首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   372篇
  免费   25篇
  2023年   2篇
  2022年   3篇
  2021年   10篇
  2020年   9篇
  2019年   3篇
  2018年   7篇
  2017年   8篇
  2016年   18篇
  2015年   29篇
  2014年   28篇
  2013年   24篇
  2012年   47篇
  2011年   45篇
  2010年   28篇
  2009年   18篇
  2008年   14篇
  2007年   16篇
  2006年   24篇
  2005年   11篇
  2004年   16篇
  2003年   8篇
  2002年   9篇
  2001年   2篇
  2000年   1篇
  1999年   2篇
  1998年   7篇
  1995年   1篇
  1994年   1篇
  1992年   1篇
  1990年   1篇
  1989年   1篇
  1988年   1篇
  1979年   1篇
  1969年   1篇
排序方式: 共有397条查询结果,搜索用时 15 毫秒
1.
2.
3.
1. Ecosystem processes depend on the biomass of the involved organisms, but their functional diversity may play an additional role. In particular, the exclusion of key functional groups through habitat disturbance may lead to the breakdown of ecosystem functions. Dung removal is an important process contributing to nutrient cycling and thus productivity in grazed ecosystems. 2. This study investigated the role of different functional groups of dung beetles in dung removal in different habitats within a wood-pasture in two different seasons. An experimental setting with 12 blocks and 108 dung pads was used to investigate short-term dung removal over 1 week of exposure. 3. Dung removal was most strongly affected by habitat type, with almost 40% lower levels in grassland than in adjacent forest and forest gaps. Of all assemblage characteristics, total biomass of tunneller species was the strongest predictor of dung removal, whereas functional diversity showed no significant effect. In accordance with the dung removal pattern at habitat type level, densities of large tunnellers were suppressed in grassland compared with forest. 4. It is concluded that dung removal is habitat-specific and large tunnellers play a disproportionate role in this important ecosystem function in temperate forests.  相似文献   
4.
Unicellular, diazotrophic cyanobacteria temporally separate dinitrogen (N2) fixation and photosynthesis to prevent inactivation of the nitrogenase by oxygen. This temporal segregation is regulated by a circadian clock with oscillating activities of N2 fixation in the dark and photosynthesis in the light. On the population level, this separation is not always complete, since the two processes can overlap during transitions from dark to light. How do single cells avoid inactivation of nitrogenase during these periods? One possibility is that phenotypic heterogeneity in populations leads to segregation of the two processes. Here, we measured N2 fixation and photosynthesis of individual cells using nanometer-scale secondary ion mass spectrometry (nanoSIMS) to assess both processes in a culture of the unicellular, diazotrophic cyanobacterium Crocosphaera watsonii during a dark-light and a continuous light phase. We compared single-cell rates with bulk rates and gene expression profiles. During the regular dark and light phases, C. watsonii exhibited the temporal segregation of N2 fixation and photosynthesis commonly observed. However, N2 fixation and photosynthesis were concurrently measurable at the population level during the subjective dark phase in which cells were kept in the light rather than returned to the expected dark phase. At the single-cell level, though, cells discriminated against either one of the two processes. Cells that showed high levels of photosynthesis had low nitrogen fixing activities, and vice versa. These results suggest that, under ambiguous environmental signals, single cells discriminate against either photosynthesis or nitrogen fixation, and thereby might reduce costs associated with running incompatible processes in the same cell.  相似文献   
5.
Certain substances may be hazardous to ecosystems. To be able to preserve the structures and functions of ecosystems, knowledge is required to qualify and quantify such hazards. To this end, biotests are indispensable tools. For the development and/or choice of biotests, special attention has to be drawn to conflicts between scientific demands and practical constraints. From a purely scientific point of view, experiments should be designed to maximise the ecological relevance of the obtained results. However, this often collides with the limited resources (budget, time, manpower) available. Furthermore, societal issues (e.g. animal welfare) have to be taken into account. Thus, it is necessary to develop a scientifically sound testing approach that avoids unnecessary animal testing, keeps the costs low, and can be performed within a short timeframe. The different perspectives of ecology, environmental toxicology, and environmental chemistry should be integrated into a balanced ecotoxicological approach. Accordingly, we propose a dynamic testing strategy, which is adapted to the substance (or substance group) in question and its mode(s) of action.  相似文献   
6.
The two-component regulatory system PhoP/PhoQ has been shown to (i) control expression of virulence-associated traits, (ii) confer survival and growth within macrophages and (iii) play a role in Yersinia infections. However, the influence of PhoP on virulence varied greatly between different murine models of infection and its role in natural oral infections with frequently used representative isolates of Y. pseudotuberculosis was unknown. To address this issue, we constructed an isogenic set of phoP + and phoP variants of strain IP32953 and YPIII and analyzed the impact of PhoP using in vitro functionality experiments and a murine oral infection model, whereby we tested for bacterial dissemination and influence on the host immune response. Our results revealed that PhoP has a low impact on virulence, lymphatic and systemic organ colonization, and on immune response modulation by IP32953 and YPIII, indicating that PhoP is not absolutely essential for oral infections but may be involved in fine-tuning the outcome. Our work further revealed certain strain-specific differences in virulence properties, which do not strongly rely on the function of PhoP, but affect tissue colonization, dissemination and/or persistence of the bacteria. Highlighted intra-species variations may provide a potential means to rapidly adjust to environmental changes inside and outside of the host.  相似文献   
7.
8.
9.
Triple A syndrome is caused by mutations in AAAS encoding the protein ALADIN. We investigated the role of ALADIN in the human adrenocortical cell line NCI-H295R1 by either over-expression or down-regulation of ALADIN. Our findings indicate that AAAS knock-down induces a down-regulation of genes coding for type II microsomal cytochrome P450 hydroxylases CYP17A1 and CYP21A2 and their electron donor enzyme cytochrome P450 oxidoreductase, thereby decreasing biosynthesis of precursor metabolites required for glucocorticoid and androgen production. Furthermore we demonstrate that ALADIN deficiency leads to increased susceptibility to oxidative stress and alteration in redox homeostasis after paraquat treatment. Finally, we show significantly impaired nuclear import of DNA ligase 1, aprataxin and ferritin heavy chain 1 in ALADIN knock-down cells. We conclude that down-regulating ALADIN results in decreased oxidative stress response leading to alteration in steroidogenesis, highlighting our knock-down cell model as an important in-vitro tool for studying the adrenal phenotype in triple A syndrome.  相似文献   
10.
Probiotics can modulate the immune system, conferring beneficial effects on the host. Understanding how these microorganisms contribute to improve the health status is still a challenge. Previously, we have demonstrated that Enterococcus faecalis CECT7121 implants itself and persists in the murine gastrointestinal tract, and enhances and skews the profile of cytokines towards the Th1 phenotype in several biological models. Given the importance of dendritic cells (DCs) in the orchestration of immunity, the aim of this work was to elucidate the influence of E. faecalis CECT7121 on DCs and the outcome of the immune responses. In this work we show that E. faecalis CECT7121 induces a strong dose-dependent activation of DCs and secretion of high levels of IL-12, IL-6, TNFα, and IL-10. This stimulation is dependent on TLR signaling, and skews the activation of T cells towards the production of IFNγ. The influence of this activation in the establishment of Th responses in vivo shows the accumulation of specific IFNγ-producing cells. Our findings indicate that the activation exerted by E. faecalis CECT7121 on DCs and its consequence on the cellular adaptive immune response may have broad therapeutic implications in immunomodulation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号