首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Dihydropyridine-sensitive Ca2+ channels from skeletal muscle are hetero-oligomeric proteins. Little is known about the functional roles of the various subunits, except that the alpha 1 subunit is the essential channel unit. We have reconstituted both partially purified holomeric channels and the separated subunits into liposomes and measured their properties using an assay based on the Ca2+ indicator dye fluo-3. The holomeric channels exhibited Ca2+ influx that was sensitive to membrane potential achieved by the addition of valinomycin in the presence of a K+ gradient. Dissipation of the K+ gradient resulted in the loss of the valinomycin-sensitive Ca2+ flux. In addition, the reconstituted channels were: 1) activated by the dihydropyridine Ca2+ channel activator Bay K 8644 in a dose-dependent manner with a Kd of 20 nM; 2) inhibited by various types of Ca2+ channel inhibitors including the dihydropyridine (+)-PN 200-110, the phenylalkylamine verapamil, and the benzothiazepine d-cis-diltiazem; and 3) modulated in a stereoselective manner by the enantiomers of the dihydropyridine S-202-791. The purified channels used in this work possessed an alpha 1 subunit of 165 kDa and did not appear to contain a larger alpha 1 subunit of approximately 210 kDa, suggesting that channel activity with properties similar to those observed in intact cells can be supported with an alpha 1 subunit of 165 kDa. Reconstituted channels that were 85% depleted in the alpha 2/delta subunits showed a significant decrease in the initial rate of Ca2+ influx induced by valinomycin, but retained responsiveness to Bay K 8644 and (+)-PN 200-110. When the separated alpha 2 and delta subunits were added back to the alpha 1 subunit-containing preparation, the channels exhibited their normal rate of Ca2+ influx. These results demonstrated that the dihydropyridine-sensitive Ca2+ channels from skeletal muscle require the presence of the alpha 2.gamma complex in stoichiometric amounts to exhibit full activity.  相似文献   

2.
High threshold L-type Ca2+ channels of skeletal muscle are thought to consist of a complex of alpha 1, alpha 2 delta, beta, and gamma subunits. Expression of the cloned alpha 1 subunit from skeletal and cardiac muscle has established that this protein is the dihydropyridine-sensitive ion-conducting subunit. However, the kinetics of the skeletal muscle alpha 1 alone expressed in mouse L-cells were abnormally slow and were accelerated to within the normal range by coexpression with the skeletal muscle beta subunit. The kinetics of cardiac muscle alpha 1 were also slowed but to a lesser extent and were not altered by coexpression with skeletal muscle alpha 2. We show here that coexpression of the skeletal muscle beta subunit with the cardiac alpha 1 subunit in Xenopus laevis oocytes produced: 1) an increase in the peak voltage-sensitive current, 2) a shift of the peak current-voltage relationship to more hyperpolarized potentials, and 3) an increase in the rate of activation. Coexpression of the skeletal muscle gamma subunit did not have a significant effect on currents elicited by alpha 1. However, when gamma was coexpressed with beta and alpha 1, both peak currents and rates of activation at more negative potentials were increased. These results indicate that rather than simply amplifying expression of alpha 1, heterologous skeletal muscle beta and gamma subunits can modulate the biophysical properties of cardiac alpha 1.  相似文献   

3.
4.
The maxi-K channel from bovine aortic smooth muscle consists of a pore-forming alpha subunit and a regulatory beta1 subunit that modifies the biophysical and pharmacological properties of the alpha subunit. In the present study, we examine ChTX-S10A blocking kinetics of single maxi-K channels in planar lipid bilayers from smooth muscle or from tsA-201 cells transiently transfected with either alpha or alpha+beta 1 subunits. Under low external ionic strength conditions, maxi-K channels from smooth muscle showed ChTX-S10A block times, 48 +/- 12 s, that were similar to those expressing alpha+beta 1 subunits, 51 +/- 16 s. In contrast, with the alpha subunit alone, ChTX-S10A block times were much shorter, 5 +/- 0.6 s, and were qualitatively similar to previously reported values for the skeletal muscle maxi-K channel. Increasing the external ionic strength caused a decrease in ChTX-S10A block times for maxi-K channel complexes of alpha+beta 1 subunits but not of alpha subunits alone. These findings indicate that it may be possible to predict the association of beta 1 subunits with native maxi-K channels by monitoring the kinetics of ChTX blockade of single channels, and they suggest that maxi-K channels in skeletal muscle do not contain a beta 1 subunit like the one present in smooth muscle. To further test this hypothesis, we examined the binding and cross-linking properties of [(125)I]-IbTX-D19Y/Y36F to both bovine smooth muscle and rabbit skeletal muscle membranes. [(125)I]-IbTX-D19Y/Y36F binds to rabbit skeletal muscle membranes with the same affinity as it does to smooth muscle membranes. However, specific cross-linking of [(125)I]-IbTX-D19Y/Y36F was observed into the beta 1 subunit of smooth muscle but not in skeletal muscle. Taken together, these data suggest that studies of ChTX block of single maxi-K channels provide an approach for characterizing structural and functional features of the alpha/beta 1 interaction.  相似文献   

5.
6.
Voltage-gated Ca(v)1.2 channels are composed of the pore-forming alpha1C and auxiliary beta and alpha2delta subunits. Voltage-dependent conformational rearrangements of the alpha1C subunit C-tail have been implicated in Ca2+ signal transduction. In contrast, the alpha1C N-tail demonstrates limited voltage-gated mobility. We have asked whether these properties are critical for the channel function. Here we report that transient anchoring of the alpha1C subunit C-tail in the plasma membrane inhibits Ca2+-dependent and slow voltage-dependent inactivation. Both alpha2delta and beta subunits remain essential for the functional channel. In contrast, if alpha1C subunits with are expressed alpha2delta but in the absence of a beta subunit, plasma membrane anchoring of the alpha1C N terminus or its deletion inhibit both voltage- and Ca2+-dependent inactivation of the current. The following findings all corroborate the importance of the alpha1C N-tail/beta interaction: (i) co-expression of beta restores inactivation properties, (ii) release of the alpha1C N terminus inhibits the beta-deficient channel, and (iii) voltage-gated mobility of the alpha1C N-tail vis a vis the plasma membrane is increased in the beta-deficient (silent) channel. Together, these data argue that both the alpha1C N- and C-tails have important but different roles in the voltage- and Ca2+-dependent inactivation, as well as beta subunit modulation of the channel. The alpha1C N-tail may have a role in the channel trafficking and is a target of the beta subunit modulation. The beta subunit facilitates voltage gating by competing with the N-tail and constraining its voltage-dependent rearrangements. Thus, cross-talk between the alpha1C C and N termini, beta subunit, and the cytoplasmic pore region confers the multifactorial regulation of Ca(v)1.2 channels.  相似文献   

7.
T Cens  S Restituito  P Charnet 《FEBS letters》1999,450(1-2):17-22
Ca2+ channel auxiliary beta subunits have been shown to modulate voltage-dependent inactivation of various types of Ca2+ channels. The beta1 and beta2 subunits, that are differentially expressed with the L-type alpha1 Ca2+ channel subunit in heart, muscle and brain, can specifically modulate the Ca2+-dependent inactivation kinetics. Their expression in Xenopus oocytes with the alpha1C subunit leads, in both cases, to biphasic Ca2+ current decays, the second phase being markedly slowed by expression of the beta2 subunit. Using a series of beta subunit deletion mutants and chimeric constructs of beta1 and beta2 subunits, we show that the inhibitory site located on the amino-terminal region of the beta2a subunit is the major element of this regulation. These results thus suggest that different splice variants of the beta2 subunit can modulate, in a specific way, the Ca2+ entry through L-type Ca2+ channels in different brain or heart regions.  相似文献   

8.
9.
10.
11.
Dihydropyridine-sensitive Ca2+ channels from skeletal muscle are multisubunit proteins and are regulated by protein phosphorylation. The purpose of this study was to determine: 1) which subunits are the preferential targets of various protein kinases when the channels are phosphorylated in vitro in their native membrane-bound state and 2) the consequences of these phosphorylations in functional assays. Using as substrates channels present in purified transverse (T) tubule membranes, cAMP-dependent protein kinase (PKA), protein kinase C (PKC), and a multifunctional Ca2+/calmodulin-dependent protein kinase (CaM protein kinase) preferentially phosphorylated the 165-kDa alpha 1 subunit to an extent that was 2-5-fold greater than the 52-kDa beta subunit. A protein kinase endogenous to the skeletal muscle membranes preferentially phosphorylated the beta peptide and showed little activity toward the alpha 1 subunit; however, the extent of phosphorylation was low. Reconstitution of partially purified channels into liposomes was used to determine the functional consequences of phosphorylation by these kinases. Phosphorylation of channels by PKA or PKC resulted in an activation of the channels that was observed as increases in both the rate and extent of Ca2+ influx. However, phosphorylation of channels by either the CaM protein kinase or the endogenous kinase in T-tubule membranes was without effect. Phosphorylation did not affect the sensitivities of the channels toward the dihydropyridines. Taken together, the results demonstrate that the alpha 1 subunit is the preferred substrate of PKA, PKC, and CaM protein kinase when the channels are phosphorylated in the membrane-bound state and that phosphorylation of the channels by PKA and PKC, but not by CaM protein kinase or an endogenous T-tubule membrane protein kinase, results in activation of the dihydropyridine-sensitive Ca2+ channels from skeletal muscle.  相似文献   

12.
Using a non-denaturing digitonin-based polyacrylamide gradient gel electrophoretic system we identified the dihydropyridine-sensitive Ca2+ channel from skeletal muscle as a high molecular weight protein of greater than 700 kDa. When this protein was excised from the native gels and re-electrophoresed into SDS gels, it dissociated into the alpha 1, alpha 2, beta, gamma and delta peptides previously suggested to be putative subunits of these Ca2+ channels. The stoichiometry of the alpha 1:alpha 2:beta:gamma peptides was (-)1:1:1:1. The presence of the alpha 1 and alpha 2 peptides in the high molecular weight native complex was directly demonstrated with anti-alpha 1 and anti-alpha 2 antibodies. The apparent specific association of the peptides was demonstrated by the finding that the previously separated alpha 1 and alpha 2 peptides did not co-migrate with the native complex in non-denaturing gels. The results of this previously untried analysis support the concept that the skeletal muscle Ca2+ channels are multisubunit proteins. The combined non-denaturing and denaturing gel analyses may be of general utility for the analysis of other membrane proteins.  相似文献   

13.
L-Type calcium channel was expressed in Xenopus laevis oocytes injected with RNAs coding for different cardiac Ca2+ channel subunits, or with total heart RNA. The effects of activation of protein kinase C (PKC) by the phorbol ester PMA (4 beta-phorbol 12-myristate 13-acetate) were studied. Currents through channels composed of the main (alpha 1) subunit alone were initially increased and then decreased by PMA. A similar biphasic modulation was observed when the alpha 1 subunit was expressed in combination with alpha 2/delta, beta and/or gamma subunits, and when the channels were expressed following injection of total rat heart RNA. No effects on the voltage dependence of activation were observed. The effects of PMA were blocked by staurosporine, a protein kinase inhibitor. beta subunit moderate the enhancement caused by PMA. We conclude that both enhancement and inhibition of cardiac L-type Ca2+ currents by PKC are mediated via an effect on the alpha 1 subunit, while the beta subunit may play a mild modulatory role.  相似文献   

14.
Antibodies that recognize the alpha 2 delta and alpha 1 subunits of skeletal muscle L-type calcium channels have been used to investigate the subunit components and phosphorylation of omega-conotoxin (omega-CgTx)-sensitive N-type calcium channels from rabbit brain. Photolabeling of the N-type channel with a photoreactive derivative of 125I-omega-CgTx results in the identification of a single polypeptide of 240 kDa. MANC-1, a monoclonal antibody recognizing alpha 2 delta subunits of L-type calcium channels from skeletal muscle, immunoprecipitates the omega-CgTx-labeled 240-kDa polypeptide and approximately 6% of the digitonin-solubilized 125I-omega-CgTx-labeled N-type channels. MANC-1 also immunoprecipitates a phosphoprotein of 240 kDa that comigrates with 125I-omega-CgTx-labeled N-type calcium channels, but not with L-type calcium channels, in sucrose gradients. Both cAMP-dependent protein kinase and protein kinase C are effective in the phosphorylation of this polypeptide. Similar to the alpha 1 subunits of skeletal muscle L-type calcium channels, the immunoprecipitation of the 240-kDa phosphoprotein by MANC-1 is prevented by the detergent Triton X-100. Anti-CP-(1382-1400), an antipeptide antibody against a highly conserved segment of the alpha 1 subunits of calcium channels, immunoprecipitates the 240-kDa phosphopeptide in Triton X-100. The 240-kDa protein is phosphorylated to a stoichiometry of approximately 1 mol of phosphate/mol of omega-CgTx-binding N-type calcium channels by both cAMP-dependent protein kinase and protein kinase C. Our results show that the 240-kDa polypeptide is an alpha 1-like subunit of an omega-CgTx-sensitive N-type calcium channel. The N-type calcium channels containing this subunit are phosphorylated by cAMP-dependent protein kinase and protein kinase C and contain noncovalently associated alpha 1-like and alpha 2 delta-like subunits as part of their oligomeric structure.  相似文献   

15.
The skeletal muscle dihydropyridine receptor/Ca2+ channel is composed of five protein components (alpha 1, alpha 2 delta, beta, and gamma). Only two such components, alpha 1 and alpha 2, have been identified in heart. The present study reports the cloning and expression of a novel beta gene that is expressed in heart, lung, and brain. Coexpression of this beta with a cardiac alpha 1 in Xenopus oocytes causes the following changes in Ca2+ channel activity: it increases peak currents, accelerates activation kinetics, and shifts the current-voltage relationship toward more hyperpolarized potentials. It also increases dihydropyridine binding to alpha 1 in COS cells. These results indicate that the cardiac L-type Ca2+ channel has a similar subunit structure as in skeletal muscle, and provides evidence for the modulatory role of the beta subunit.  相似文献   

16.
Interstitial cells of Cajal (ICC) generate the electrical slow wave. The ionic conductances that contribute to the slow wave appear to vary among species. In humans, a tetrodotoxin-resistant Na+ current (Na(V)1.5) encoded by SCN5A contributes to the rising phase of the slow wave, whereas T-type Ca2+ currents have been reported from cultured mouse intestine ICC and also from canine colonic ICC. Mibefradil has a higher affinity for T-type over L-type Ca2+ channels, and the drug has been used in the gastrointestinal tract to identify T-type currents. However, the selectivity of mibefradil for T-type Ca2+ channels over ICC and smooth muscle Na+ channels has not been clearly demonstrated. The aim of this study was to determine the effect of mibefradil on T-type and L-type Ca2+ and Na+ currents. Whole cell currents were recorded from HEK-293 cells coexpressing green fluorescent protein with either the rat brain T-type Ca2+ channel alpha(1)3.3b + beta(2), the human intestinal L-type Ca2+ channel subunits alpha(1C) + beta(2), or Na(V)1.5. Mibefradil significantly reduced expressed T-type Ca2+ current at concentrations > or = 0.1 microM (IC(50) = 0.29 microM), L-type Ca2+ current at > 1 microM (IC(50) = 2.7 microM), and Na+ current at > or = 0.3 microM (IC(50) = 0.98 microM). In conclusion, mibefradil inhibits the human intestinal tetrodotoxin-resistant Na+ channel at submicromolar concentrations. Caution must be used in the interpretation of the effects of mibefradil when several ion channel classes are coexpressed.  相似文献   

17.
Coexpression of the beta subunit (KV,Cabeta) with the alpha subunit of mammalian large conductance Ca2+- activated K+ (BK) channels greatly increases the apparent Ca2+ sensitivity of the channel. Using single-channel analysis to investigate the mechanism for this increase, we found that the beta subunit increased open probability (Po) by increasing burst duration 20-100-fold, while having little effect on the durations of the gaps (closed intervals) between bursts or on the numbers of detected open and closed states entered during gating. The effect of the beta subunit was not equivalent to raising intracellular Ca2+ in the absence of the beta subunit, suggesting that the beta subunit does not act by increasing all the Ca2+ binding rates proportionally. The beta subunit also inhibited transitions to subconductance levels. It is the retention of the BK channel in the bursting states by the beta subunit that increases the apparent Ca2+ sensitivity of the channel. In the presence of the beta subunit, each burst of openings is greatly amplified in duration through increases in both the numbers of openings per burst and in the mean open times. Native BK channels from cultured rat skeletal muscle were found to have bursting kinetics similar to channels expressed from alpha subunits alone.  相似文献   

18.
Highly purified L-type Ca(2+) channel complexes containing all five subunits (alpha(1), alpha(2), beta, gamma, and delta) and complexes of alpha(1)-beta subunits were obtained from skeletal muscle triad membranes by three-step purification and by 1% Triton X-100 treatment, respectively. Their structures and the subunit arrangements were analyzed by electron microscopy. Projection images of negatively stained Ca(2+) channels and alpha(1)-beta complexes were aligned, classified and averaged. The alpha(1)-beta complex showed a hollow trapezoid shape of 12 nm height. In top view, four asymmetric domains surrounded a central depression predicted to form the channel pore. The complete Ca(2+) channel complex exhibited the cylindrical shape of 20 nm in height binding a spherical domain on one edge. Further image analysis of higher complexes of the Ca(2+) channel using a monoclonal antibody against the beta subunit showed that the alpha(1)-beta complex forms the non-decorated side of the cylinder, which can traverse the membrane from outside the cell to the cytoplasm. Based on these results, we propose that the Ca(2+) channel exhibits an asymmetric arrangement of auxiliary subunits.  相似文献   

19.
Monoclonal antibodies to rabbit skeletal muscle phosphorylase kinase were produced by the conventional hybridoma cell technique. 90 out of 600 hybridomas were found to produce phosphorylase kinase binding antibodies from which only five secreted also phosphorylase kinase activity affecting antibodies. Three of them were cloned; two hybridomas resisted all cloning efforts. Employing immunoblot technique all monoclonal antibodies show cross-reactivity with the alpha, beta, and gamma subunits of phosphorylase kinase indicating that similar, if not identical, epitopes are present on these three subunits. No cross-reactivity with delta is observed. Monoclonal antibodies secreted by two clones which bind to the alpha subunit stimulate the Ca2+-independent A0 activity of phosphorylase kinase more than 30-fold, whereas all other monoclonal antibodies obtained are ineffective in this respect. Monoclonal antibodies binding to the beta subunit inhibit the Ca2+-dependent activities significantly. Antibody produced by one hybridoma binds to the alpha, beta, and gamma subunits with approximately the same affinity. Based on the dual function of calmodulin in phosphorylase kinase (Hessová, Z., Varsányi, M., and Heilmeyer, L.M.G., Jr. (1985) Eur. J. Biochem. 146, 107-115) we conclude that binding of anti-alpha monoclonal antibodies to a regulatory domain in the alpha subunit results in an uncoupling of the inhibitory function of the Ca2+-free delta from the holoenzyme which leads to a concomitant increase in A0 activity. Furthermore, binding of anti-beta monoclonal antibodies to the beta subunit prevents a signal transfer from the Ca2+-saturated delta to the catalytic site of the holoenzyme which inhibits the Ca2+-dependent activities.  相似文献   

20.
Voltage activated L-type Ca(2+) channels are the principal Ca(2+) channels in intestinal smooth muscle cells. They comprise the ion conducting Ca(V)1 pore and the ancillary subunits alpha(2)delta and beta. Of the four Ca(V)beta subunits Ca(V)beta(3) is assumed to be the relevant Ca(V)beta protein in smooth muscle. In protein lysates isolated from mouse ileum longitudinal smooth muscle we could identify the Ca(V)1.2, Ca(V)alpha(2), Ca(V)beta(2) and Ca(V)beta(3) proteins, but not the Ca(V)beta(1) and Ca(V)beta(4) proteins. Protein levels of Ca(V)1.2, Ca(V)alpha(2) and Ca(V)beta(2) are not altered in ileum smooth muscle obtained from Ca(V)beta(3)-deficient mice indicating that there is no compensatory increase of the expression of these channel proteins. Neither the Ca(V)beta(2) nor the other Ca(V)beta proteins appear to substitute for the lacking Ca(V)beta(3). L-type Ca(2+) channel properties including current density, inactivation kinetics as well as Cd(2+)- and dihydropyridine sensitivity were identical in cells of both genotypes suggesting that they do not require the presence of a Ca(V)beta(3) protein. However, a key hallmark of the Ca(V)beta modulation of Ca(2+) current, the hyperpolarisation of channel activation is slightly but significantly reduced by 4 mV. In addition to L-type Ca(2+) currents T-type Ca(2+) currents could be recorded in the murine ileum smooth muscle cells, but T-type currents were not affected by the lack of Ca(V)beta(3). Both proteins, Ca(V)beta(2) and Ca(V)beta(3) are localized near the plasma membrane and the localization of Ca(V)beta(2) is not altered in Ca(V)beta(3) deficient cells. Spontaneous contractions and potassium and carbachol induced contractions are not significantly different between ileum longitudinal smooth muscle strips from mice of both genotypes. In summary the data show that in ileum smooth muscle cells, Ca(V)beta(3) has only subtle effects on L-type Ca(2+) currents, appears not to be required for spontaneous and potassium induced contraction but might have a function beyond being a Ca(2+) channel subunit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号