首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 401 毫秒
1.
The geographical limits of Nothofagus cunninghamii are highly correlated with climate and appear to be more or less in equilibrium with the climate of the present century in all but one of the areas of its present range. It is suggested that suitable climates for the species occur in the highlands of northeastern Victoria and southern New South Wales, beyond its present range, and it is possible that it occurred within the predicted area prior to the last ice age. It is suggested that populations of N. cunninghamii along the northeastern edge of its present range in the Central Highlands of Victoria may be migrating northeast along a narrow corridor of apparently suitable climate to re-occupy the postulated former range. The rate of migration would be expected to be extremely slow because of the poor dispersal ability of the species and the adverse impact of recurrent fires.  相似文献   

2.
Abstract Pollen analysis of the sediments of a small bog, supporting a stand of cool temperate rainforest in southeastern Tasmania, was undertaken in order to examine the history of the stand dominant, Nothofagus cunninghamii, presently growing outside its predicted climatic range. The pollen record covers at least the last 9000 years and reveals changes in the bog and in the surrounding vegetation, although pollen percentages of N. cunninghamii are sufficiently high to indicate that the species could have had a local presence throughout the recorded period. It is likely that this N. cunninghamii stand is relictual, surviving not only Holocene climates, but also the cool dry conditions of the last glacial period. This ability to survive changing and sometimes very unfavourable climates leads to the conclusion that great caution must be exercised in using present climates alone to predict the potential distribution of N. cunninghamii.  相似文献   

3.
How temperate forests will respond to climate change is uncertain; projections range from severe decline to increased growth. We conducted field tests of sessile oak (Quercus petraea), a widespread keystone European forest tree species, including more than 150 000 trees sourced from 116 geographically diverse populations. The tests were planted on 23 field sites in six European countries, in order to expose them to a wide range of climates, including sites reflecting future warmer and drier climates. By assessing tree height and survival, our objectives were twofold: (i) to identify the source of differential population responses to climate (genetic differentiation due to past divergent climatic selection vs. plastic responses to ongoing climate change) and (ii) to explore which climatic variables (temperature or precipitation) trigger the population responses. Tree growth and survival were modeled for contemporary climate and then projected using data from four regional climate models for years 2071–2100, using two greenhouse gas concentration trajectory scenarios each. Overall, results indicated a moderate response of tree height and survival to climate variation, with changes in dryness (either annual or during the growing season) explaining the major part of the response. While, on average, populations exhibited local adaptation, there was significant clinal population differentiation for height growth with winter temperature at the site of origin. The most moderate climate model (HIRHAM5‐EC; rcp4.5) predicted minor decreases in height and survival, while the most extreme model (CCLM4‐GEM2‐ES; rcp8.5) predicted large decreases in survival and growth for southern and southeastern edge populations (Hungary and Turkey). Other nonmarginal populations with continental climates were predicted to be severely and negatively affected (Bercé, France), while populations at the contemporary northern limit (colder and humid maritime regions; Denmark and Norway) will probably not show large changes in growth and survival in response to climate change.  相似文献   

4.
The ectomycorrhizal fungus Laccaria sp. A is restricted to temperate rainforest of southeast Australia, associated with its host tree Nothofagus cunninghamii. Eight mitochondrial microsatellite markers were used to investigate the population genetic structure of L. sp. A across its distribution in Tasmania and Victoria. The highest allelic diversity was found in Tasmania, which appeared to contain a panmictic population, whereas the more fragmented Victorian populations were characterized by low allelic diversity and differentiation between east and west. There is evidence of glacial refugia in the west and the northeast of Tasmania, and in Victoria in the Otway Ranges and Central Highlands, with postglacial migration into the Strzelecki Ranges. Narrow host-specificity may have contributed to the presence of population structure in this fungus. Allelic diversity patterns in L. sp. A are largely congruent with diversity patterns already established in populations of its host, N. cunninghamii.  相似文献   

5.
The incidence and severity of forest fires are linked to the interaction between climate, fuel and topography. Increased warming and drying in the future is expected to have a significant impact on the risk of forest fire occurrence. An increase in fire risk is linked to the synchronous relationship between climate and fuel moisture conditions. A warmer, drier climate will lead to drier forest fuels that will in turn increase the chance of successful fire ignition and propagation. This interaction will increase the severity of fire weather, which, in turn, will increase the risk of extreme fire behaviour. A warmer climate will also extend fire season length, which will increase the likelihood of fires occurring over a greater proportion of the year. In this study of the North Okanagan area of British Columbia, Canada, the impacts of climate change of fire potential were evaluated using the Canadian Forest Fire Danger Rating System and multiple climate scenario analysis. Utilizing this approach, a 30% increase in fire season length was modelled to occur by 2070. In addition, statistically significant increases in fire severity and fire behaviour were also modelled. Fire weather severity was predicted to increase by 95% during the summer months by 2070 while fire behaviour was predicted to shift from surface fire‐intermittent crown fire regimes to a predominantly intermittent‐full crown fire regime by 2070 onwards. An increase in fire season length, fire weather severity and fire behaviour will increase the costs of fire suppression and the risk of property and resource loss while limiting human‐use within vulnerable forest landscapes. An increase in fire weather severity and fire behaviour over a greater proportion of the season will increase the risks faced by ecosystems and biodiversity to climatic change and increase the costs and difficulty of achieving sustainable forest management.  相似文献   

6.
Aim Comparative responses of Nothofagus species to water deficits were studied to determine whether rainfall regimes could limit the latitudinal ranges of tropical and temperate forest species. Location The study species are native to New Guinea, New Caledonia, Australia, New Zealand, Chile and Argentina. Methods Seedlings of Nothofagus species from a broad latitudinal range were grown in a common environment. Changes in conductance, relative water content and water potential were measured in detached shoots, and together with measurements of tissue injury and biomass allocation, were compared between tropical and temperate species. Results Differences in responses to water deficits between tropical and temperate species appear to reflect differences in climate regimes. In particular, species native to ever‐wet rainfall regimes in New Guinea, where water deficits are generally likely to be short‐lived, were effective at conserving water by reduced stomatal conductance. In contrast, high‐latitude evergreen species on average showed greater development of traits that should enhance water uptake. This was particularly evident in Nothofagus cunninghamii from southern Australia, which developed low water potentials at moderate levels of tissue water deficit and higher root:leaf biomass than tropical species, potentially allowing carbon assimilation to be maximized during warmer, but drier, summer months. However, water relations varied among high‐latitude species. In particular, deciduous species on average showed higher rates of conductance, even during moderate levels of tissue water deficit, than evergreen species. Main conclusions The tropical species appear to conserve water during periods of water deficit (relative to temperate species), which is unlikely to have substantial opportunity costs for growth in ever‐wet climates. However, spread of tropical species to higher latitudes may be limited by water conservation strategies that limit carbon gain in climates in which temperature seasonality is often paired with drier summers. Evergreen species from high latitudes, such as N. cunninghamii, commonly showed traits that should increase water uptake. However, this strategy, while probably maximizing growth in temperate climates with cool winters and drier summers, must limit competitiveness at lower latitudes in summer‐wet climates. We conclude that responses to water regimes may make a significant contribution to the latitudinal limits of some evergreen rain forest species.  相似文献   

7.
Aim  To predict how the bioclimatic envelope of the broad-headed snake (BHS) ( Hoplocephalus bungaroides ) may be redistributed under future climate warming scenarios.
Location  South-eastern New South Wales, Australia.
Methods  We used 159 independent locations for the species and 35 climatic variables to model the bioclimatic envelope for the BHS using two modelling approaches – B ioclim and M axent . Predictions were made under current climatic conditions and we also predicted the species distribution under low and high climate change scenarios for 2030 and 2070.
Results  Broad-headed snakes currently encompass their entire bioclimatic envelope. Both modelling approaches predict that suitable climate space for BHS will be lost to varying degrees under both climate warming scenarios, and under the worst case, only 14% of known snake populations may persist.
Main conclusions  Areas of higher elevation within the current range will be most important for persistence of this species because they will remain relatively moist and cool even under climate change and will match the current climate envelope. Conservation efforts should focus on areas where suitable climate space may persist under climate warming scenarios. Long-term monitoring programs should be established both in these areas and where populations are predicted to become extirpated, so that we can accurately determine changes in the distribution of this species throughout its range.  相似文献   

8.
Combining a climatic envelope modelling technique with more than two centuries (1800–2009) of distribution records has revealed the effects of a changing climate on the egg‐laying monotreme, the platypus, Ornithorhynchus anatinus. We show that the main factor associated with platypus occurrence switched from aquatic habitat availability (estimated by rainfall) to thermal tolerances (estimated by annual maximum temperature) in the 1960s. This correlates directly with the change in the annual maximum temperature anomaly from cooler to warmer conditions in southeastern Australia. Modelling of platypus habitat under emission scenarios (A1B, A2, B1 and B2) revealed large decreases (>30%) in thermally suitable habitat by 2070. This reduction, compounded by increasing demands for water for agriculture and potable use, suggests that there is real cause for concern over the future status of this species, and highlights the need for restoration of thermal refugia within the platypus’ modelled range.  相似文献   

9.
Climate warming would theoretically create conditions for the breeding range expansion of pseudo‐steppe Mediterranean and long‐distance migrant species and provide the possibility for these to overwinter in the same breeding areas. However, contemporary changes in rainfall regimes might have negative effects on the climate suitability and in turn, shrink species potential range. The lesser kestrel Falco naumanni is highly sensitive to rainfall oscillations and has recently extended its Italian breeding range towards northern latitudes and increasing its wintering records. We modelled the effects of temperature and rainfall on current and future climate suitability for lesser kestrels in both the breeding and wintering periods by using MaxEnt. Models were based on the distribution of 298 colonies and 40 wintering records. Future climate suitability was assessed under eight different scenarios. Spring rainfall amount resulted as the main determinant of breeding climate suitability, so its predicted reduction will determine a shrinkage in suitable areas (–42.10% in 2050; –32.07% in 2070). Specifically, the 66.05% of Italian colonies will be outside the climatically suitable area by 2050. However wide areas, suitable under current climate conditions, are still not occupied by lesser kestrel and allow the potential expansion of its Italian breeding range in the short term. Temperature seasonality mainly determined the species’ winter climate suitability, which is overall predicted to boost in the next decades (+145.03% in 2050; and +123.91% in 2070). All but one future scenarios predicted a northward shift of about 40 km for both breeding and wintering climate suitability. Despite its recent expansion, we have found that climate change will pose conservation concerns for the Italian breeding population of lesser kestrels. Indeed, changes in non‐climate factors will also outline the future suitability of the Italian range for lesser kestrels in both seasons with effects that might both strengthen or mitigate climate effects.  相似文献   

10.
Human-induced climate change is considered a conspicuous threat to biodiversity in the 21st century. Species’ response to climate change depends on their exposition, sensitivity and ability to adapt to novel climates. Exposure to climate change is however uneven within species’ range, so that some populations may be more at risk than others. Identifying the regions most exposed to climate change is therefore a first and pivotal step on determining species’ vulnerability across their geographic ranges. Here, we aimed at quantifying mammal local exposure to climate change across species’ ranges. We identified areas in the Brazilian Amazon where mammals will be critically exposed to non-analogue climates in the future with different variables predicted by 15 global circulation climate forecasts. We also built a null model to assess the effectiveness of the Amazon protected areas in buffering the effects of climate change on mammals, using an innovative and more realistic approach. We found that 85% of species are likely to be exposed to non-analogue climatic conditions in more than 80% of their ranges by 2070. That percentage is even higher for endemic mammals; almost all endemic species are predicted to be exposed in more than 80% of their range. Exposure patterns also varied with different climatic variables and seem to be geographically structured. Western and northern Amazon species are more likely to experience temperature anomalies while northeastern species will be more affected by rainfall abnormality. We also observed an increase in the number of critically-exposed species from 2050 to 2070. Overall, our results indicate that mammals might face high exposure to climate change and that protected areas will probably not be efficient enough to avert those impacts.  相似文献   

11.
  1. Invasive alien species and climate change are two of the most serious global environmental threats. In particular, it is of great interest to understand how changing climates could impact the distribution of invaders that pose serious threats to ecosystems and human activities.
  2. In this study, we developed ensemble species distribution models for predicting the current and future global distribution of the signal crayfish Pacifastacus leniusculus and the red swamp crayfish Procambarus clarkii, two of the most highly problematic invaders of freshwater ecosystems worldwide. We collected occurrence records of the species, from native and alien established ranges worldwide. These records in combination with averaged observations of current climatic conditions were used to calibrate a set of 10 distinct correlative models for estimating the climatic niche of each species. We next projected the estimated niches into the geographical space for the current climate conditions and for the 2050s and 2070s under representative concentration pathway 2.6 and 8.5 scenarios.
  3. Our species distribution models had high predictive abilities and suggest that annual mean temperature is the main driver of the distribution of both species. Model predictions indicated that the two crayfish species have not fully occupied their suitable climates and will respond differently to future climate scenarios in different geographic regions. Suitable climate for P. leniusculus was predicted to shift poleward and to increase in extent in North America and Europe but decrease in Asia. Regions with suitable climate for P. clarkii are predicted to widen in Europe but contract in North America and Asia.
  4. This study highlights that invasive species with different thermal preference are likely to respond differently to future climate changes. Our results provide important information for policy makers to design and implement anticipated measures for the prevention and control of these two problematic species.
  相似文献   

12.
ABSTRACT

Capsule: The distribution range of the European Roller Coracias garrulus has undergone large changes over geological times, but although the species is warm-adapted, the human induced climate change is predicted to affect negatively the range of the currently large populations.

Aim: Information on species-specific vulnerability to climate change is crucial not only for designing interventions and setting conservation goals, but also to inform conservation decision-making. Our goal was to map climate suitability for the European Roller in the Western Palaearctic under current climate, and for past (last glacial maximum and mid-Holocene) and future (2050 and 2070) climate scenarios.

Methods: We used MaxEnt for species distribution modelling based on the reconstructed distribution map of the species.

Results: Our results suggest that during glacial periods Rollers persisted in small southern refugia, and then spread and colonized northern latitudes during the mid-Holocene. In the future, our models forecast a shift in climatically suitable range towards northern latitudes and an overall small range contraction (4.5–5.5%). Warmer temperatures will increase climate suitability in northern countries where the species is currently declining or became locally extinct. On the other hand, wide suitable areas under current climatic conditions are predicted to become unsuitable in the future (35–38% by 2050 and 2070, respectively), significantly impacting large populations such as those in Romania, Spain, Bulgaria and Hungary. French and Italian populations are identified to be future key populations for Roller conservation.

Conclusions: Our findings suggest that future climate changes will likely amplify the impacts of existing threats on the majority of large European Roller populations in Europe.  相似文献   

13.
气候变化对邛崃山系大熊猫主食竹和栖息地分布的影响   总被引:1,自引:0,他引:1  
气候变化对生物多样性的影响,特别是珍稀濒危物种的影响是当前的研究热点。全球气候变化对大熊猫的影响一直受到广泛关注。根据野外调查的大熊猫活动痕迹点、竹类分布点和主食竹扩散距离数据,采用Maxent模型,利用植被、地形、气候等因素,在RCP8.5下分析了2050年和2070年邛崃山系大熊猫主食竹分布及栖息地变化趋势。结果显示:(1)未来大熊猫适宜生境及主食竹气候适宜区面积均有所减少,到2070年分别减少37.2%和4.7%;(2)未来主食竹分布范围总体向高海拔扩展,但面积持续减少,到2070年分布面积比当前减少8.3%;(3)大熊猫栖息地未来有向高海拔扩张的趋势,在低海拔地区退缩明显,到2070年较当前减少27.2%;但到2070年大熊猫栖息地面积加上非栖息地有主食竹分布的面积,较现有大熊猫栖息地面积大1.5%;(4)受气候变化影响较严重的区域是邛崃山系南部以及低海拔地区,其余区域所受影响相对较小;(5)未来需要加强对受气候变化影响严重区域的监测与保护,特别是邛崃山系中部的大熊猫集中分布区。  相似文献   

14.
Nothofagus cunninghamii is a long-lived, wind-pollinated tree species that dominates the cool temperate rainforests of southeastern Australia. The species'' distribution is more or less continuous in western Tasmania but is fragmented elsewhere. However, it is unknown whether this fragmentation has affected the species'' genetic architecture. Thus, we examined N. cunninghamii using 12 nuclear microsatellites and 633 individuals from 18 populations spanning the species'' natural range. Typical of wind-pollinated trees, there was low range-wide genetic structure (FST=0.04) consistent with significant gene flow across most of the species'' range. However, gene flow was not high enough to overcome the effects of drift across some disjunctions. Victorian populations (separated from Tasmania by the 240 km wide Bass Strait) formed a genetic group distinct from Tasmanian populations, had lower diversity (mean allelic richness (Ar)=5.4 in Victoria versus 6.9 in Tasmania) and were significantly more differentiated from one another than those in Tasmania (FST=0.045 in Victoria versus 0.012 in Tasmania). Evidence for bottlenecking was found in small populations that were at least 20 km from other populations. Interestingly, we found little divergence in microsatellite markers between the extremes of genetically based morphological and physiological altitudinal clines suggesting adaptive differentiation is strongly driven by selection because it is likely to be occurring in the presence of gene flow. Even though the cool temperate rainforests of Australia are highly relictual, the species is relatively robust to population fragmentation due to high levels of genetic diversity and gene flow, especially in Tasmania.  相似文献   

15.
During climate change, species are often assumed to shift their geographic distributions (geographic ranges) in order to track environmental conditions – niches – to which they are adapted. Recent work, however, suggests that the niches do not always remain conserved during climate change but shift instead, allowing populations to persist in place or expand into new areas. We assessed the extent of range and niche shifts in response to the warming climate after the Last Glacial Maximum (LGM) in the desert horned lizard Phrynosoma platyrhinos, a species occupying the western deserts of North America. We used a phylogeographic approach with mitochondrial DNA sequences to approximate the species range during the LGM by identifying populations that exhibit a genetic signal of population stability versus those that exhibit a signal of a recent (likely post‐LGM) geographic expansion. We then compared the climatic niche that the species occupies today with the niche it occupied during the LGM using two models of simulated LGM climate. The genetic analyses indicated that P. platyrhinos persisted within the southern Mojave and Sonoran deserts throughout the latest glacial period and expanded from these deserts northwards, into the western and eastern Great Basin, after the LGM. The climatic niche comparisons revealed that P. platyrhinos expanded its climatic niche after the LGM towards novel, warmer and drier climates that allowed it to persist within the southern deserts. Simultaneously, the species shifted its climatic niche towards greater temperature and precipitation fluctuations after the LGM. We concluded that climatic changes at the end of the LGM promoted both range and niche shifts in this lizard. The mechanism that allowed the species to shift its niche remains unknown, but phenotypic plasticity likely contributes to the species ability to adjust to climate change.  相似文献   

16.
Geographic range size predicts species’ responses to land-use change and intensification, but the reason why is not well established because many correlates of larger geographic ranges, such as realized niche breadth, may mediate species’ responses to environmental change. Agricultural land uses (hereafter ‘agroecosystems’) have warm, dry and more variable microclimates than do cooler and wetter mature forests, so are predicted to filter for species that have warmer, drier and broader fundamental and realized niches. To test these predictions, we estimated species’ realized niches, for temperature and precipitation, and geographic range sizes of 764 insect species by matching GBIF occurrence records to global climate layers, and modelled how species presence/absence in mature forest and nearby agroecosystems depend on species’ realized niches or geographic ranges. The predicted species niche effects consistently matched the expected direction of microclimatic transition from mature forest to agroecosystems. We found a clear signal that species with preference for warmer and drier climates were more likely to be present in agroecosystems. In addition, the probability that species occurred in different land-use types was predicted better by species’ realized niche than their geographic range size. However, niche effects are often context-dependent and varied amongst studies, taxonomic groups and regions used in this analysis: predicting which particular aspects of species’ realized niche cause sensitivity to land-use change, and the underpinning mechanisms, remains a major challenge for future research and multiple components of species’ realized niches may be important to consider. Using realized niches derived from open-source occurrence records can be a simple and widely applicable tool to help identify when biodiversity responds to the microclimate component of land-use change.  相似文献   

17.
Climate change is predicted to affect the distribution of freshwater taxa, and stronger impacts are expected on endemic species. However, the effects of future climates on freshwater insects from the Neotropical region have been generally overlooked. In this study, the distribution of a damselfly (Cyanallagma bonariense, Odonata, Coenagrionidae) endemic to the subtropical South American grasslands (Pampa) was modelled in relation to future scenarios of high greenhouse gas emissions (RCP 8.5) for 2050 and 2070. For this purpose, ecological niche models were developed based on assumptions of limited dispersal and niche conservatism, and the projected distribution of C. bonariense was contrasted with the location of current protected areas (PAs) in the Pampa. A broad potential distribution of C. bonariense was indicated throughout the Pampa, and projections predicted a predominance of range contractions rather than range shifts in climatically suitable areas for C. bonariense in 2050 and 2070. Projections of suitable areas overlapped in central Argentina and southernmost Uruguay in these periods. Our results indicated a potential resilience of C. bonariense to future climate change, which is likely related to the low restrictions in habitat use of C. bonariense. In every projection, however, most PAs were expected to lose effectiveness, as by 2070 most PAs fall outside the range of the predicted distribution of C. bonariense. Thus, the creation or enlargement of PAs in these areas is recommended and these results represent an important information for the conservation of endemic freshwater insects under global warming scenarios in an overlooked Neotropical landscape.  相似文献   

18.
The success of conifers over much of the world's terrestrial surface is largely attributable to their tolerance to cold stress (i.e., cold hardiness). Due to an increase in climate variability, climate change may reduce conifer cold hardiness, which in turn could impact ecosystem functioning and productivity in conifer‐dominated forests. The expression of cold hardiness is a product of environmental cues (E), genetic differentiation (G), and their interaction (G × E), although few studies have considered all components together. To better understand and manage for the impacts of climate change on conifer cold hardiness, we conducted a common garden experiment replicated in three test environments (cool, moderate, and warm) using 35 populations of coast Douglas‐fir (Pseudotsuga menziesii var. menziesii) to test the hypotheses: (i) cool‐temperature cues in fall are necessary to trigger cold hardening, (ii) there is large genetic variation among populations in cold hardiness that can be predicted from seed‐source climate variables, (iii) observed differences among populations in cold hardiness in situ are dependent on effective environmental cues, and (iv) movement of seed sources from warmer to cooler climates will increase risk to cold injury. During fall 2012, we visually assessed cold damage of bud, needle, and stem tissues following artificial freeze tests. Cool‐temperature cues (e.g., degree hours below 2 °C) at the test sites were associated with cold hardening, which were minimal at the moderate test site owing to mild fall temperatures. Populations differed 3‐fold in cold hardiness, with winter minimum temperatures and fall frost dates as strong seed‐source climate predictors of cold hardiness, and with summer temperatures and aridity as secondary predictors. Seed‐source movement resulted in only modest increases in cold damage. Our findings indicate that increased fall temperatures delay cold hardening, warmer/drier summers confer a degree of cold hardiness, and seed‐source movement from warmer to cooler climates may be a viable option for adapting coniferous forest to future climate.  相似文献   

19.
We modeled current and future distribution of suitable habitat for the talus‐obligate montane mammal Ochotona princeps (American pika) across the western USA under increases in temperature associated with contemporary climate change, to: a) compare forecasts using only climate variables vs using those plus habitat considerations; b) identify possible patterns of range collapse (center vs margins, and large‐ vs small‐sized patches); and c) compare conservation and management implications of changes at two taxonomic resolutions, and using binned‐ vs binary‐probability maps. We used MaxEnt to analyze relationships between occurrence records and climatic variables to develop a bioclimatic‐envelope model, which we refined by masking with a deductive appropriate‐habitat filter based on suitable land‐cover types. We used this final species‐distribution model to predict distribution of suitable habitat under range‐wide temperature increases from 1 to 7°C, in 1°C increments; we also compared these results to distribution under IPCC‐forecasted climates for 2050 and 2080. Though all currently recognized lineages and traditionally defined subspecies were predicted to lose increasing amounts of habitat as temperatures rose, the most‐dramatic range losses were predicted to occur among traditional subspecies. Nineteen of the 31 traditional US pika subspecies were predicted to lose > 98% of their suitable habitat under a 7?C increase in the mean temperature of the warmest quarter of the year, and lineages were predicted to lose 88 95% of suitable habitat. Under a 4?C increase, traditional subspecies averaged a predicted 73% (range = 44–99%) reduction. The appropriate‐habitat filter removed 40–6% of the predicted climatically suitable pixels, in a stepped and monotonically decreasing fashion as predicted temperatures rose. Predicted range collapse proceeded until only populations in island‐biogeographic ‘mainlands’ remained, which were not in the geographic range center. We used this model system to illustrate possible distributional shifts under stepped changes in biologically relevant aspects of climate, importance of land cover and taxonomic level in species‐distribution forecasts, and impact of using a single threshold vs multiple categories of persistence probability in predicted range maps; we encourage additional research to further investigate the generality of these patterns.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号