首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
OmpR and PhoB are response regulators that contain an N-terminal phosphorylation domain and a C-terminal DNA binding effector domain connected by a flexible interdomain linker. Phosphorylation of the N terminus results in an increase in affinity for specific DNA and the subsequent regulation of gene expression. Despite their sequence and structural similarity, OmpR and PhoB employ different mechanisms to regulate their effector domains. Phosphorylation of OmpR in the N terminus stimulates the DNA binding affinity of the C terminus, whereas phosphorylation of the PhoB N terminus relieves inhibition of the C terminus, enabling it to bind to DNA. Chimeras between OmpR and PhoB containing either interdomain linker were constructed to explore the basis of the differences in their activation mechanisms. Our results indicate that effector domain regulation by either N terminus requires its cognate interdomain linker. In addition, our findings suggest that the isolated C terminus of OmpR is not sufficient for a productive interaction with RNA polymerase.  相似文献   

4.
5.
6.
7.
8.
9.
10.
Escherichia coli RNA polymerase (RNAP) is the most studied bacterial RNAP and has been used as the model RNAP for screening and evaluating potential RNAP-targeting antibiotics. However, the x-ray crystal structure of E. coli RNAP has been limited to individual domains. Here, I report the x-ray structure of the E. coli RNAP σ70 holoenzyme, which shows σ region 1.1 (σ1.1) and the α subunit C-terminal domain for the first time in the context of an intact RNAP. σ1.1 is positioned at the RNAP DNA-binding channel and completely blocks DNA entry to the RNAP active site. The structure reveals that σ1.1 contains a basic patch on its surface, which may play an important role in DNA interaction to facilitate open promoter complex formation. The α subunit C-terminal domain is positioned next to σ domain 4 with a fully stretched linker between the N- and C-terminal domains. E. coli RNAP crystals can be prepared from a convenient overexpression system, allowing further structural studies of bacterial RNAP mutants, including functionally deficient and antibiotic-resistant RNAPs.  相似文献   

11.
12.
13.
14.
Menon S  Wang S 《Biochemistry》2011,50(26):5948-5957
The PhoP protein from Mycobacterium tuberculosis is a response regulator of the OmpR/PhoB subfamily, whose structure consists of an N-terminal receiver domain and a C-terminal DNA-binding domain. How the DNA-binding activities are regulated by phosphorylation of the receiver domain remains unclear due to a lack of structural information on the full-length proteins. Here we report the crystal structure of the full-length PhoP of M. tuberculosis. Unlike other known structures of full-length proteins of the same subfamily, PhoP forms a dimer through its receiver domain with the dimer interface involving α4-β5-α5, a common interface for activated receiver domain dimers. However, the switch residues, Thr99 and Tyr118, are in a conformation resembling those of nonactivated receiver domains. The Tyr118 side chain is involved in the dimer interface interactions. The receiver domain is tethered to the DNA-binding domain through a flexible linker and does not impose structural constraints on the DNA-binding domain. This structure suggests that phosphorylation likely facilitates/stabilizes receiver domain dimerization, bringing the DNA-binding domains to close proximity, thereby increasing their binding affinity for direct repeat DNA sequences.  相似文献   

15.
Cyanobacterial ManR is a member of the OmpR family of response regulator that regulates the expression of themntABC andmntH in response to Mn2+ signals. Single-alanine substitutions of I204, L207 and R208 residues of the ManR, which constituted the DNA recognition helix, were obtained by the overlap extension method of PCR. EMSA was used to detect the complexes of the proteins of ManR mutants I204A, L207A, R208A, and the DNA fragment of promoter region of themntH gene fromAnabaena sp. PCC 7120. Results showed the formation of the complexes of the proteins of ManR mutants and DNA could not be detected, indicating that the mutagenesis of the residues I204, L207 and R208 in the ManR HTH domain could lead to the elimination of DNA binding activity of the ManR. Homologous analysis showed that residues I204, L207 and R208 of the ManR are also conservative in the αhelix 3 region of effector domain of other proteins of OmpR/PhoB subfamily, indicating that they are essential residues for DNA binding activity. No significant alteration between wild type and mutant proteins was detected by Far-UV CD spectra at the secondary structure level.  相似文献   

16.
Yi Y  Ma Y  Gao F  Mao X  Peng H  Feng Y  Fan Z  Wang G  Guo G  Yan J  Zeng H  Zou Q  Gao GF 《PloS one》2010,5(12):e15285
Enterohaemorrhagic E. coli (EHEC) O157:H7 is a primary food-borne bacterial pathogen capable of causing life-threatening human infections which poses a serious challenge to public health worldwide. Intimin, the bacterial outer-membrane protein, plays a key role in the initiating process of EHEC infection. This activity is dependent upon translocation of the intimin receptor (Tir), the intimin binding partner of the bacteria-encoded host cell surface protein. Intimin has attracted considerable attention due to its potential function as an antibacterial drug target. Here, we report the crystal structure of the Tir-binding domain of intimin (Int188) from E. coli O157:H7 at 2.8 Å resolution, together with a mutant (IntN916Y) at 2.6 Å. We also built the structural model of EHEC intimin-Tir complex and analyzed the key binding residues. It suggested that the binding pattern of intimin and Tir between EHEC and Enteropathogenic E. coli (EPEC) adopt a similar mode and they can complement with each other. Detailed structural comparison indicates that there are four major points of structural variations between EHEC and EPEC intimins: one in Domain I (Ig-like domain), the other three located in Domain II (C-type lectin-like domain). These variations result in different binding affinities. These findings provide structural insight into the binding pattern of intimin to Tir and the molecular mechanism of EHEC O157: H7.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号