal RNA (SSU‐rRNA) gene have distinctive secondary structures, which have demonstrated value as phylogenetic/taxonomic characters. In the current work, we predict the secondary structures of four variable regions (V2, V4, V7 and V9) in the SSU‐rRNA gene of 45 urostylids. Structure comparisons indicate that the V4 region is the most effective in revealing interspecific relationships, while the V9 region appears suitable at the family level or higher. The V2 region also offers some taxonomic information, but is too conserved to reflect phylogenetic relationships at the family or lower level, at least for urostylids. The V7 region is the least informative. We constructed several phylogenetic trees, based on the primary sequence alignment and based on an improved alignment according to the secondary structures. The results suggest that including secondary structure information in phylogenetic analyses provides additional insights into phylogenetic relationships. Using urostylid ciliates as an example, we show that secondary structure information results in a better understanding of their relationships, for example generic relationships within the family Pseudokeronopsidae.  相似文献   

17.
ABSTRACT. Peritrich ciliates have been traditionally subdivided into two orders, Sessilida and Mobilida within the subclass Peritrichia. However, all the existing small subunit (SSU) rRNA phylogenetic trees showed that the sessilids and mobilids did not branch together. To shed some light on this disagreement, we tested whether or not the classic Peritrichia is a monophyletic group by assessing the reliability of the SSU rRNA phylogeny in terms of congruency with α‐tubulin phylogeny. For this purpose, we obtained 10 partial α‐tubulin sequences from peritrichs and built phylogenetic trees based on α‐tubulin nucleotide and amino acid data. A phylogenetic tree from the α‐tubulin and SSU rRNA genes in combination was also constructed and compared with that from the SSU rRNA gene using a similar species sampling. Our results show that the mobilids and sessilids are consistently separated in all trees, which reinforces the idea that the peritrichs do not constitute a monophyletic group. However, in all α‐tubulin gene trees, the urceolariids and trichodiniids do not group together, suggested mobilids may not be a monophyletic group.  相似文献   

18.
Inferring basal relationships among vascular plants poses a major challenge to plant systematists. The divergence events that describe these relationships occurred long ago and considerable homoplasy has since accrued for both molecular and morphological characters. A potential solution is to examine phylogenetic analyses from multiple data sets. Here I present a new source of phylogenetic data for ferns and other pteridophytes. I sequenced the chloroplast gene atpB from 23 pteridophyte taxa and used maximum parsimony to infer relationships. A 588-bp region of the gene appeared to contain a statistically significant amount of phylogenetic signal and the resulting trees were largely congruent with similar analyses of nucleotide sequences from rbcL. However, a combined analysis of atpB plus rbcL produced a better resolved tree than did either data set alone. In the shortest trees, leptosporangiate ferns formed a monophyletic group. Also, I detected a well-supported clade of Psilotaceae (Psilotum and Tmesipteris) plus Ophioglossaceae (Ophioglossum and Botrychium). The demonstrated utility of atpB suggests that sequences from this gene should play a role in phylogenetic analyses that incorporate data from chloroplast genes, nuclear genes, morphology, and fossil data.  相似文献   

19.
We comparatively examined the nutritional, molecular and optical and electron microscopical characteristics of reference species and new isolates of trypanosomatids harboring bacterial endosymbionts. Sequencing of the V7V8 region of the small subunit of the ribosomal RNA (SSU rRNA) gene distinguished six major genotypes among the 13 isolates examined. The entire sequences of the SSU rRNA and glycosomal glyceraldehyde phosphate dehydrogenase (gGAPDH) genes were obtained for phylogenetic analyses. In the resulting phylogenetic trees, the symbiont-harboring species clustered as a major clade comprising two subclades that corresponded to the proposed genera Angomonas and Strigomonas. The genus Angomonas comprised 10 flagellates including former Crithidia deanei and C. desouzai plus a new species. The genus Strigomonas included former Crithidia oncopelti and Blastocrithidia culicis plus a new species. Sequences from the internal transcribed spacer of ribosomal DNA (ITS rDNA) and size polymorphism of kinetoplast DNA (kDNA) minicircles revealed considerable genetic heterogeneity within the genera Angomonas and Strigomonas. Phylogenetic analyses based on 16S rDNA and ITS rDNA sequences demonstrated that all of the endosymbionts belonged to the Betaproteobacteria and revealed three new species. The congruence of the phylogenetic trees of trypanosomatids and their symbionts support a co-divergent host-symbiont evolutionary history.  相似文献   

20.
Percolomonas cosmopolitus is a common free-living flagellate of uncertain phylogenetic position that was placed within the Heterolobosea on the basis of ultrastructure studies. To test the relationship between Percolomonas and Heterolobosea, we analysed the primary structure of the actin and small-subunit ribosomal RNA (SSU rRNA) genes of P. cosmopolitus as well as the predicted secondary structure of the SSU rRNA. Percolomonas shares common secondary structure patterns of the SSU rRNA with heterolobosean taxa, which, together with the results of actin gene analysis, confirms that it is closely related to Heterolobosea. Phylogenetic reconstructions based on the sequences of the SSU rRNA gene suggest Percolomonas belongs to the family Vahlkampfiidae. The first Bayesian analysis of a large taxon sampling of heterolobosean SSU rRNA genes clarifies the phylogenetic relationships within this group.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号