首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Huang J  Li Q  Zhao R  Li W  Han Z  Chen X  Xiao B  Wu S  Jiang Z  Hu J  Liu L 《Animal reproduction science》2008,106(1-2):25-35
This study examined the effects of monosaccharide (glucose), disaccharide (sucrose) and polysaccharides (Ficoll and Lycium barbarum polysaccharide (LBP)) at different concentrations, using ethylene glycol (EG) as membrane-permeating cryoprotectant, on in vitro maturation of vitrified-thawed immature (GV) porcine oocytes. A total of 1145 oocytes were obtained by follicle aspiration from 496 ovaries of pigs slaughtered at a local abattoir and vitrified using a five-step method. After thawing and removal of cryoprotectant, oocytes were cultured for 44 h at 39 degrees C in a humidified atmosphere of 5% CO(2) in air. Oocytes were stained with DAPI and nuclear maturation was examined. The highest maturation rates were obtained in 1.5M glucose (8.62%), 0.75 M sucrose (20.0%), 3.0 g/ml Ficoll (13.79%) and 0.10 g/ml LBP (20.69%), respectively. The maturation rate using 0.75 M sucrose or 0.10 g/ml LBP was significantly higher compared to 1.5M glucose (P<0.05), but there was no significant difference from using 3.0 g/ml Ficoll (P>0.05). The percentage of oocytes reaching metaphase II (MII) stage in the cryopreserved groups was significantly lower than control (P<0.05). These results suggest that LBP is an effective non-permeating membrane cryoprotectant and 0.75 M sucrose or 0.10 g/ml LBP can be used as the vitrification solution for immature porcine oocytes.  相似文献   

2.
Szurek EA  Eroglu A 《PloS one》2011,6(11):e27604
The objective of this study was to elucidate the toxicity of widely used penetrating cryoprotective agents (CPAs) to mammalian oocytes. To this end, mouse metaphase II (M II) oocytes were exposed to 1.5 M solutions of dimethylsulfoxide (DMSO), ethylene glycol (EG), or propanediol (PROH) prepared in phosphate buffered saline (PBS) containing 10% fetal bovine serum. To address the time- and temperature-dependence of the CPA toxicity, M II oocytes were exposed to the aforementioned CPAs at room temperature (RT, ~23°C) and 37°C for 15 or 30 minutes. Subsequently, the toxicity of each CPA was evaluated by examining post-exposure survival, fertilization, embryonic development, chromosomal abnormalities, and parthenogenetic activation of treated oocytes. Untreated oocytes served as controls. Exposure of MII oocytes to 1.5 M DMSO or 1.5 M EG at RT for 15 min did not adversely affect any of the evaluated criteria. In contrast, 1.5 M PROH induced a significant increase in oocyte degeneration (54.2%) and parthenogenetic activation (16%) under same conditions. When the CPA exposure was performed at 37°C, the toxic effect of PROH further increased, resulting in lower survival (15%) and no fertilization while the toxicity of DMSO and EG was still insignificant. Nevertheless, it was possible to completely avoid the toxicity of PROH by decreasing its concentration to 0.75 M and combining it with 0.75 M DMSO to bring the total CPA concentration to a cryoprotective level. Moreover, combining lower concentrations (i.e., 0.75 M) of PROH and DMSO significantly improved the cryosurvival of MII oocytes compared to the equivalent concentration of DMSO alone. Taken together, our results suggest that from the perspective of CPA toxicity, DMSO and EG are safer to use in slow cooling protocols while a lower concentration of PROH can be combined with another CPA to avoid its toxicity and to improve the cryosurvival as well.  相似文献   

3.
Hochi S  Fujimoto T  Choi YH  Braun J  Oguri N 《Theriogenology》1994,42(7):1085-1094
Immature equine oocytes were frozen-thawed with ethylene glycol (EG), 1,2-propanediol (PD) or glycerol (GL) in PBS and cultured to assess the rate of in vitro maturation (Experiment 1). Compact-cumulus oocyte complexes were collected from slaughterhouse ovaries and equilibrated for 10 min in the freezing medium containing 10% (V/V) cryoprotectant and 0.1 M sucrose. The 0.25-ml straws, loaded with 10 to 30 oocytes, were seeded at -6 degrees C and cooled to -35 degrees C at 0.3 degrees C/min before being plunged into liquid nitrogen. The straws were thawed rapidly in a 37 degrees C waterbath for 20 sec. The proportions of frozen-thawed oocytes reaching Metaphase II (MII) stage after in vitro maturation of 32 h were 15.8% (EG), 5.8% (PD) and 0% (GL), while 63.3% of the nonfrozen control oocytes matured in vitro. The fertilizing ability of immature and mature oocytes after freezing in EG was tested by the insemination of zona-free oocytes with stallion spermatozoa (Experiment 2). Spermatozoa were preincubated for 3 h with 5 mM caffeine, treated with 0.1 mu M ionophore A23187, and inseminated for 20 h at the concentration of 1 to 2 x 10(7)/ml with 6 to 10 oocytes in 50 mu l of Brackett and Oliphant (BO) medium. Immature oocytes (Group 1) were matured in vitro after thawing and then their zona pellucida removed using 0.5% protease. The zona of mature oocytes were removed immediately after thawing (Group 2) or maturation (nonfrozen controls). The oocytes, which had mechanically damaged plasma membrane or lost by artifact, were not examined for insemination. Significantly more control oocytes exhibited a polar body at the time of insemination (53.5%) than either frozen-thawed immature or mature oocytes (25.8 and 27.3%, respectively). Similar proportion of frozen-thawed and control oocytes were penetrated by spermatozoa (71.8 to 79.1%) and exhibited 2 or more pronuclei (73.6 to 80.8%). The mean numbers of spermatozoa per penetrated oocyte were 1.9, 3.0 and 2.5, respectively, for Groups 1 and 2 and for the control oocytes. These results indicate that immature equine oocytes mature to the MII stage in vitro following freezing and thawing in EG or PD but not in GL. Stallion spermatozoa can penetrate zona-free immature and mature oocytes following freezing/thawing in EG and form morphologically normal pronuclei.  相似文献   

4.
Oocyte cryopreservation is the desired tool for the ‘long-term’ storage of female genetic potential especially for endangered/valuable species. This study aims at examining the ability of different cryoprotectant (CPA) and CPA exposure techniques to protect immature feline oocytes against cryoinjury during vitrification. Immature oocytes were submitted to different CPA exposure techniques: 1) 2-step DMSO, 2) 4-step DMSO, 3) 2-step EG, 4) 4-step EG, 5) 2-step EG plus DMSO and 6) 4-step EG plus DMSO. Non-CPA treated, non-vitrified oocytes served as controls. The oocytes were then submitted either to in vitro maturation (Experiment 1, n = 334) or to vitrification/warming (Experiment 2, n = 440). The stage of nuclear maturation was subsequently determined. In Experiment 3, the vitrified immature oocytes (n = 254) were matured and fertilized in vitro, and their developmental competence was assessed. A total of 424 embryos derived from vitrified immature oocytes were transferred into the oviduct of 6 recipient queens (Experiment 4).Vitrification reduced significantly the meiotic and developmental competence of immature cat oocytes compared with the non-vitrified controls. The EG alone or a combination of EG and DMSO yielded higher maturation rates than DMSO, irrespective of the CPA equilibration techniques used. The 4-step EG vitrification resulted in the highest maturation rate (37.6%) but cleavage and blastocyst rates were significantly lower than the non-vitrified controls (24.8% and 30.2% vs 62.5% and 49.3%, respectively). Pregnancy was established in recipients receiving embryos derived from non-vitrified and vitrified/warmed immature oocytes. It is concluded that the stepwise CPA exposure technique can be successfully applied for vitrification of immature cat oocytes, in terms of in vitro development but it is likely to affect in utero development.  相似文献   

5.
Studies were conducted to compare viability of immature and mature porcine oocytes vitrified in ethylene glycol (EG) using open-pulled straws (OPS). Oocytes that had been allowed to mature for 12 h (germinal vesicle group; GV) and 40 h (metaphase II group; MII) were divided into three treatments: (1) control; (2) treated with cytochalasin B and exposed to EG; and (3) treated with cytochalasin B and vitrified by stepwise exposure to EG in OPS. After warming, a sample of oocytes was fixed and evaluated by specific fluorescent probes before visualization using confocal microscopy. The remaining oocytes were fertilized and cleavage rate was recorded. Exposure of GV oocytes to EG or vitrification had a dramatic effect on spindle and chromosome configurations and no cleavage was obtained after in vitro fertilization. When MII oocytes were exposed to EG or were vitrified, 18 and 11% of oocytes, respectively, maintained the spindle structure and either EG exposure or vitrification resulted in substantial disruption in microfilament organization. The cleavage rates of mature oocytes after being exposed to EG or after vitrification were similar (14 and 13%, respectively) but were significantly less than that of control oocytes (69%). These results indicate that porcine oocytes at different meiotic stages respond differently to cryopreservation and MII porcine oocytes had better resistance to cryopreservation than GV stage oocytes.  相似文献   

6.
MII mouse oocytes in 1 and 1.5M ethylene glycol(EG)/phosphate buffered saline have been subjected to rapid freezing at 50 degrees C/min to -70 degrees C. When this rapid freezing is preceded by a variable hold time of 0-3 min after the initial extracellular ice formation (EIF), the duration of the hold time has a substantial effect on the temperature at which the oocytes subsequently undergo intracellular ice formation (IIF). For example, in 1M EG, the IIF temperatures are -23.7 and -39.2 degrees C with 0 and 2 min hold times; in 1.5M EG, the corresponding IIF temperatures are -29.1 and -40.8 degrees C.  相似文献   

7.
Studies were conducted to compare viability of immature and mature equine and bovine oocytes vitrified in ethylene glycol. Ficoll using open-pulled straws. Oocytes from slaughterhouse ovaries (N=50/group) with >2 layers of compact cumulus cells were vitrified immediately after collection (immature groups) or vitrified after 36 to 40 (equine) or 22 to 24 (bovine) h of maturation (mature groups). Immature oocytes were matured after thawing. Before vitrification, oocytes were exposed to TCM-199 + 10 FCS + 2.5 M ethylene glycol + 18% Ficoll + 0.5 M sucrose (EFS) for 30 sec and then to 5 M ethylene glycol in EFS for 25 to 30 sec at 37 degrees C. Oocytes were loaded into straws in approximately 2 microL of cryoprotectant and plunged directly into LN2. Warming straws and dilution of cryoprotectant was at 37 degrees C in TCM-199 + 10% FCS + 0.25 M sucrose for 1 min and then TCM-199 + 10% FCS + 0.15 M sucrose for 5 min. Non-vitrified oocytes undergoing the same maturation protocol for both species were used as controls. Oocytes were stained with orcein for nuclear maturation and live/dead status was determined using Hoechst 33342. Maturation of oocytes to MII after thawing was similar (P>0.05) among groups within species. All equine treatment groups had lower (P<0.01) maturation rates than bovine groups. Live/dead status did not differ among vitrification treatments within species. The percentage of oocytes that survived and reached MII did not differ (P>0.05) within treatment groups of each species. Rates of mature cortical granule distribution did not differ (P>0.05) within species; however, more bovine oocytes (P<0.05) had mature cortical granule distribution and nuclear maturation than equine oocytes. When concurrent cortical granule distribution and nuclear maturation were examined, there was no difference within species; however, only 30% of equine oocytes had nuclear and cytoplasmic maturation compared with 70% of bovine oocytes (P<0.05). In summary, both immature and mature equine and bovine oocytes survived cryopreservation using vitrification in open-pulled straws. However, survival rates were lower for equine than for bovine oocytes.  相似文献   

8.
The present study was conducted to evaluate the effects of three cryoprotectants, dimethyl sulphoxide (DMSO), ethylene glycol (EG) and 1,2-propanediol (PROH), each used at two concentrations (1.0 and 1.5 M) on the morphology, maturation rate and developmental capacity of usable quality immature buffalo oocytes subjected to slow freezing. The addition of the cryoprotectant before freezing and its dilution after thawing were carried out in a two- (for 1.0 M) or three-step manner (for 1.5 M). The incidence of damage was found to be significantly higher (P<0.05) with the lower concentration of 1.0 M, compared to that with 1.5 M for all the three cryoprotectants examined. The proportion of immature oocytes recovered in a morphologically normal state was significantly higher (P<0.05) for DMSO than those for EG or PROH at both 1.0 and 1.5 M concentrations. Among the six combinations evaluated, that of DMSO at 1.5 M concentration was found to be superior to others. Irrespective of the type or concentration of the cryoprotectant, partial or complete loss of the cumulus mass was the most prevalent damage. Following in vitro maturation, the nuclear maturation rate was significantly higher (P<0.05) for DMSO than those for EG or PROH at both 1.0 and 1.5 M concentrations. When the in vitro matured oocytes were subjected to in vitro fertilization after slow freezing, using 1.5 M DMSO as cryoprotectant, 4.5% and 0.6% of them were able to develop to morulae and blastocysts, respectively, on Day 9 post insemination, compared to 19.2% and 10.6%, respectively, for the controls. In conclusion, DMSO was more effective than EG or PROH for the slow freezing of immature buffalo oocytes and blastocysts could be produced from immature buffalo oocytes subjected to slow freezing in 1.5 M DMSO.  相似文献   

9.
Vitrification by using two-step exposures to combined cryoprotective agents (CPAs) has become one of the most common methods for oocyte cryopreservation. By quantitatively examining the status of oocytes during CPA additions and dilutions, we can analyze the degree of the associated osmotic damages. The osmotic responses of mouse MII oocyte in the presence of the combined CPAs (ethylene glycol, EG, and dimethyl sulfoxide, DMSO) were recorded and analyzed. A two-parameter model was used in the curve-fitting calculation to determine the values of hydraulic conductivity (L(p)) and permeability (P(s)) to the combined CPAs at 25°C and 37°C. The effects of exposure durations and the exposure temperatures on the cryopreservation in terms of frozen-thawed cell survival rates and subsequent development were examined in a series of cryopreservation experiments. Mouse MII oocytes were exposed to pretreatment solution (PTS) and vitrification solution (VS) at specific temperatures. The PTS used in our experiment was 10% EG and 10% DMSO dissolved in modified PBS (mPBS), and the VS was EDFS30 (15% EG, 15% DMSO, 3 × 10(-3) M Ficoll, and 0.35 M sucrose in mPBS).The accumulative osmotic damage (AOD) and intracellular CPA concentrations were calculated under the different cryopreservation conditions, and for the first time, the quantitative interactions between survival rates, subsequent development rates, and values of AOD were investigated.  相似文献   

10.
Meiotic spindle structure and chromosome alignment were examined after porcine oocytes were cooled at metaphase II (M II) stage. Cumulus-oocyte complexes (COCs) collected from medium size follicles were cultured in an oocyte maturation medium at 39 degrees C, 5% CO(2) in air for 44 hr. At the end of culture, oocytes were removed from cumulus cells and cooled to 24 or 4 degrees C for 5, 30, or 120 min in a solution with or without 1.5 M dimethyl sulfoxide (DMSO). After being cooled, oocytes were either fixed immediately for examination of the meiotic spindle and chromosome alignment or returned to maturation medium at 39 degrees C for 2 hr for examination of spindle recovery. Most oocytes (65-71%) cooled to 24 degrees C showed partially depolymerized spindles but 81-92% of oocytes cooled at 4 degrees C did not have a spindle after cooling for 120 min. Quicker disassembly of spindles in the oocytes was observed at 4 degrees C than at 24 degrees C. Cooling also induced chromosome abnormality, which was indicated by dispersed chromosomes in the cytoplasm. Limited spindle recovery was observed in the oocytes cooled to both 4 and 24 degrees C regardless of cooling time. The effect of cooling on the spindle organization and chromosome alignment was not influenced by the presence of DMSO. These results indicate that the meiotic spindles in porcine M II oocytes are very sensitive to a drop in the temperature. Both spindle and chromosomes were damaged during cooling, and such damage was not reversible by incubating the oocytes after they had been cooled.  相似文献   

11.
Cryopreservation of immature bovine oocytes by vitrification in straws   总被引:3,自引:0,他引:3  
The aim of this study was to cryopreserve by vitrification by ethylene glycol (EG) and dimethyl sulfoxide (DMSO) immature bovine oocytes in straws and to investigate the effects of vitrification on post-thaw oocyte maturation. A total of 575 cumulus oocyte complexes were obtained by follicle aspiration from 238 ovaries of cows slaughtered at a local abattoir. Following selection, oocytes with compacted cumulus cells and evenly granulated ooplasm were vitrified using one of the three different solutions with a non-vitrified group served as control. The first step vitrification solution contained 20% EG while the second step solution contained 40% EG+1M sucrose in a basic media used in group EG. Oocytes were matured in N-2-hidroxyethyl piperazine-N-2-ethanosulfonic acid (HEPES) buffered tissue culture medium (TCM) 199 for 24h at 39 degrees C in a humidified atmosphere of 5% CO2 in air. Oocytes were fixed following evaluation for polar body formation, stained with Giemsa solution and nuclear maturation was examined. The numbers of oocytes which were observed at Metaphase II (MII) stage were 41 (34.1%), 17 (14.9%), 29 (20.7%) and 78 (79.6%) in groups EG, DMSO, Mix and Control, respectively. Maturation rate distribution in group Mix was not statistically different when compared to maturation rate distributions in groups EG and DMSO (p>0.05). Differences between other groups were significant (p<0.001). However, better results were obtained in EG group compared to DMSO and mix groups. Maturation rates were lower in all treatment groups than the control group. The lowest maturation result was obtained in DMSO group. Maturation rate in group Mix was between maturation rates of EG and DMSO groups. Immature bovine oocytes can be vitrified in straws, but maturation success differs with the cryoprotectant and it seems that to obtain better maturation rates, new cryopreservation techniques specific for immature bovine oocytes are needed.  相似文献   

12.
Maturation of porcine oocytes after cooling at the germinal vesicle stage   总被引:4,自引:0,他引:4  
Maturation of porcine oocytes was examined after oocytes were cooled at the germinal vesicle stage. Cumulus-oocyte complexes (COCs) collected from medium-sized follicles were cooled at 24 degrees C or 4 degrees C for 5, 30 or 120 min in a solution with or without 1.5 M dimethylsulfoxide (DMSO). After rewarming, COCs were cultured in maturation medium at 39 degrees C, 5% CO2 in air for 44 h. Meiotic spindle organisation (by immunostaining and confocal microscopy), nuclear maturation (by orcein staining) and cytoplasmic maturation (by intracellular glutathione assay) of oocytes were examined after maturation. When COCs were cooled at 24 degrees C for various times in the medium without DMSO, a tendency to decreased spindle formation, nuclear maturation and cytoplasmic maturation was observed, but there was no statistical difference compared with controls. Addition of DMSO during cooling inhibited subsequent nuclear maturation and spindle formation. When COCs were cooled at 4 degrees C, both nuclear and cytoplasmic maturation as well as spindle formation were inhibited in most oocytes in a time-dependent manner. DMSO during cooling did not have any beneficial effect on subsequent oocyte maturation and spindle formation. These results suggest that porcine oocytes are very sensitive to a drop in the temperature before exposure to culture. Cooling oocytes before maturation inhibits their subsequent spindle organisation, nuclear and cytoplasmic maturation. Addition of DMSO to the cooling solution did not protect porcine oocytes from cooling-induced damage.  相似文献   

13.
This study was conducted to examine the effect of the donor cat's reproductive cycle stage on in vitro maturation (IVM), in vitro fertilization (IVF), and in vitro development of oocytes recovered from ovaries that were collected and stored at 35 degrees C for a short period (1-6 h). Based on the presence or absence of follicles and corpora lutea, the ovarian pairs collected were classified into inactive, follicular, or luteal stages. Nuclear status of 161 cumulus-oocyte complexes (COCs) were examined immediately after recovery; 91.3% of the oocytes were found to be at the immature germinal vesicle (GV) stage, and 3.7% of the oocytes were at metaphase II (MII) stage. The percentage of the oocytes at the GV stage was significantly lower in the follicular stage than in the inactive stage (P < 0.01). Of the oocytes from the follicular stage, 9.1% were at MII stage. After culture for 24 h, however, the proportions of oocytes that reached metaphase I and MII were not different among the reproductive cycle stages of the ovaries collected (P > 0.05). After co-incubation with sperm, 63.1% of oocytes were fertilized, but there were no significant differences among the reproductive cycle stages of the ovaries with respect to the proportions of normal and polyspermic fertilization. However, the number of oocytes reaching cleavage stage and development to the morula and blastocyst stages from follicular stage ovaries were significantly lower (P < 0.05) than those obtained from inactive and luteal stage ovaries. These results indicate that the reproductive cycle stage of donor cat ovaries, stored at 35 degrees C, has no apparent effects on the frequencies of maturation and fertilization of oocytes, but influences developmental competence of the oocytes following IVM or IVF.  相似文献   

14.
The purpose of this study was to evaluate the ability of cat oocytes, at different stages of maturation, to survive after cryopreservation and to assess their subsequent development following IVM and IVF. In the initial toxicity trial, immature oocytes were exposed to different concentrations of DMSO and ethylene glycol (EG). Resumption of meiosis and metaphase II were evaluated after removal of the cryoprotectant and IVM. The highest rates of resumption of meiosis (51.4%) were achieved after exposure to 1.5 mol l(-1) of cryoprotectants, and no difference was observed with control oocytes. Metaphase II was obtained in 25.7% (P<0.01) and 22.9% (P<0.005) of oocytes exposed to 1.5 mol l(-1) of DMSO and ethylene glycol, although at lower rates than in control oocytes (54.4%). On the basis of this finding, 1.5 mol l(-1) of cryoprotectant was chosen for freezing cat oocytes at the germinal vesicle stage (immature) or at metaphase II stage (mature). Post-thaw viability was assessed by the evaluation of the embryo development in vitro. After fertilization, mature oocytes frozen in ethylene glycol cleaved in better proportions (38.7%) than immature oocytes (6.8%, P<0.001), and no differences were observed in the cleavage rate of oocytes frozen at different maturation stages with DMSO (immature 12.8%; mature 14.1%). Embryonic development beyond the 8-cell stage was obtained only when mature oocytes were frozen with ethylene glycol (11.3%). This study suggests that cryopreserved cat oocytes can be fertilized successfully and that their development in vitro is enhanced when mature oocytes are frozen with ethylene glycol. The stage of maturation may be a key element in improving cat oocyte cryopreservation.  相似文献   

15.
Gupta MK  Uhm SJ  Lee HT 《Theriogenology》2007,67(2):238-248
Cryopreservation of normal, lipid-containing porcine oocytes has had limited practical success. This study used solid surface vitrification (SSV) of immature germinal vesicle (GV) and mature meiosis II (MII) porcine oocytes and evaluated the effects of pretreatment with cytochalasin B, cryoprotectant type (dimethylsulfoxide (DMSO), ethylene glycol (EG), or both), and warming method (two-step versus single-step). Oocyte survival (post-thaw) was assessed by morphological appearance, staining (3',6'-diacetyl fluorescein), nuclear maturation, and developmental capacity (after in vitro fertilization). Both GV and MII oocytes were successfully vitrified; following cryopreservation in EG, more than 60% of GV and MII stage porcine oocytes remained intact (no significant improvement with cytochalasin B pretreatment). Oocytes (GV stage) vitrified in DMSO had lower (P<0.05) nuclear maturation rates (31%) than those vitrified in EG (51%) or EG+DMSO (53%). Survival was better with two-step versus single-step dilution. Despite high survival rates, rates of cleavage (20-26%) and blastocyst formation (3-9%) were significantly lower than for non-vitrified controls (60 and 20%). In conclusion, SSV was a very simple, rapid, procedure that allowed normal, lipid-containing, GV or MII porcine oocytes to be fertilized and develop to the blastocyst stage in vitro.  相似文献   

16.
The developmental competence of cat oocytes matured in vitro is relatively poor when compared with that of in vivo oocytes. The study aimed to investigate the effect of roscovitine on the developmental competence of cat Felis catus oocytes matured in vitro. Cumulus-oocyte complexes (COCs) were classified as Grade I and II to III. Groups of COCs were cultured in 0, 12.5, 25, 50, 100, and 200 μM roscovitine for 24 h and were either fixed to assess the stages of nuclear maturation (Experiment 1) or additionally matured in vitro for 24 h before fixation (Experiment 2). In Experiment 3, cumulus cells from the COCs treated with roscovitine were examined for apoptosis. Experiment 4 examined the developmental competence of cat oocytes after roscovitine treatment and in vitro fertilization in terms of cleavage and morula and blastocyst formation rates. Roscovitine reversibly arrested cat oocytes at an immature stage in a dose-dependent manner. Roscovitine at 12.5 and 25 μM demonstrated less efficiency compared with that of other doses. However, higher doses of roscovitine induced cumulus cell apoptosis and resulted in a high number of degenerated oocytes after in vitro maturation. Roscovitine at 12.5 and 25 μM were therefore used to evaluate their effect on embryo development. Pretreatment with 12.5 and 25 μM roscovitine prior to in vitro maturation decreased the developmental competence of cat oocytes compared with that of non-roscovitine-treated controls. In conclusion, roscovitine reversibly maintained cat oocytes at the germinal vesicle stage without detrimental effect on nuclear maturation. However, it negatively affected cumulus cell viability and developmental competence.  相似文献   

17.
Oocyte cryopreservation is a potentially valuable technique for salvaging the germ-line when a valuable mare dies, but facilities for in vitro embryo production or oocyte transfer are not immediately available. This study examined the influence of maturation stage and freezing technique on the cryopreservability of equine oocytes. Cumulus oocyte complexes were frozen at the immature stage (GV) or after maturation in vitro for 30 hr (MII), using either conventional slow freezing (CF) or open pulled straw vitrification (OPS); cryoprotectant-exposed and untreated nonfrozen oocytes served as controls. After thawing, GV oocytes were matured in vitro, and MII oocytes were incubated for 0 or 6 hr, before staining to examine meiotic spindle quality by confocal microscopy. To assess fertilizability, CF MII oocytes were subjected to intracytoplasmic sperm injection (ICSI) and cultured in vitro. At 12, 24, and 48 hr after ICSI, injected oocytes were fixed to examine their progression through fertilization. Both maturation stage and freezing technique affected oocyte survival. The meiosis resumption rate was higher for OPS than CF for GV oocytes (28% vs. 1.2%; P < 0.05), but still much lower than for controls (66%). Cryopreserving oocytes at either stage induced meiotic spindle disruption (37%-67% normal spindles vs. 99% in controls; P < 0.05). Among frozen oocytes, however, spindle quality was best for oocytes frozen by CF at the MII stage and incubated for 6 hr post-thaw (67% normal); since this combination of cryopreservation/IVM yielded the highest proportion of oocytes reaching MII with a normal spindle (35% compared to <20% for other groups), it was used when examining the effects of cryopreservation on fertilizability. In this respect, the rate of normal fertilization for CF MII oocytes after ICSI was much lower than for controls (total oocyte activation rate, 26% vs. 56%; cleavage rate at 48 hr, 8% vs. 42%: P < 0.05). Thus, although IVM followed by CF yields a respectable percentage of normal-looking MII oocytes (35%), their ability to support fertilization is severely compromised.  相似文献   

18.
The permeability of the plasma membrane plays a crucial role in the successful cryopreservation of oocytes/embryos. To identify a stage feasible for the cryopreservation of teleost oocytes, we investigated the permeability to water and various cryoprotectants of medaka (Oryzias latipes) oocytes at the germinal vesicle (GV) and metaphase II (MII) stages. In sucrose solutions, the volume changes were greater in GV oocytes than MII oocytes. Estimated values for osmotically inactive volume were 0.41 for GV oocytes and 0.74 for MII oocytes. Water-permeability (microm/min/atm) at 25 degrees C was higher in GV oocytes (0.13+/-0.01) than MII oocytes (0.06+/-0.01). The permeability of MII oocytes to various cryoprotectants (glycerol, propylene glycol, ethylene glycol, and DMSO) was quite low because the oocytes remained shrunken during 2 h of exposure in the cryoprotectant solutions at 25 degrees C. When the chorion of MII oocytes was removed, the volume change was not affected, except in DMSO solution, where dechorionated oocytes shrunk and then regained their volume slowly; the P(DMSO) value was estimated to be 0.14+/-0.01x10(-3) cm/min. On the other hand, the permeability of GV oocytes to cryoprotectants were markedly high, the P(s) values (x10(-3) cm/min) for propylene glycol, ethylene glycol, and DMSO being 2.21+/-0.29, 1.36+/-0.18, and 1.19+/-0.01, respectively. However, the permeability to glycerol was too low to be estimated, because GV oocytes remained shrunken after 2 h of exposure in glycerol solution. These results suggest that, during maturation, medaka oocytes become less permeable to water and to small neutral solutes, probably by acquiring resistance to hypotonic conditions before being spawned in fresh water. Since such changes would make it difficult to cryopreserve mature oocytes, immature oocytes would be more suitable for the cryopreservation of teleosts.  相似文献   

19.
The aim of this study was to evaluate the effect of cytochalasin B (CCB) pre-treatment before vitrification on ability of immature oocytes from lamb ovaries to progress until metaphase II (MII) stage after vitrification/warming procedure. Cumulus-oocyte complexes (COCs) were obtained from ovaries of lambs, from 80 to 90 days old, collected from a local slaughterhouse. Before vitrification, COCs were randomly distributed in two experimental groups corresponding to the incubation with or without 7.5 microg/ml CCB for 30 min. In order to study cryoprotectant and CCB pre-treatment toxicity (toxicity test), oocytes were exposed to cryoprotectants, with or without CCB pre-treatment, but without plunging into N2 liquid. Vitrification solution was composed by 4.48 M EG plus 3.50 M DMSO supplemented with 0.25 M sucrose. Two-step addition was performed. After vitrification or toxicity test, COCs were matured in bicarbonate-buffered TCM 199 containing 10% foetal calf serum and 10 ng/ml epidermal growth factor. A sample of COCs was directly in vitro matured (control group). Rates of MII oocytes of toxicity groups both, with or without CCB pre-treatment were lower than control group (41.1-50.0 versus 79.9, respectively; P<0.05). After vitrification, a lower number of oocytes progressed to MII stage in comparison with non-vitrification groups (P<0.05). In vitrified groups both with or without CCB pre-treatment 8.0 and 12.7%, respectively, of immature oocytes reached MII stage by the end of in vitro maturation culture. No effect of CCB was observed, either in the toxicity or vitrified groups. In conclusion, no effect of CCB pre-treatment before vitrification was detected in this study with immature oocytes of pre-pubertal sheep. More studies are needed in order to increase ovine oocyte survival after vitrification.  相似文献   

20.
Mouse oocytes at different stages of maturation were fused together and the ensuing cell cycle events were analyzed with the objective of identifying checkpoints in meiosis. Fusion of maturing oocytes just undergoing germinal vesicle breakdown (GVBD) induces PCC (premature chromosome condensation) but no spindle formation in immature (GV) partner oocytes. On the other hand, fusion of metaphase I (MI) oocytes containing spindles to GV oocytes induces both PCC and spindle formation in the immature partner. Thus, while molecules required for condensation are present throughout metaphase, those involved in spindle formation are absent in early M-phase. Oocytes cultured for 6 h—early metaphase I (i.e., 2 h before the onset of anaphase I)—and then fused to anaphase-telophase I (A-TI) fusion partners block meiotic progression in the more advanced oocytes and induce chromatin dispersal on the spindle. By contrast, oocytes cultured for 8 h (late MI) before fusion to A-TI partners are driven into anaphase by signals from the more advanced oocytes and thereafter advance in synchrony to telophase I. When early (10 h) or late (12 h) metaphase II oocytes were fused to A-TI partners the signals generated from early MII oocytes block the anaphase to telophase I transition and induce a dispersal of A-TI chromosomes along the spindle. On the other hand, late MII oocytes respond to A-TI signals by exiting from the MII block and undergoing the A-TII transition. Moreover, the oocytes in late MI are not arrested in this stage and progress without any delay through A-TI to MII when fused to metaphase II partners. The signals from the less-developed partner force the MII oocyte through A-TII to MIII. In total, these studies demonstrate that the metaphase period is divided into at least three distinct phases and that a checkpoint in late metaphase controls the progress of meiosis in mammalian oocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号