首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
CM-GAPDH在碘化钾溶液中,NAD~+的存在下,形成发射波长为383nm的荧光物。对照的NAD~+与碘化钾溶液混合不产生荧光物。全位及半位修饰光照酶的内源荧光在碘化钾溶液中的变化与天然酶的有明显不同。两者在碘化钾中都形成383nm的荧光,但全位修饰光照酶形成383nm荧光的最适碘化钾浓度为1.0M;半位修饰的为0.8M。以上结果暗示:383nm荧光物的形成需要GAPDH和NAD~+同时存在,并且与活性部位巯基修饰的多少有关,该荧光物可能位于GAPDH的活性部位。  相似文献   

2.
蛇肌CM-Apo-GAPDH在NAD~ 存在的条件下,经紫外光照产生萤光衍生物。其校正发射光谱峰值在420nm,校正激发光谱呈三峰形,峰值在240nm、285nm、325nm。蛇肌GAPDH萤光衍生物生成的最适条件为:在pH7.6~8.0的缓冲液中光照8分钟,NAD~ 与酶克分子浓度的比值为60。用325nm激发、410nm发射的萤光滴定测NAD~ 与CM-GAPDH的结合,表明由于蛇肌GAPDH羧甲基化使NAD~ 与酶的结合所表现的负协同性变得弱得多。萤光衍生物A_(280)/A_(260)为1.61~1.63,相当于蛇肌GAPDH萤光衍生物每分子中的四个亚基含有二分子NAD~ ,蛇肌GAPDH萤光衍生物的生成也属于半位反应。  相似文献   

3.
蛇肌CM-Apo-GAPDH在NAD~ 存在的条件下,经紫外光照产生萤光衍生物。其校正发射光谱峰值在420 nm,校正激发光谱呈三峰形,峰值在240 nm、285nm、325nm。蛇肌GAPDH 萤光衍生物生成的最适条件为:在pH7.6~8.0的缓冲液中光照8分钟,NAD~ 与酶克分子浓度的比值为60。用325nm 激发、410nm 发射的萤光滴定测NAD~ 与CM-GAPDH 的结合,表明由于蛇肌GAPDH 羧甲基化使NAD 与酶的结合所表现的负协同性变得弱得多。萤光衍生物A_(280)/A260为1.61~1.63,相当于蛇肌GAPDH 萤光衍生物每分子中的四个亚基含有二分子NAD~ ,蛇肌GAPDH 萤光衍生物的生成也属于半位反应。  相似文献   

4.
CM-GAPDH在碘化钾溶液中,NAD~+的存在下,形成发射波长为383nm的荧光物。对照的NAD~+与碘化钾溶液混合不产生荧光物。全位及半位修饰光照酶的内源荧光在碘化钾溶液中的变化与天然酶的有明显不同。两者在碘化钾中都形成383nm的荧光,但全位修饰光照酶形成383nm荧光的最适碘化钾浓度为1.0M;半位修饰的为0.8M。以上结果暗示:383nm荧光物的形成需要GAPDH和NAD~+同时存在,并且与活性部位巯基修饰的多少有关,该荧光物可能位于GAPDH的活性部位。  相似文献   

5.
用硫酸铵分级、DEAE-纤维素柱层析、羧甲基纤维素柱层析分离和纯化了蛇肌GAPDH。聚丙烯酰胺凝胶电泳和醋酸纤维素薄膜电泳均为一条带。用此法提纯的蛇肌GAPDH A_(280)/A_(260)为2.1,是Apo-GAPDH。在纯化的Apo-GAPDH中加入NAD~ 能够得到结晶。Sephadex G-150凝胶过滤法测得蛇肌GAPDH的分子量约为150,000。十二烷基硫酸钠凝胶电泳也为一条带,亚基分子量约为38,000。表明蛇肌GAPDH是由相同的四个亚基组成的。用Ferdinand法测得比活为100。蛇肌GAPDH的N-末端氨基酸为缬氨酸。每分子含巯基数、色氨酸和酪氨酸残基数分别为12、12和36。重量法测得蛇肌Apo-GAPDH消光系数E_(280)~(0.1%)为0.775;Holo-GAPDH的消光系数E_(280)~(0.1%)为1.02。蛇肌GAPDH对甘油醛-3-磷酸的米氏常数为1.67×10~(-3)M,对NAD~ 的米氏常数为1.11×10~(-4)M。NAD~ 与蛇肌Apo-GAPDH结合后有Racker带,每分子蛇肌GAPDH可结合4分子NAD~ ,酶与NAD~ 的结合表现为负协同性。蛇肌GAPDH的圆二色谱,近紫外区Apo-GAPDH在285nm处有一负峰,292nm、270nm处有肩。加入NAD~ 后负峰变大并且蓝移。NAD~ 的加入似乎影响了酪氨酸所处的微环境。远紫外区Apo-GAPDH在220nm处有一负峰,208nm处有一个肩;加入NAD~ 后,负峰值稍稍变大,但峰的位置和形状未变。表明蛇肌GAPDH中,含较多的β-折迭,较少的α-螺旋。NAD~ 的加入对二级结构影响不大。  相似文献   

6.
用硫酸铵分级、DEAE-纤维素柱层析、羧甲基纤维素柱层析分离和纯化了蛇肌GAPDH。聚丙烯酰胺凝胶电泳和醋酸纤维素薄膜电泳均为一条带。用此法提纯的蛇肌GAPDH A_(280)/A_(260)为2.1,是Apo-GAPDH。在纯化的Apo-GAPDH 中加入NAD~ 能够得到结晶。Sephadex G-150凝胶过滤法测得蛇肌GAPDH 的分子量约为150,000。十二烷基硫酸钠凝胶电泳也为一条带,亚基分子量约为38,000。表明蛇肌GAPDH 是由相同的四个亚基组成的。用Ferdinand 法测得比活为100。蛇肌GAPDH 的N-末端氨基酸为缬氨酸。每分子含巯基数、色氨酸和酪氨酸残基数分别为12、12和36。重量法测得蛇肌Apo-GAPDH 消光系数E_(280)~(0.1)%为0.775;Holo-GAPDH 的消光系数E_(280)~(01.)为1.02。蛇肌GAPDH 对甘油醛-3-磷酸的米氏常数为1.67×10~(-8)M,对NAD~ 的米氏常数为1.11×10~(-4)M。NAD~ 与蛇肌Apo-GAPDH 结合后有Racker 带,每分子蛇肌GAPDH 可结合4分子NAD~ ,酶与NAD~ 的结合表现为负协同性。蛇肌GA PDH 的圆二色谱,近紫外区Apo-GAPDH 在285nm 处有一负峰,292nm、270nm 处有肩。加入NAD 后负峰变大并且蓝移。NAD~ 的加入似乎影响了酪氨酸所处的微环境。远紫外区Apo-GAPDH 在220nm 处有一负峰,208nm 处有一个肩;加入NAD~ 后,负峰值稍稍变大,但峰的位置和形状未变。表明蛇肌GAPDH中,含较多的β-折迭,较少的α-螺旋。NAD~ 的加入对二级结构影响不大。  相似文献   

7.
NAD~+-MDH在黄瓜子叶中的定位是细胞溶质中占总活性的55~59%,线粒体为38~35%,叶绿体为7%。其同工酶谱亦为细胞溶质中带数最多,全青为5条,粤早3号为4条,线粒体和叶绿体均为1条,品种间无明显差异。黄瓜幼苗随低温胁迫的加剧,伤害逐步加重,子叶电解质渗出率明显增加,NAD~+-MDH活性亦不断下降,其中叶绿体的NAD~+-MDH对低温最敏感,1±1℃处理就能反映品种间耐寒力的差异。叶绿体和线粒体的NAD~+-MDH同工酶对低温的反应与活性变化一致,谱带数没有差异,只是活性降低。细胞溶质部分酶带较多,各条酶带对低温的反应不同。  相似文献   

8.
碘乙酸修饰兔肌甘油醛-3-磷酸脱氨酶蛋白过程中,以NAD~ 类似物代替NAD~ 测定它们对酶蛋白失活速度的影响。在被测的五个NAD~ 类似物中CPAD~ ,FPAD~ 对酶有保护作用,降低了酶因修饰而失活的速度。其它三个类似物NGD~ ,APAD~ 和TPAD~ 在不同程度上加速碘乙酸引起的失活。这些类似物在对碘乙酸修饰速度造成影响方面表现的能力与它们作为氢受体能力相一致。以NAD~ 类似物代替NAD~ 测定它们对酶促乙酰磷酸水解作用的影响。与碘乙酸修饰时有些不同,CPAD~ ,TPAD~ 对这一水解过程无促进作用,而FPAD~ ,NGD~ 和APAD~ 有促进作用。各类似物的行为与羧甲基酶光照形成新萤光团过程中各类似物的行为相一致。  相似文献   

9.
碘乙酸修饰兔肌甘油醛-3-磷酸脱氢酶蛋白过程中,以NAD~ 类似物代替NAD~ 测定它们对酶蛋白失活速度的影响。在被测的五个NAD~ 类似物中CPAD~ ,FPAD~ 对酶有保护作用,降低了酶因修饰而失活的速度。其它三个类似物NGD~ ,APAD~ 和TPAD~ 在不同程度上加速碘乙酸引起的失活。这些类似物在对碘乙酸修饰速度造成影响方面表现的能力与它们作为氢受体能力相一致。以NAD~ 类似物代替NAD~ 测定它们对酶促乙酰磷酸水解作用的影响。与碘乙酸修饰时有些不同,CPAD~ ,TPAD~ 对这一水解过程无促进作用,而FPAD~ ,NGD~ 和APAD~ 有促进作用。各类似物的行为与羧甲基酶光照形成新萤光团过程中各类似物的行为相一致。  相似文献   

10.
烟酰胺磷酸核糖转移酶(nicotinamide phosphoribosyltransferase,NAMPT)是哺乳动物NAD~+生物合成中的限速酶,因此是细胞内NAD~+水平的控制器。NAMPT介导的NAD~+的生物合成在能量代谢、DNA修复、染色质重塑、细胞衰老和免疫细胞功能调节等方面发挥重要的作用。然而NAMPT的循环水平随着年龄的增长而显著下降,导致年龄相关性疾病包括代谢性疾病、神经退行性疾病、衰老和癌症的发生。最近研究发现,通过脂肪组织过表达eNAMPT来提高NAD~+水平可延长小鼠的健康寿命。因此推测NAMPT-NAD~+是一种有前景的抗衰老干预途径。该文系统概述了NAMPT,总结其与年龄相关性疾病的研究进展,NAMPT作为一种具有临床意义的分子,在年龄相关性疾病的诊断、预后和治疗中具有广泛的应用前景。  相似文献   

11.
There is no evidence, at pH 9.4, of negative cooperativity in the binding of NAD+ or NADH to rabbit muscle glyceraldehyde-3-phosphate dehydrogenase (D-glyceraldehyde-3-phosphate:NAD+ oxidoreductase (phorphorylating), EC 1.2.1.12) nor in the binding of acetyl pyridine adenine dinucleotide at pH 7.6 and ph 9.4. The binding of NAD+ to carboxymethylated enzyme at pH 7.6 and pH 9.4 also occurs without cooperativity. The possible implications of these findings for the involvement of ionising groups in the enzyme in the subunit interactions responsible for negative cooperativity, previously reported for coenzyme binding at pH 7.4--8.6, are discussed.  相似文献   

12.
Experimental conditions favouring the dissociation of tetrameric rabbit muscle D-glyceraldehyde-3-phosphate dehydrogenase into active monomers were elaborated. The urea-induced dissociation of the tetramer was shown to be a stepwise process (in 2 M urea only dimers are formed; an increase in urea concentration up to 3 M causes the splitting of the dimers into monomers). The specific activity of immobilized monomers in the glyceraldehyde-3-phosphate oxidation reaction does not differ from that of the parent immobilized tetrameric form. The tetrameric enzyme molecule binds the coenzyme with a negative cooperativity (the first two NAD+ molecules bind with KD below 0.1 microM; for the third and fourth molecules the dissociation constant was determined to be equal to 5.5 +/- 1.5 microM (50 mM medinal buffer, 10 mM sodium phosphate, pH 8.2). The cooperativity of NAD+ binding is preserved in the immobilized preparation of tetrameric dehydrogenase. The immobilized monomers bind NAD+ with KD of 1.6 +/- 1.0 microM. The experimental results are consistent with the hypothesis according to which the association of catalytically active subunits into a tetramer changes their coenzyme-binding properties in such a way that the first two NAD+ molecules bind more firmly to a tetramer than to a monomer, whereas the third and the fourth NAD+ molecules bind less firmly.  相似文献   

13.
Conflicting experimental evidence of the pathway of catalysis for the enzyme from rabbit, pig and lobster muscle tissues is reviewed. Transient kinetic studies with the enzyme from rabbit muscle are presented. The results are shown to be consistent with the double-displacement mechanism of catalysis originally proposed by Segal & Boyer (1953). The rate constant for combination of the aldehyde form of the substrate with the NAD+ complex of the enzyme is about 3 X 10(7) M-1 S-1, and for all four subunits of the molecule the rate constant for hydride transfer in the ternary complex formed is greater than 10(3) S-1, consistent with their simultaneous participation in catalysis. Recent steady-state kinetic studies with the rabbit muscle enzyme, in contrast to earlier studies, also provide evidence to support the Segal-Boyer pathway if the kinetic effects of the negative cooperativity of NAD+ binding are taken into account. Experimental data for the binding of NAD+ to the enzyme from muscles and from Bacillus stearothermophilus, and their interpretations, are also briefly reviewed. The information currently available from X-ray crystallography regarding the structures of holoenzyme and apoenzyme from B. stearothermophilus and lobster muscle is outlined.  相似文献   

14.
D Eby  M E Kirtly 《Biochemistry》1976,15(10):2168-2171
Using NAD analogues as ligands, the structural requirements for negative cooperativity in binding to rabbit muscle glyceraldehyde-3-phosphate dehydrogenase were examined. Although the affinity of nicotinamide hypoxanthine dinucleotide is considerably lower than that of NAD+, it also binds to the enzyme with negative cooperatively. Two pairs of nicotinamide hypoxanthine dinucleotide binding sitess were distinguished, one pair having an affinity for the analogue which is 15 times that of the second pair. Negative cooperativity is also found in the Km values for the analogue. Thus modification of the adenine ring of NAD+ to hypoxanthine does not abolish negative cooperativity in coenzyme binding. Adenosine diphosphoribose binding to the same enzyme shows neither positive nor negative cooperativity, indicating that cooperativity apparently requires an intact nicotinamide ring in the coenzyme structure, under the conditions of these experiments. Occupancy of the nicotinamide subsite of the coenzyme binding site is not necessary for half-of-sites reactivity of alkylating or acylating compounds (Levitzki, A. (1974), J. Mol, Biol. 90, 451-458). However, it can be important in the negative cooperativity in ligand binding, as illustrated by adenosine diphosphoribose which fails to exhibit negative cooperativity. Occupancy of the adenine subsite by adenine is important for stabilization of the enzyme against thermal denaturation. Whether the stabilization is due to an altered conformation of the subunits or stabilization of the preexisting structure of the apoenzyme cannot be determined from these studies. However, nicotinamide hypoxanthine dinucleotide does not contribute to enzyme stability although it serves as a substrate and shows negative cooperativity.  相似文献   

15.
Tetrameric D-glyceraldehyde-3-phosphate dehydrogenase (EC 1.2.1.12) isolated from rabbit skeletal muscle was covalently bound to CNBr-activated Sepharose 4B via a single subunit. Catalytically active immobilized dimer and monomeric forms of the enzyme were prepared after urea-induced dissociation of the tetramer. A study of the coenzyme-binding properties of matrix-bound tetrameric, dimeric and monomeric species has shown that: (1) an immobilized tetramer binds NAD+ with negative cooperativity, the dissociation constants being 0.085 microM for the first two coenzyme molecules and 1.3 microM for the third and the fourth one; (2) coenzyme binding to the dimeric enzyme form also displays negative cooperativity with Kd values of 0.032 microM and 1.1 microM for the first and second sites, respectively; (3) the binding of NAD+ to a monomer can occur with a dissociation constant of 1.6 microM which is close to the Kd value for low-affinity coenzyme binding sites of the tetrameric or dimeric enzyme forms. In the presence of NAD+ an immobilized monomer acquires a stability which is not inferior to that of a holotetramer. The catalytic properties of monomeric and tetrameric enzyme forms were compared and found to be different under certain conditions. Thus, the monomers of rabbit muscle D-glyceraldehyde-3-phosphate dehydrogenase displayed a hyperbolic kinetic saturation curve for NAD+, whereas the tetramers exhibited an intermediary plateau region corresponding to half-saturating concentrations of NAD+. At coenzyme concentrations below half-saturating a monomer is more active than a tetramer. This difference disappears at saturating concentrations of NAD+. Immobilized monomeric and tetrameric forms of D-glyceraldehyde-3-phosphate dehydrogenase from baker's yeast were also used to investigate subunit interactions in catalysis. The rate constant of inactivation due to modification of essential arginine residues in the holoenzyme decreased in the presence of glyceraldehyde 3-phosphate, probably as a result of conformational changes accompanying catalysis. This effect was similar for monomeric and tetrameric enzyme forms at saturating substrate concentrations, but different for the two enzyme species under conditions in which about one-half of the active centers remained unsaturated. Taken together, the results indicate that association of D-glyceraldehyde-3-phosphate dehydrogenase monomers into a tetramer imposes some constraints on the functioning of the active centers.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

16.
When the active-site carboxymethylated D-glyceraldehyde-3-phosphate dehydrogenase is irradiated with ultraviolet light in the presence of NAD+, a fluorescent NAD derivative that is covalently linked to the enzyme is obtained. A preliminary crystallographic study of this fluorescent derivative, as well as of the native and the carboxymethylated enzymes from Palinurus versicolor, showed that they are isomorphous and belong to space group C2 as reported for the native enzyme from Palinurus vulgaris. The three forms of the enzyme, although they have identical unit cell parameters, differ considerably in their diffraction patterns, indicating marked differences in conformation in spite of the fact that they differ chemically only in a restricted region around the active site.  相似文献   

17.
龙虾肌甘油醛-3-磷酸脱氢酶与兔肌酶一样,用碘代乙酸修饰后,在NAD~+存在下经紫外光照射也能形成荧光衍生物。 pH对荧光衍生物的生成和稳定性有很大影响,同时,异类离子的不同影响也很明显。 定磷分析法测定荧光衍生物上的NAD~+含量,同位素示踪法观察衍生物生成过程的脱羧,都证明此光化学反应为半位反应。  相似文献   

18.
The tetrameric glyceraldehyde-3-phosphate dehydrogenase from rabbit muscle binds NAD+ and some of its analogues in a negatively cooperative manner, whereas other NAD+ analogues bind non-cooperatively to this enzyme. Subsequent to alkylation of a fraction of the active sites of the enzyme with the fluorescent SH reagent N-iodoacetyl-N'-(5-sulfo-1-naphthyl)-ethylenediamine, it was found that the alkylated sites bind NAD+ and NAD+ analogues with a markedly reduced affinity as compared with non-alkylated sites. It was therefore feasible to measure the fluorescence and the circular polarization of the luminescence of the enzyme-bound alkyl groups as a function of binding of NAD+ and of NAD+ analogues to the non-alkylated sites. The changes observed indicate that ligand binding to the non-alkylated sites induces changes in the fluorescence properties of the alkyl groups bound to neighbouring subunits, most likely through the protein moiety. The nature of these changes appears to depend on the structure of the coenzyme analogue. The binding of the non-cooperative binders acetyl-pyridine--adenine dinucleotide, ATP and ADP-ribose induce different conformational changes in the neighbouring vacant subunit, as monitored by the spectroscopic properties of the bound alkyl group. These results in conjunction with other data support the view that the negative cooperativity in NAD+ binding to glyceraldehyde-3-phosphate dehydrogenase results from ligand-induced conformational changes. Furthermore, these results further support the view that subtle structural changes in the coenzyme molecule determine the nature of the conformational changes induced within the enzyme tetramer.  相似文献   

19.
Horse liver alcohol dehydrogenase specifically carboxymethylated on cysteine-46 (a ligand to the zinc in the active site) or acetimidylated on 25 of the 30 lysine residues per subunit (including residue 228) was studied. The tryptophan fluorescence of these enzymes decreased by 35% as pH was increased, with an apparent pKa of 9.8 +/- 0.2, identical with that of native enzyme. Native enzyme in the presence of 30mM-imidazole, which displaces a water molecule ligated to the zinc, also had a pKa of 9.8. The ionoizable group is thus neither the water molecule nor one of the modified groups. Binding of NAD+ shifted the pKa for the fluorescence transition to 7.6 with native enzyme and to 9.0 with acetimidylated enzyme, but did not shift the pKa of carboxymethylated enzyme. Binding of NAD+ and trifluoroethanol, an unreactive alcohol, gave maximal fluorescence quenching at pH7 with all three enzymes. The acetimidylated enzyme--NAD+--trifluoroethanol complex had an apparent pKa of 5.0, but the pK of the native enzyme complex was experimentally inaccessible. The results are interpreted in terms of coupled equilibria between two different conformational states. On binding of NAD+, the modified enzymes apparently change conformation less readily than does native enzyme, but binding of alcohol can drive the change to completion.  相似文献   

20.
The binding of NAD+, NADH and adenosine diphosphoribose (Ado-PP-Rib) to a stable, highly active and nucleotide-free preparation of rabbit muscle glyceraldehyde-3-phosphate dehydrogenase (D-glyceraldehyde-3-phosphate: NAD+ oxidoreductase (phosphorylating), EC 1.2.1.12) has been studied. All three nucleotides quench the protein fluorescence to the same extent when they bind to the enzyme, and this property has been used to measure the dissociation constants for the two high-affinity binding sites for the nucleotides. The results indicate negative interactions between, or non-identify of, these two binding sites, to which NAD+ and NADH bind with similar affinity. The binding of NAD+ to the enzyme has been studied by spectrophotometric titrations at 360 nm. It appears that the binding of NAD+ to each of the four subunits of the enzyme contributes equally to the intensity of this 'Racker' band. The dissociation constants associated with the binding of the third and fourth molecules of NAD+ estimated from such titrations confirm some previous estimates. The binding of NADH to the enzyme causes a decrease of intensity of the absorbance of the coenzyme at 340 nm, and the dissociation constants for binding of the third and fourth molecules of NADH have been estimated from spectrophotometric titrations. They are the same as those for NAD+. Judging by the apparent dissociation constants, negative interactions on binding the third molecule of NAD+ or NADH are more marked than those associated with the binding of the second and fourth molecules, suggesting that a major conformational change occurs at half-saturation of the tetramer with coenzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号