首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aim We compiled data on prey utilization of spiders at a global scale to better understand the relationship between current climate or net primary production (NPP) and diet breadth, evenness and composition in spiders. We test whether the productivity and the diversity–climatic‐stability (DCS) hypotheses focusing on diversity patterns may also explain global patterns in prey utilization by web‐building and cursorial spiders. Location A global dataset of 95 data points from semi‐natural and natural terrestrial habitats spanning 41.3° S to 56.1° N. Methods We collected data on spider prey (29 groups, mostly order‐level invertebrate taxa) through extensive literature research to identify the relationship between climatic conditions and NPP and spider diets based on 66 studies of prey composition in 82 spider species. Results The number of prey groups in spider diets was positively related to NPP, after accounting for differences in sampling effort in the original studies. In general, diet breadth was significantly higher for spider species in tropical environments. Prey individuals in spider diets were more evenly distributed among different prey groups in warmer environments with lower fluctuations in precipitation. Collembola and other spiders were more common prey for spiders with a cursorial hunting mode. Myriapoda and Collembola were more common prey in cooler climates with more stable precipitation, whereas Isoptera, Lepidoptera, Psocoptera and Coleoptera showed the opposite pattern. Main conclusions The positive relationship between diet breadth and NPP and the negative relationship between prey evenness and seasonality in precipitation support the productivity and the DCS hypotheses, respectively. This effect on global patterns of invertebrate predator–prey interactions suggests that trophic interactions between spiders and their prey are sensitive to climatic conditions. Climatic conditions may not only affect spider community composition, but also considerably alter the functional role of these abundant invertebrate predators in terrestrial ecosystems.  相似文献   

2.
In species‐rich ecosystems, such as subtropical and tropical forests, higher trophic level interactions are key mediators of ecosystem functioning. Plant species loss may alter these interactions, but the effects of plant diversity might be modified by intraguild interactions, particularly among predators. We analyzed the relationships between spiders and ants, two dominant predatory arthropod taxa, on tree saplings across a gradient from medium to high woody plant species richness in a subtropical forest in Southeast China. Neither ant nor spider total biomass was significantly related to plant species richness. By contrast, the biomass distribution of web‐building and hunting spiders changed and spider family richness increased in the presence of ants, resulting in more web builder‐dominated assemblages. However, these relationships depended on the plant communities, and were stronger in plots with higher plant species richness. Our results indicate that in addition to potential effects of ants on hunting spiders in particular, ants could indirectly influence intraguild interactions within spider assemblages. The observed shifts in the spider assemblages with increasing ant presence and plant species richness may have functional consequences, as web‐building and hunting spiders have distinct prey spectra. The relationships among ants, spiders, and plant species richness might contribute to explaining the non‐significant relationship between the overall effects of predators and plant diversity previously observed in the same forest plots. Our findings thus give insight into the complexity of biotic interactions in such species‐rich ecosystems.  相似文献   

3.
Aim Geographic body size patterns of mammals and birds can be partly understood under the framework of Bergmann’s rule. Climatic influences on body size of invertebrates, however, appear highly variable and lack a comparable, generally applicable theoretical framework. We derived predictions for body size–climate relationships for spiders from the literature and tested them using three datasets of variable spatial extent and grain. Location Europe. Methods To distinguish climate from space, we compared clines in body size within three datasets with different degrees of co‐variation between latitude and climate. These datasets were: (1) regional spider faunas from 40 European countries and large islands; (2) local spider assemblages from standardized samples in 32 habitats across Europe; and (3) local spider assemblages from Central European habitats. In the latter dataset climatic conditions were determined more by habitat type than by geographic position, and therefore this dataset provided a non‐spatial gradient of various microclimates. Spider body size was studied in relation to latitude, temperature and water availability. Results In all three datasets the mean body size of spider assemblages increased from cool/moist to warm/dry environments. This increase could be accounted for by turnover from small‐bodied to large‐bodied spider families. Body size–climate relationships within families were inconsistent. Main conclusions Starvation resistance and accelerated maturation can be ruled out as explanations for the body size clines recorded, because they predict the inverse of the observed relationship between spider body size and temperature. The relationship between body size and climate was partly independent of geographic position. Thus, the restriction of large‐bodied spiders to their glacial refugia owing to dispersal limitations can be excluded. Our results are consistent with mechanisms invoking metabolic rate, desiccation resistance and community interactions to predict a decrease in body size from warm and dry to cool and moist conditions.  相似文献   

4.
1 Spiders (Araneae) were collected on and near downed woody material (DWM) in a Populus‐dominated forest to determine if spiders utilize wood surfaces, and to ascertain the importance of DWM habitat and wood elevation for spider assemblages. 2 Over 10 000 spiders representing 100 species were collected. Although more spiders were collected on the forest floor, spider diversity was higher in traps located on wood surfaces than on the forest floor, and 11 species were collected more frequently on wood surfaces. 3 Spiders utilized DWM at different stages in their development. Female Pardosa mackenziana (Keyserling) (Lycosidae) carrying egg sacs were caught most often on the surface of DWM, possibly to sun their egg sacs. Additionally, the proportion of immature spiders was higher on the wood surface than on the forest floor. 4 Spiders collected on logs with and without bark were compared to assemblages collected on telephone poles to assess what features of DWM habitat may be important. Web‐building species were seldom collected on telephone poles, suggesting that they depend on the greater habitat complexity provided by DWM. In contrast, hunting spiders did not distinguish between telephone poles and logs. 5 Fewer spiders and a less diverse fauna utilized elevated compared to ground‐level wood. Additionally, Detrended Correspondence Analysis revealed that the spider community from elevated wood was distinguishable from the spider community from ground‐level wood, and from the forest floor spider community.  相似文献   

5.
The relative importance of environmental and spatial drivers of animal diversity varies across scales, but identifying these scales can be difficult if a sampling design does not match the scale of the target organisms' interaction with their habitat. In this study, we quantify and compare the effects of environmental variation and spatial proximity on ground‐dwelling spider assemblages sampled from three distinct microhabitat types (open grassland, logs, trees) that recur across structurally heterogeneous grassy woodlands. We used model selection and multivariate procedures to compare the effects of different environmental attributes and spatial proximity on spider assemblages at each microhabitat type. We found that species richness and assemblage composition differed among microhabitat types. Bare ground cover had a negative effect on spider richness under trees, but a positive effect on spider richness in open grassland. Turnover in spider assemblages from open grassland was correlated with environmental distance, but not geographic distance. By contrast, turnover in spiders at logs and trees was correlated with geographic distance, but not environmental distance. Our study suggests that spider assemblages from widespread and connected open grassland habitat were more affected by environmental than spatial gradients, whereas spiders at log and tree habitats were more affected by spatial distance among these discrete but recurring microhabitats. Deliberate selection and sampling of small‐scale habitat features can provide robust information about the drivers of arthropod diversity and turnover in landscapes.  相似文献   

6.
Temperature dependency of consumer–resource interactions is fundamentally important for understanding and predicting the responses of food webs to climate change. Previous studies have shown temperature‐driven shifts in herbivore consumption rates and resource preference, but these effects remain poorly understood for predatory arthropods. Here, we investigate how predator killing rates, prey mass consumption, and macronutrient intake respond to increased temperatures using a laboratory and a field reciprocal transplant experiment. Ectothermic predators, wolf spiders (Pardosa sp.), in the lab experiment, were exposed to increased temperatures and different prey macronutrient content (high lipid/low protein and low lipid/high protein) to assess changes in their killing rates and nutritional demands. Additionally, we investigate prey mass and lipid consumption by spiders under contrasting temperatures, along an elevation gradient. We used a field reciprocal transplant experiment between low (420 masl; 26°C) and high (2,100 masl; 15°C) elevations in the Ecuadorian Andes, using wild populations of two common orb‐weaver spider species (Leucauge sp. and Cyclosa sp.) present along the elevation gradient. We found that killing rates of wolf spiders increased with warmer temperatures but were not significantly affected by prey macronutrient content, although spiders consumed significantly more lipids from lipid‐rich prey. The field reciprocal transplant experiment showed no consistent predator responses to changes in temperature along the elevational gradient. Transplanting Cyclosa sp. spiders to low‐ or high‐elevation sites did not affect their prey mass or lipid consumption rate, whereas Leucauge sp. individuals increased prey mass consumption when transplanted from the high to the low warm elevation. Our findings show that increases in temperature intensify predator killing rates, prey consumption, and lipid intake, but the responses to temperature vary between species, which may be a result of species‐specific differences in their hunting behavior and sensitivity to temperature.  相似文献   

7.
1. Patterns of species richness and species assemblage composition of ground‐dwelling arthropods in primary successions along glacier forelands are traditionally described using a taxonomic approach. On the other hand, the functional trait approach could ensure a better characterisation of their colonisation strategies in these types of habitat. 2. The functional trait approach was applied to investigate patterns of functional diversity and life‐history traits of ground beetles and spiders on an alpine debris‐covered glacier and along its forefield in order to describe their colonisation strategies. 3. Ground beetles and spiders were sampled at different successional stages, representing five stages of deglaciation. 4. The results show that the studied glacier hosts ground beetle and spider assemblages that are mainly characterised by the following traits: walking colonisers, ground hunters and small‐sized species. These traits are typical of species living in cold, wet, and gravelly habitats. The diversity of functional traits in spiders increased along the succession, and in both carabids and spiders, life‐history traits follow the ‘addition and persistence model’. Accordingly, there is no turnover but there is an addition of new traits and a variation in their proportion within each species assemblage along the succession. The distribution of ground beetles and spiders along the glacier foreland and on the glacier seems to be driven by dispersal ability and foraging strategy. 5. The proposed functional approach improves knowledge of the adaptive strategies of ground‐dwelling arthropods colonising glacier surfaces and recently deglaciated terrains, which represent landforms quickly changing due to global warming.  相似文献   

8.
1. The composition of local assemblages is assembled by an interplay of species sorting, mass effects and dispersal limitation processes. The contributions of assembly processes to metacommunity structure can change with ecosystem type and specificities of the study area. Spider composition is influenced by environmental features such as habitat structure and climate, and also by spatial distances between patches. However, little is known about the roles of assembly processes in spider metacommunity structure in wetlands. 2. The beta diversity patterns of spider assemblages were assessed in 24 temporary wetlands distributed along a latitudinal gradient in southern Brazil. The study also assessed the individual correspondence of beta diversity (and its turnover and richness components) with dissimilarities in habitat structure and climate, as well as with geographic distances, using Mantel and partial Mantel correlation tests and multivariate correlograms. 3. Turnover was the most important component of spider beta diversity. Mantel tests detected significant correlations of spider beta diversity with habitat structure. Partial Mantel tests detected significant relationships only between spider beta diversity (and the richness component) and geographic distances. Additionally, spider composition was more similar than chance on smaller scales. 4. These results evidenced a complex interplay of assembly processes explaining spider metacommunity structure in temporary wetlands. Although species-sorting processes associated with habitat structure were important in structuring local spider composition, mass effects and dispersal limitation across climatic zones played an important role on a broader scale.  相似文献   

9.
1. Although spiders can colonise ecosystems by air, dispersal capabilities differ among spider species. Web‐building spiders are thought to balloon at higher rates than hunting spiders. Spider success in agricultural systems may also depend on habitat preferences. Few studies have examined the success of aerially dispersing spiders in crop systems, and information about the dispersal capabilities of spiders in putative source habitats is limited. 2. Spiders were monitored in the air and on the foliage of vineyards and adjacent oak woodland in order to compare the aerial spider faunas between these disparate habitats and to determine whether highly dispersive species contributed disproportionately to the spider community in vineyards. 3. The results show that most aerially dispersing spiders in both habitats were web‐building dwarf spiders, Erigone spp. (Linyphiidae), although hunting spiders were also well represented in the air, especially in oak woodland. Most woodland spiders in the air appeared to be residents of oak woodland and probably dispersed only short distances. 4. Conversely, only a subset of the aerial spider fauna established in vineyards in high numbers. Spiders that dominated the aerial fauna were under‐represented on vineyard foliage, whereas several hunting spiders dispersed aerially at low rates but dominated vineyard spider composition. 5. These results suggest that aerial dispersal ability may allow spiders to reach crop systems, but that establishment depends on habitat preferences and/or competitive ability.  相似文献   

10.
1. As the climate changes, species are expected to shift to higher latitudes and altitudes where suitable habitat is available if dispersal is not constrained by geographic barriers. We analyse patterns of turnover in freshwater macroinvertebrate assemblages to identify which communities are most likely to be at risk from climate change, and the location of geographic barriers that could impede such adaptive range shifts. 2. We analysed macroinvertebrate data from standard biological assessments at the family level, from surveys of all coastal basins of New South Wales, Australia, covering a latitudinal gradient of more than 1000 km. We used variance partitioning to separate the variation in composition explained by climate, among‐site distance, human disturbance and other stream factors. 3. Montane stream assemblages showed high turnover in response to climatic variation. Turnover in coastal‐fringe streams was least affected by climate, but strongly correlated with distance and stream variables. Significant shifts in assemblage composition occurred between habitats within catchments and across catchment boundaries. 4. Montane stream assemblages are most vulnerable to climate change because their distribution is most responsive to climatic factors, and elevated sites are isolated from one another, reducing the scope for altitudinal migration. Dispersal limitations in coastal‐fringe assemblages will also increase their vulnerability to habitat loss from sea‐level rise. For all stream classes, the separation of many neighbouring catchment assemblages, owing to either limited dispersal or the lack of suitable habitat, is likely to constrain adaptive range shifts. This would lead to an overall reduction in beta diversity among reaches and subsequently to a reduction in landscape‐level gamma diversity.  相似文献   

11.
Populations that experience different local climates, such as those along a latitudinal gradient, must match life history traits to local environmental conditions. In species with temperature-dependent sex determination, such as many reptiles, population sex ratio is strongly influenced by local climate, yet local climate differs substantially among populations in geographically-widespread species. We studied the painted turtle at three sites across the species’ geographic range to gain a mechanistic understanding of how sex ratios are produced under different local climates. We combined data on maternal nest-site choice, nest incubation temperature, and the resultant offspring sex ratio of populations across a climatic gradient, to demonstrate how geographic variation in behavior and physiology translates into sex ratios among populations of a widely-distributed species. We found that populations across the species’ geographic range match incubation conditions with local climatic conditions through population-specific adjustment of maternal nest-site choice. Incubation temperatures during the thermosensitive period were cooler and clutches were more male-biased in the south, with populations farther north having warmer incubation temperatures and more female-biased sex ratios, yet adult sex ratios were not strongly biased in any population. Most components of maternal nest-site choice varied latitudinally among populations, suggesting that the species may have a considerable repertoire for responding to climate change through adjustment of nest-site choice.  相似文献   

12.
Habitat conversion is a major driver of the biodiversity crisis, yet why some species undergo local extinction while others thrive under novel conditions remains unclear. We suggest that focusing on species' niches, rather than traits, may provide the predictive power needed to forecast biodiversity change. We first examine two Neotropical frog congeners with drastically different affinities to deforestation and document how thermal niche explains deforestation tolerance. The more deforestation‐tolerant species is associated with warmer macroclimates across Costa Rica, and warmer microclimates within landscapes. Further, in laboratory experiments, the more deforestation‐tolerant species has critical thermal limits, and a jumping performance optimum, shifted ~2 °C warmer than those of the more forest‐affiliated species, corresponding to the ~3 °C difference in daytime maximum temperature that these species experience between habitats. Crucially, neither species strictly specializes on either habitat – instead habitat use is governed by regional environmental temperature. Both species track temperature along an elevational gradient, and shift their habitat use from cooler forest at lower elevations to warmer deforested pastures upslope. To generalize these conclusions, we expand our analysis to the entire mid‐elevational herpetological community of southern Costa Rica. We assess the climatological affinities of 33 amphibian and reptile species, showing that across both taxonomic classes, thermal niche predicts presence in deforested habitat as well as or better than many commonly used traits. These data suggest that warm‐adapted species carry a significant survival advantage amidst the synergistic impacts of land‐use conversion and climate change.  相似文献   

13.
Agricultural landscapes include patches of cropped and non‐cropped habitats. Non‐cropped fragments are often source habitats for natural pest predators which colonise less suitable agricultural fields. The goals of the present study were: (a) to evaluate the contribution of non‐cropped fragments to agro‐ecosystems as biodiversity reservoirs and ecosystem service providers, by assessing the abundance of spider species and their diversity and (b) to quantify the spatial variation in spider communities across different non‐cropped fragments and crops. We hypothesised that non‐cropped fragments function as spider diversity reservoirs with better conditions for reproduction than crops. We collected spiders from 10 restored fragments having had no disturbance for 20 years and four field edges, along a gradient inside the crop adjacent to each fragment. Overall, we collected 3,591 spiders belonging to 49 species/morphospecies in 14 families. Non‐cropped fragments had a central role in the spider community, as estimated through species–habitat networks. We found differences in the diversity and abundance of spiders between non‐cropped and cropped fragments. However, these differences were only for immature spiders, whose abundance decreased from non‐cropped fragments towards the inside of crops. Our results highlight the importance of non‐cropped fragments in agro‐ecosystems as important source habitat patches, reservoirs of biodiversity and sites where spider reproductive success is possibly higher.  相似文献   

14.
Investigating how interactions among plants depend on environmental conditions is key to understand and predict plant communities’ response to climate change. However, while many studies have shown how direct interactions change along climatic gradients, indirect interactions have received far less attention. In this study, we aim at contributing to a more complete understanding of how biotic interactions are modulated by climatic conditions. We investigated both direct and indirect effects of adult tree canopy and ground vegetation on seedling growth and survival in five tree species in the French Alps. To explore the effect of environmental conditions, the experiment was carried out at 10 sites along a climatic gradient closely related to temperature. While seedling growth was little affected by direct and indirect interactions, seedling survival showed significant patterns across multiple species. Ground vegetation had a strong direct competitive effect on seedling survival under warmer conditions. This effect decreased or shifted to facilitation at lower temperatures. While the confidence intervals were wider for the effect of adult canopy, it displayed the same pattern. The monitoring of micro‐environmental conditions revealed that competition by ground vegetation in warmer sites could be related to reduced water availability; and weak facilitation by adult canopy in colder sites to protection against frost. For a cold‐intolerant and shade‐tolerant species (Fagus sylvatica), adult canopy indirectly facilitated seedling survival by suppressing ground vegetation at high temperature sites. The other more cold tolerant species did not show this indirect effect (Pinus uncinata, Larix decidua and Abies alba). Our results support the widely observed pattern of stronger direct competition in more productive climates. However, for shade tolerant species, the effect of direct competition may be buffered by tree canopies reducing the competition of ground vegetation, resulting in an opposite trend for indirect interactions across the climatic gradient.  相似文献   

15.
How populations of long‐living species respond to climate change depends on phenotypic plasticity and local adaptation processes. Marginal populations are expected to have lags in adaptation (i.e. differences between the climatic optimum that maximizes population fitness and the local climate) because they receive pre‐adapted alleles from core populations preventing them from reaching a local optimum in their climatically marginal habitat. Yet, whether adaptation lags in marginal populations are a common feature across phylogenetically and ecologically different species and how lags can change with climate change remain unexplored. To test for range‐wide patterns of phenotypic variation and adaptation lags of populations to climate, we (a) built model ensembles of tree height accounting for the climate of population origin and the climate of the site for 706 populations monitored in 97 common garden experiments covering the range of six European forest tree species; (b) estimated populations' adaptation lags as the differences between the climatic optimum that maximizes tree height and the climate of the origin of each population; (c) identified adaptation lag patterns for populations coming from the warm/dry and cold/wet margins and from the distribution core of each species range. We found that (a) phenotypic variation is driven by either temperature or precipitation; (b) adaptation lags are consistently higher in climatic margin populations (cold/warm, dry/wet) than in core populations; (c) predictions for future warmer climates suggest adaptation lags would decrease in cold margin populations, slightly increasing tree height, while adaptation lags would increase in core and warm margin populations, sharply decreasing tree height. Our results suggest that warm margin populations are the most vulnerable to climate change, but understanding how these populations can cope with future climates depend on whether other fitness‐related traits could show similar adaptation lag patterns.  相似文献   

16.
17.
Widespread species often occur across a range of climatic conditions, through a combination of local genetic adaptations and phenotypic plasticity. Species with greater phenotypic plasticity are likely to be better positioned to cope with rapid anthropogenic climate changes, while those displaying strong local adaptations might benefit from translocations to assist the movement of adaptive genes as the climate changes. Eucalyptus tricarpa occurs across a climatic gradient in south‐eastern Australia, a region of increasing aridity, and we hypothesized that this species would display local adaptation to climate. We measured morphological and physiological traits reflecting climate responses in nine provenances from sites of 460 to 1040 mm annual rainfall, in their natural habitat and in common gardens near each end of the gradient. Local adaptation was evident in functional traits and differential growth rates in the common gardens. Some traits displayed complex combinations of plasticity and genetic divergence among provenances, including clinal variation in plasticity itself. Provenances from drier locations were more plastic in leaf thickness, whereas leaf size was more plastic in provenances from higher rainfall locations. Leaf density and stomatal physiology (as indicated by δ13C and δ18O) were highly and uniformly plastic. In addition to variation in mean trait values, genetic variation in trait plasticity may play a role in climate adaptation.  相似文献   

18.
Speciation involves divergence at genetic and phenotypic levels. Where substantial genetic differentiation exists among populations, examining variation in multiple phenotypic characters may elucidate the mechanisms by which divergence and speciation unfold. Previous work on the Australian funnel‐web spider Atrax sutherlandi Gray (2010; Records of the Australian Museum 62 , 285–392; Mygalomorphae: Hexathelidae: Atracinae) has revealed a marked genetic structure along a 110‐kilometer transect, with six genetically distinct, parapatric populations attributable to past glacial cycles. In the present study, we explore variation in three classes of phenotypic characters (metabolic rate, water loss, and morphological traits) within the context of this phylogeographic structuring. Variation in metabolic and water loss rates shows no detectable association with genetic structure; the little variation observed in these rates may be due to the spiders’ behavioral adaptations (i.e., burrowing), which buffer the effects of climatic gradients across the landscape. However, of 17 morphological traits measured, 10 show significant variation among genetic populations, in a disjunct manner that is clearly not latitudinal. Moreover, patterns of variation observed for morphological traits serving different organismic functions (e.g., prey capture, burrowing, and locomotion) are dissimilar. In contrast, a previous study of an ecologically similar sympatric spider with little genetic structure indicated a strong latitudinal response in 10 traits over the same range. The congruence of morphological variation with deep phylogeographic structure in Tallaganda's A. sutherlandi populations, as well as the inconsistent patterns of variation across separate functional traits, suggest that the spiders are likely in early stages of speciation, with parapatric populations independently responding to local selective forces.  相似文献   

19.
A fundamental limitation in many climate change experiments is that tests represent relatively short-term 'shock' experiments and so do not incorporate the phenotypic plasticity or evolutionary change that may occur during the gradual process of climate change. However, capturing this aspect of climate change effects in an experimental design is a difficult challenge that few studies have accomplished. I examined the effect of temperature and predator climate history in food webs composed of herbaceous plants, generalist grasshopper herbivores and spider predators across a natural 4.8°C temperature gradient spanning 500 km in northeastern USA. In these grasslands, the effects of rising temperatures on the plant community are indirect and arise via altered predator-herbivore interactions. Experimental warming had no direct effect on grasshoppers, but reduced predation risk effects by causing spiders from all study sites to seek thermal refuge lower in the plant canopy. However, spider thermal tolerance corresponded to spider origin such that spiders from warmer study sites tolerated higher temperatures than spiders from cooler study sites. As a consequence, the magnitude of the indirect effect of spiders on plants did not differ along the temperature gradient, although a reciprocal transplant experiment revealed significantly different effects of spider origin on the magnitude of top-down control. These results suggest that variation in predator response to warming may maintain species interactions and associated food web processes when faced with long term, chronic climate warming.  相似文献   

20.
Diversity patterns of herbivores have been related to climate, host plant traits, host plant distribution and evolutionary relationships individually. However, few studies have assessed the relative contributions of a range of variables to explain these diversity patterns across large geographical and host plant species gradients. Here we assess the relative influence that climate and host plant traits have on endophagous species (leaf miners and plant gallers) diversity across a suite of host species from a genus that is widely distributed and morphologically variable. Forty-six species of Acacia were sampled to encapsulate the diversity of species across four taxonomic sections and a range of habitats along a 950 km climatic gradient: from subtropical forest habitats to semi-arid habitats. Plant traits, climatic variables, leaf miner and plant galler diversity were all quantified on each plant species. In total, 97 leaf mining species and 84 plant galling species were recorded from all host plants. Factors that best explained leaf miner richness across the climatic gradient (using AIC model selection) included specific leaf area (SLA), foliage thickness and mean annual rainfall. The factor that best explained plant galler richness across the climatic gradient was C:N ratio. In terms of the influence of plant and climatic traits on species composition, leaf miner assemblages were best explained by SLA, foliage thickness, mean minimum temperature and mean annual rainfall, whilst plant gall assemblages were explained by C:N ratio, %P, foliage thickness, mean minimum temperature and mean annual rainfall. This work is the first to assess diversity and structure across a broad environmental gradient and a wide range of potential key climatic and plant trait determinants simultaneously. Such methods provide key insights into endophage diversity and provide a solid basis for assessing their responses to a changing climate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号