首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sterol homeostasis in eukaryotic cells relies on the reciprocal interconversion of free sterols and steryl esters. The formation of steryl esters is well characterized, but the mechanisms that control steryl ester mobilization upon cellular demand are less well understood. We have identified a family of three lipases of Saccharomyces cerevisiae that are required for efficient steryl ester mobilization. These lipases, encoded by YLL012/YEH1, YLR020/YEH2, and TGL1, are paralogues of the mammalian acid lipase family, which is composed of the lysosomal acid lipase, the gastric lipase, and four novel as yet uncharacterized human open reading frames. Lipase triple-mutant yeast cells are completely blocked in steryl ester hydrolysis but do not affect the mobilization of triacylglycerols, indicating that the three lipases are required for steryl ester mobilization in vivo. Lipase single mutants mobilize steryl esters to various degrees, indicating partial functional redundancy of the three gene products. Lipase double-mutant cells in which the third lipase is expressed from the inducible GAL1 promoter have greatly reduced steady-state levels of steryl esters, indicating that overexpression of any of the three lipases is sufficient for steryl ester mobilization in vivo. The three yeast enzymes constitute a novel class of membrane-anchored lipases that differ in topology and subcellular localization.  相似文献   

2.
Based on sequence homology to mammalian acid lipases, yeast reading frame YKL140w was predicted to encode a triacylglycerol (TAG) lipase in yeast and was hence named as TGL1, triglyceride lipase 1. A deletion of TGL1, however, resulted in an increase of the cellular steryl ester content. Fluorescently labeled lipid analogs that become covalently linked to the enzyme active site upon catalysis were used to discriminate between the lipase and esterase activities of Tgl1p. Tgl1p preferred single-chain esterase inhibitors over lipase inhibitors in vitro. Under assay conditions optimal for acid lipases, Tgl1p exhibited steryl esterase activity only and lacked any triglyceride lipase activity. In contrast, at pH 7.4, Tgl1p also exhibited TAG lipase activity; however, steryl ester hydrolase activity was still predominant. Tgl1p localized exclusively to lipid droplets which are the intracellular storage compartment of steryl esters and triacylglycerols in the yeast S. cerevisiae. In a tgl1 deletion mutant, the mobilization of steryl esters in vivo was delayed, but not abolished, suggesting the existence of additional enzymes involved in steryl ester mobilization.  相似文献   

3.
Ester synthesis catalyzed by polyethylene glycol-modified lipase in benzene   总被引:4,自引:0,他引:4  
Lipoprotein lipase, which catalyzes hydrolysis of emulsified triglycerides or water-insoluble esters, was modified with 2,4-bis(o-methoxy-polyethylene glycol)-6-chloro-s-triazine(activated PEG2). The modified lipase, in which 55% of the total amino groups in the lipase molecule, was soluble in organic solvents such as benzene, toluene, chloroform and dioxane. The modified lipase could catalyze ester synthesis reaction in benzene. When very hydrophobic substrates of lauryl alcohol and stearic acid were used, the ester synthesis reaction proceeded efficiently in the transparent benzene solution with the maximum activity of approximate 5.0 mumoles/min/mg of protein. Ester exchange and aminolysis reactions were also conducted with the modified lipase in benzene.  相似文献   

4.
Triglycerides, steryl esters, resin acids, free fatty acids and sterols are lipophilic extractives of wood (commonly referred to as pitch or wood resin) and have a negative impact on paper machine runnability and quality of paper. Thus, enzymes capable of modifying these compounds would be potential tools for reducing pitch problems during paper manufacture. In this work, 19 commercial lipase preparations were tested for their ability to degrade steryl esters, which may play a significant role in the formation and stabilisation of pitch particles. Six lipase preparations were shown to be able to degrade steryl esters. Lipase preparations of Pseudomonas sp., Chromobacterium viscosum and Candida rugosa were shown to have the highest steryl esterase activities. The enzymes were able to hydrolyse steryl esters totally in the presence of a surfactant (Thesit). Up to 80% of the steryl esters were degraded in aqueous dispersion. Preliminary characterisation of the enzymatic activities revealed that the lipase preparation of Pseudomonas sp. could be the most potential enzyme in industrial applications. The steryl esterase activity of this preparation was stable over a broad pH range and the enzyme was able to act efficiently at pH 6-10 and at temperatures up to 70 degrees C.  相似文献   

5.
A lipolytic enzyme gene (lip8) was cloned from organic solvent-tolerant Pseudomonas aeruginosa LST-03 and sequenced. In the sequenced nucleotides, an open reading frame consisting of 1,173 nucleotides and encoding 391 amino acids was found. Lip8 is considered to belong to the family VIII of lipolytic enzymes whose serine in the consensus sequence of -Ser-Xaa-Xaa-Lys- acts as catalytic nucleophile. The gene was expressed in Escherichia coli and purified by a combination of ammonium sulfate fractionation and hydrophobic interaction and ion-exchange chromatographies to homogeneity on SDS-PAGE analysis. The optimum temperature and heat stability of Lip8 were not as high as those of Lip3 and LST-03 lipase, two other lipolytic enzymes from the same strain. Addition of glycerol to a solution containing Lip8 stabilized this enzyme. By measuring the activities against various triacylglycerols and fatty acid methyl esters having carbon chains of different lengths, Lip8 was categorized as an esterase which has higher activities against fatty acid methyl esters with short-chain fatty acids.  相似文献   

6.
A novel lipase was isolated from a metagenomic library of Baltic Sea sediment bacteria. Prokaryotic DNA was extracted and cloned into a copy control fosmid vector (pCC1FOS) generating a library of >7000 clones with inserts of 24-39 kb. Screening for clones expressing lipolytic activity based on the hydrolysis of tributyrin and p-nitrophenyl esters, identified 1% of the fosmids as positive. An insert of 29 kb was fragmented and subcloned. Subclones with lipolytic activity were sequenced and an open reading frame of 978 bp encoding a 35.4-kDa putative lipase/esterase h1Lip1 (DQ118648) with 54% amino acid similarity to a Pseudomonas putida esterase (BAD07370) was identified. Conserved regions, including the putative active site, GDSAG, a catalytic triad (Ser148, Glu242 and His272) and a HGG motif, were identified. The h1Lip1 lipase was over expressed, (pGEX-6P-3 vector), purified and shown to hydrolyse p-nitrophenyl esters of fatty acids with chain lengths up to C14. Hydrolysis of the triglyceride derivative 1,2-di-O-lauryl-rac-glycero-3-glutaric acid 6'-methylresorufin ester (DGGR) confirmed that h1Lip1 was a lipase. The apparent optimal temperature for h1Lip1, by hydrolysis of p-nitrophenyl butyrate, was 35 degrees C. Thermal stability analysis showed that h1Lip1 was unstable at 25 degrees C and inactivated at 40 degrees C with t1/2 <5 min.  相似文献   

7.
Letting lipids go: hormone-sensitive lipase   总被引:6,自引:0,他引:6  
PURPOSE OF REVIEW: Despite their pathophysiological importance, the molecular mechanisms and enzymatic components of lipid mobilization from intracellular storage compartments are insufficiently understood. The aim of this review is to evaluate the role of hormone-sensitive lipase in this process. RECENT FINDINGS: Hormone-sensitive lipase exhibits a broad specificity for lipid substrates such as triglycerides, diglycerides, cholesteryl esters, and retinyl esters and the enzyme is in a wide variety of tissues. The high enzyme activity in adipose tissue was considered rate-limiting in the degradation of stored triglycerides. This view of a single enzyme controlling the catabolism of stored fat was challenged by recent findings that in hormone-sensitive lipase deficient mice adipose tissue triglycerides were still hydrolyzed and that these animals were leaner than normal mice. These results indicated that in adipose tissue hormone-sensitive lipase cooperates with other yet unidentified lipases to control the mobilization of fatty acids from cellular depots and that this process is coordinately regulated with lipid synthesis. Induced mutant mouse lines that overexpress or lack hormone-sensitive lipase also provided evidence that hormone-sensitive lipase-mediated cholesteryl ester hydrolysis is involved in steroid-hormone production in adrenals and affects testis function. Finally, hormone-sensitive lipase deficiency in mice results in a lipoprotein profile characterized by low triglyceride and VLDL levels and increased HDL cholesterol concentrations. SUMMARY: The 'anti-atherosclerotic' plasma lipoprotein profile and the fact that hormone-sensitive lipase deficient animals become lean identifies the inhibition of hormone-sensitive lipase as a potential target for the treatment of lipid disorders and obesity.  相似文献   

8.
The mechanism of the digestion of erythritol esters was determined using rat pancreatic juice and purified pancreatic lipase (EC 3.1.1.3). Conditions of hydrolysis were used that would selectively activate or inactivate nonspecific lipase or lipase. It was shown that erythritol tetraoleate was hydrolyzed by nonspecific lipase but not by lipase. The initial digestion product was a triester, predominantly erythritol-1,2,3-trioleate. Thus, nonspecific lipase preferentially hydrolyzed the ester of a primary alcohol. In contrast to the results obtained with the tetraester, lipase could remove a fatty acid from the triester but the resulting erythritol-2,3-dioleate was not hydrolyzed by lipase. The selectivity of this hydrolysis and the inability to hydrolyze the diester are attributed to the known specificity of this enzyme to act only on esters of primary alcohols. Nonspecific lipase completely hydrolyzed erythritol tetraoleate to free erythritol in a stepwise manner. The relative rates of these reactions were tetraester --> triester --> diester --> monoester --> erythritol Because of the specificity of pancreatic lipase and the lack of specificity of nonspecific lipase it is likely that this latter enzyme is the primary agent for the hydrolysis of erythritol esters in the intact animal.  相似文献   

9.
The gene (lipA) encoding the extracellular lipase and its downstream gene (lipB) from Vibrio vulnificus CKM-1 were cloned and sequenced. Nucleotide sequence analysis and alignments of amino acid sequences suggest that Lip Ais a member of bacterial lipase family I.1 and that LipB is a lipase activator of LipA. The active LipA was produced in recombinant Escherichia coli cells only in the presence of the lipB. In the hydrolysis of p-nitrophenyl esters and triacylglycerols, using the reactivated LipA, the optimum chain lengths for the acyl moiety on the substrate were C14 for ester hydrolysis and C10 to C12 for triacylglycerol hydrolysis.  相似文献   

10.
Previous purification of a crude extracellular enzyme preparation from Candida rugosa ATCC 14830 pilot-plant fed-batch fermentations showed the presence of two lipase isoenzymes, Lip2 and Lip3, differing in their molecular masses (58 and 62 kDa, respectively). These enzymes were purified but the lipases were forming active aggregates with a molecular mass higher than 200 kDa. In this work we developed a purification method following three steps: ammonium sulfate precipitation, sodium cholate treatment and ethanol/ether precipitation, and anion exchange chromatography which allowed the sequential disaggregation of the isoenzymes. Pure and monomeric Lip2 and Lip3 were characterized according to pI, glycosylation and activity for p-nitrophenol esters and triacylglycerols of varying acyl chain. Lip3 was the best catalyst for the hydrolysis of the simple esters and triacylglycerols with short and medium acyl chains.  相似文献   

11.
An ester hydrolase (ABL) has been isolated from a strain of Arthrobacter species (RRLJ-1/95) maintained in the culture collection of this laboratory. The purified enzyme has a specific activity of 1700 U/mg protein and is found to be composed of a single subunit (Mr 32,000), exhibiting both lipase and esterase activities shown by hydrolysis of triglycerides and p-nitrophenyl acetate respectively. Potential application of the enzyme concerns the asymmetrisation of prochiral 2-benzyl-1,3-propanediol esters besides enantioselective hydrolysis of alkyl esters of unsubstituted and substituted 1-phenyl ethanols.  相似文献   

12.
Lipases are serine hydrolases that catalyze in nature the hydrolysis of ester bonds of long chain triacylglycerol into fatty acid and glycerol. However, in favorable thermodynamic conditions, they are also able to catalyze reactions of synthesis such as esterification or amidation. The non-conventional yeast Yarrowia lipolytica possesses 16 paralogs of genes coding for lipase. However, little information on all those paralogs has been yet obtained and only three isoenzymes, namely Lip2p, Lip7p and Lip8p have been partly characterized so far. Microarray data suggest that only a few of them could be expressed and that lipase synthesis seems to be dependent on the fatty acid or oil used as carbon source confirming the high adaptation of Y. lipolytica to hydrophobic substrate utilization. This review focuses on the biochemical characterization of those enzymes with special emphasis on the Lip2p lipase which is the isoenzyme mainly synthesized by Y. lipolytica. Crystallographic data highlight that this latter is a lipase sensu stricto with a lid covering the active site of the enzyme in its closed conformation. Recent findings on enzyme conditioning in dehydrated or liquid formulation, in enzyme immobilization by entrapment in natural polymers from either organic or mineral origins are also discussed together with long-term storage strategies. The development of various biotechnological applications in different fields such as cheese ripening, waste treatment, drug synthesis or human therapeutics is also presented.  相似文献   

13.
The lipase from Candida paralipolytica required activating factors for the hydrolysis of synthetic triglycerides, methyl esters of fatty acid and so on. Of the saturated monoacid triglycerides tested, tricaprylin was hydrolyzed most quickly. On the other hand, the lipase was hardly able to hydrolyze methyl butyrate, methyl caproate, monoolein, Tween 20 and Span 20.

Human blood plasma did not act as an activator, but act rather as an inhibitor of the lipase. Therefore, it seems that the lipase does not belong to the group of lipoprotein lipase.  相似文献   

14.
In the lipolytic yeast Yarrowia lipolytica, the LIP2 gene was previously reported to encode an extracellular lipase. The growth of a Deltalip2 strain on triglycerides as sole carbon source suggest an alternative pathway for triglycerides utilisation in this yeast. Here, we describe the isolation and the characterisation of the LIP7 and LIP8 genes which were found to encode a 366 and a 371-amino acid precursor protein, respectively. These proteins which belong to the triacylglycerol hydrolase family (EC 3.1.1.3) presented a high homology with the extracellular lipase CdLIP2 and CdLIP3 from Candida deformans. The physiological function of the lipase isoenzymes was investigated by creating single and multi-disrupted strains. Lip7p and Lip8p were found to correspond to active secreted lipases. The lack of lipase production in a Deltalip2 Deltalip7 Deltalip8 strain suggest that no additional extracellular lipase remains to be discovered in Y. lipolytica. The substrate specificity towards synthetic ester molecules indicates that Lip7p presented a maximum activity centred on caproate (C6) while that of Lip8p is in caprate (C10).  相似文献   

15.
Labrasol is a lipid-based self-emulsifying excipient used in the preparation of lipophilic drugs intended for oral delivery. It is mainly composed of PEG esters and glycerides with medium acyl chains, which are potential substrates for digestive lipases. The hydrolysis of Labrasol by porcine pancreatic extracts, human pancreatic juice and several purified digestive lipases was investigated in the present study. Classical human pancreatic lipase (HPL) and porcine pancreatic lipase, which are the main lipases involved in the digestion of dietary triglycerides, showed very low levels of activity on the entire Labrasol excipient as well as on separated fractions of glycerides and PEG esters. On the other hand, gastric lipase, pancreatic lipase-related protein 2 (PLRP2) and carboxyl ester hydrolase (CEH) showed high specific activities on Labrasol. These lipases were found to hydrolyze the main components of Labrasol (PEG esters and monoglycerides) used as individual substrates, whereas these esters were found to be poor substrates for HPL. The lipolytic activity of pancreatic extracts and human pancreatic juice on Labrasol(R) is therefore mainly due to the combined action of CEH and PLRP2. These two pancreatic enzymes, together with gastric lipase, are probably the main enzymes involved in the in vivo lipolysis of Labrasol taken orally.  相似文献   

16.
The lipase-catalyzed intresterification of triglycerides and fatty acids in n-hexane was studied. Initially, lipase Saiken was modified with a surfactant of sorbitan esters so that its dispersibility in hydrophobic organic media was improved. The surfactant-modified lipase formed in the modification process carried out in a buffer solution has 1,3-positional specificity and predominantly catalyzed the interesterification reaction in a microaqueous n-hexane system. The modification technique converted inactive lipases to very active biocatalysts for the interesterification of triglycerides and fatty acids. The pH and the weight ratio of surfactant to enzyme used during the lipase modification process have shown significant effects in determining the recoveries of the protein and enzyme activity from the buffer solution, the protein content of the modified lipase complex after being freeze dried, and the interesterification activity of the complex. The water content in the reaction solution has strongly influenced the enzyme activity as well as the distribution of the products. (c) 1995 John Wiley & Sons, Inc.  相似文献   

17.
Gastric lipase is active under acidic conditions and shows optimum activity on insoluble triglycerides at pH 4. The present results show that gastric lipase also acts in solution on vinyl butyrate, with an optimum activity above pH 7, which suggests that gastric lipase is able to hydrolyze ester bonds via the classical mechanism of serine hydrolases. These results support previous structural studies in which the catalytic triad of gastric lipase was reported to show no specific features. The optimum activity of gastric lipase shifted toward lower pH values, however, when the vinyl butyrate concentration was greater than the solubility limit. Experiments performed with long-chain triglycerides showed that gastric lipase binds optimally to the oil-water interface at low pH values. To study the effects of the pH on the adsorption step independently from substrate hydrolysis, gastric lipase adsorption on solid hydrophobic surfaces was monitored by total internal reflection fluorescence (TIRF), as well as using a quartz crystal microbalance. Both techniques showed a pH-dependent reversible gastric lipase adsorption process, which was optimum at pH 5 (Kd = 6.5 nM). Lipase adsorption and desorption constants (ka = 147,860 M(-1) s(-1) and kd = 139 x 10(-4) s(-1) at pH 6) were estimated from TIRF experiments. These results indicate that the optimum activity of gastric lipase at acidic pH is only "apparent" and results from the fact that lipase adsorption at lipid-water interfaces is the pH-dependent limiting step in the overall process of insoluble substrate hydrolysis. This specific kinetic feature of interfacial enzymology should be taken into account when studying any soluble enzyme acting on an insoluble substrate.  相似文献   

18.
Three pure isoenzymes from Candida rugosa lipase (CRL: Lip1, Lip2, and Lip3) were compared in terms of their stability and reactivity in both aqueous and organic media. The combined effect of temperature and pH on their stability was studied applying a factorial design. The analysis of the response surfaces indicated that Lip1 and Lip3 have a similar stability, lower than that of Lip2. In aqueous media, Lip3 was the most active enzyme on the hydrolysis of p-nitrophenyl esters, whereas Lip1 showed the highest activity on the hydrolysis of most assayed triacylglycerides. The highest differences among isoenzymes were found in the hydrolysis of triacylglycerides. Thus, a short, medium, and long acyl chain triacylglyceride was the preferred substrate for Lip3, Lip1, and Lip2, respectively. In organic medium, Lip3 and Lip1 provided excellent results in terms of enantioselectivity in the resolution of ibuprofen (EF value over 0.90) and conversion, whereas initial esterification rate was higher for Lip3. However, the use of Lip2 resulted in lower values of conversion, enantiomeric excess, and enantioselectivity. In the case of trans-2-phenyl-1-cyclohexanol (TPCH) resolution, initial esterification rates were high except for Lip3, which also produced poor results in conversion and enantiomeric excess. The performance of the pure isoenzymes in the enantioselectivity esterification of these substrates was compared with different CRL crude preparations with known isoenzymatic content and the different results could not be explained by their isoenzymatic profile. Therefore, it can be concluded that other factors can also affect the catalysis of CRL and only the reproducibility between powders can ensure the reproducibility in synthesis reactions.  相似文献   

19.
An intracellular glycerol ester hydrolase (lipase) from Propionibacterium shermanii was recovered from cell-free extracts and purified by ammonium sulfate precipitation, gel filtration, and ion-exchange chromatography on diethylaminoethylcellulose. Maximum enzyme activity was observed at pH 7.2 and 47 C when an emulsion of tributyrin was used as substrate. The enzyme was stable between pH 5.5 and 8. Heating the enzyme solution at 45 C for 10 min resulted in a 75% decrease in activity. Maximum rate of hydrolysis of triglycerides was observed on tripropionin, followed in order by tributyrin, tricaproin, and tricaprylin. The lipase was strongly inhibited by mercury and arsenicals, but specific sulfhydryl reagents had little or no inhibiting effect on the enzyme activity. The enzyme also showed some esterase activity, but the hydrolysis of substrates in solution was small as compared to the hydrolysis of substrates in emulsion.  相似文献   

20.
One of the major issues with heterologous production of proteins in Pichia pastoris X33 under AOX1 promoter is repeated methanol induction. To obviate repeated methanol induction, methyl esters were used as a slow release source of methanol in lipase expressing mut+ recombinant. Experimental design was based on the strategy that in presence of lipase, methyl esters can be hydrolysed to release their products as methanol and fatty acid. Hence, upon break down of methyl esters by lipase, first methanol will be used as a carbon source and inducer. Then P. pastoris can switch over to fatty acid as a carbon source for multiplication and biomass maintenance till further induction by methyl esters. We validated this strategy using recombinant P. pastoris expressing Lip A, Lip C from Trichosporon asahii and Lip11 from Yarrowia lipolytica. We found that the optimum lipase yield under repeated methanol induction after 120 h was 32866 U/L, 28271 U/L and 21978 U/L for Lip C, Lip A and Lip 11 respectively. In addition, we found that a single dose of methyl ester supported higher production than repeated methanol induction. Among various methyl esters tested, methyl oleate (0.5%) caused 1.2 fold higher yield for LipA and LipC and 1.4 fold for Lip11 after 120 h of induction. Sequential utilization of methanol and oleic acid by P. pastoris was observed and was supported by differential peroxisome proliferation studies by transmission electron microscopy. Our study identifies a novel strategy of using methyl esters as slow release methanol source during lipase expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号