首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Excessive salt intake is a major risk factor for hypertension. Here we identify the role of Na(+)/Ca(2+) exchanger type 1 (NCX1) in salt-sensitive hypertension using SEA0400, a specific inhibitor of Ca(2+) entry through NCX1, and genetically engineered mice. SEA0400 lowers arterial blood pressure in salt-dependent hypertensive rat models, but not in other types of hypertensive rats or in normotensive rats. Infusion of SEA0400 into the femoral artery in salt-dependent hypertensive rats increases arterial blood flow, indicating peripheral vasodilation. SEA0400 reverses ouabain-induced cytosolic Ca(2+) elevation and vasoconstriction in arteries. Furthermore, heterozygous NCX1-deficient mice have low salt sensitivity, whereas transgenic mice that specifically express NCX1.3 in smooth muscle are hypersensitive to salt. SEA0400 lowers the blood pressure in salt-dependent hypertensive mice expressing NCX1.3, but not in SEA0400-insensitive NCX1.3 mutants. These findings indicate that salt-sensitive hypertension is triggered by Ca(2+) entry through NCX1 in arterial smooth muscle and suggest that NCX1 inhibitors might be useful therapeutically.  相似文献   

2.
We have previously shown that there is high Na(+)/Ca(2+) exchange (NCX) activity in bovine adrenal chromaffin cells. In this study, by monitoring the [Ca(2+)](i) change in single cells and in a population of chromaffin cells, when the reverse mode of exchanger activity has been initiated, we have shown that the NCX activity is enhanced by K(+). The K(+)-enhanced activity accounted for a significant proportion of the Na(+)-dependent Ca(2+) uptake activity in the chromaffin cells. The results support the hypothesis that both NCX and Na(+)/Ca(2+)-K(+) exchanger (NCKX) are co-present in chromaffin cells. The expression of NCKX in chromaffin cells was further confirmed using PCR and northern blotting. In addition to the plasma membrane, the exchanger activity, measured by Na(+)-dependent (45)Ca(2+) uptake, was also present in membrane isolated from the chromaffin granules enriched fraction and the mitochondria enriched fraction. The results support that both NCX and NCKX are present in bovine chromaffin cells and that the regulation of [Ca(2+)](i) is probably more efficient with the participation of NCKX.  相似文献   

3.
Inhibition of Na(+),K(+)-ATPase during NMDA applications greatly increased NMDA-induced excitotoxicity in primary cultures of forebrain neurons (FNs), but not in cerebellar granule cells (CGCs). Because Na(+),K(+)-ATPase inhibition promotes reversal of plasmalemmal Na(+)/Ca(2+) exchangers, we compared the activities of reversed K(+)-independent (NCX) and K(+)-dependent (NCKX) Na(+)/Ca(2+) exchangers in these cultures. To this end, we measured gramicidin-induced and Na(+)-dependent elevation in cytosolic [Ca(2+)] ([Ca(2+)](c)) that represents Ca(2+) influx via reversed NCX and NCKX; NCX activity was dissected out by removing external K(+). The [Ca(2+)](c) elevations mediated by NCX alone, and NCX plus NCKX combined, were 17 and 6 times more rapid in FNs than in CGCs, respectively. Northern blot analysis showed that FNs preferentially express NCX1 whereas CGCs expressed NCX3. Differences in expression of other isoforms (NCX2, NCKX2, NCKX3 and NCKX4) were less pronounced. We tested whether the NCX or NCKX family of exchangers contributes most to the toxic NMDA-induced Ca(2+) influx in depolarized neurons. We found that in FNs, inhibition of NCX alone was sufficient to significantly limit NMDA excitotoxicity, whereas in CGCs, inhibition of both NCX and NCKX was required. The data suggest that the high activity of NCX isoforms expressed in FNs, possibly NCX1, sensitizes these neurons to NMDA excitotoxicity.  相似文献   

4.
We examined inhibitory effects of external multivalent cations Ni(2+), Co(2+), Cd(2+), La(3+), Mg(2+), and Mn(2+) on reverse-mode exchange of the K(+)-dependent Na(+)/Ca(2+) exchanger NCKX2 and the K(+)-independent exchanger NCX1 expressed in CCL-39 cells by measuring the rate of Ca(2+) uptake with radioisotope tracer and electrophysiological techniques. The apparent affinities for block of Ca(2+) uptake by multivalent cations was higher in NCKX2 than NCX1, and the rank order of inhibitory potencies among these cations was different. Additional experiments also showed that external Li(+) stimulated reverse-mode exchange by NCX1, but not NCKX2 in the presence of 5 mM K(+). Thus, both exchangers exhibited differential sensitivities to not only K(+) but also many other external cations. We attempted to locate the putative binding sites within the alpha motifs for multivalent cations by site-directed mutagenesis experiments. The cation affinities of NCKX2 were altered by mutations of amino acid residues in the alpha-1 motif, but not by mutations in the alpha-2 motif. These results contrast with those for NCX1 where mutations in both alpha-1 and alpha-2 motifs have been shown previously to affect cation affinities. Susceptibility tests with sulfhydryl alkylating agents suggested that the alpha-1 and alpha-2 motifs are situated extracellularly and intracellularly, respectively, in both exchangers. A topological model is proposed in which the extracellular-facing alpha-1 motif forms an external cation binding site that includes key residues N203, G207C, and I209 in NCKX2, while both alpha-1 and alpha-2 motifs together form the binding sites in NCX1.  相似文献   

5.
6.
KB-R7943 and SEA0400 are Na(+)/Ca(2+) exchanger (NCX) inhibitors with differing potency and selectivity. The cardioprotective efficacy of these NCX inhibitors was examined in isolated rabbit hearts (Langendorff perfused) subjected to regional ischemia (coronary artery ligation) and reperfusion. KB-R7943 and SEA0400 elicited concentration-dependent reductions in infarct size (SEA0400 EC(50): 5.7 nM). SEA0400 was more efficacious than KB-R7943 (reduction in infarct size at 1 microM: SEA0400, 75%; KB-R7943, 40%). Treatment with either inhibitor yielded similar reductions in infarct size whether administered before or after regional ischemia. SEA0400 (1 microM) improved postischemic recovery of function (+/-dP/dt), whereas KB-R7943 impaired cardiac function at >/=1 microM. At 5-20 microM, KBR-7943 elicited rapid and profound depressions of heart rate, left ventricular developed pressure, and +/-dP/dt. Thus the ability of KB-R7943 to provide cardioprotection is modest and limited by negative effects on cardiac function, whereas the more selective NCX inhibitor SEA0400 elicits marked reductions in myocardial ischemic injury and improved +/-dP/dt. NCX inhibition represents an attractive approach for achieving clinical cardioprotection.  相似文献   

7.
The superfamily of cation/Ca(2+) exchangers includes both Na(+)/Ca(2+) exchangers (NCXs) and Na(+)/Ca(2+),K(+) exchangers (NCKX) as the families characterized in most detail. These Ca(2+) transporters have prominent physiological roles. For example, NCX and NCKX are important in regulation of cardiac contractility and visual processes, respectively. The superfamily also has a large number of members of the YrbG family expressed in prokaryotes. However, no members of this family have been functionally expressed, and their transport properties are unknown. We have expressed, purified, and characterized a member of the YrbG family, MaX1 from Methanosarcina acetivorans. MaX1 catalyzes Ca(2+) uptake into membrane vesicles. The Ca(2+) uptake requires intravesicular Na(+) and is stimulated by an inside positive membrane potential. Despite very limited sequence similarity, MaX1 is a Na(+)/Ca(2+) exchanger with kinetic properties similar to those of NCX. The availability of a prokaryotic Na(+)/Ca(2+) exchanger should facilitate structural and mechanistic investigations.  相似文献   

8.
The Na(+)/Ca(2+)-K(+) exchanger (NCKX) is a polytopic membrane protein that uses both the inward Na(+) gradient and the outward K(+) gradient to drive Ca(2+) extrusion across the plasma membrane. NCKX1 is found in retinal rod photoreceptors, while NCKX2 is found in retinal cone photoreceptors and is also widely expressed in the brain. Here, we have identified a single residue (out of >100 tested) for which substitution removed the K(+) dependence of NCKX-mediated Ca(2+) transport. Charge-removing replacement of Asp(575) by either asparagine or cysteine rendered the mutant NCKX2 proteins independent of K(+), whereas the charge-conservative substitution of Asp(575) to glutamate resulted in a nonfunctional mutant NCKX2 protein, accentuating the critical nature of this residue. Asp(575) is conserved in the NCKX1-5 genes, while an asparagine is found in this position in the three NCX genes, coding for the K(+)-independent Na(+)/Ca(2+) exchanger.  相似文献   

9.
Asterosap, a group of equally active isoforms of sperm-activating peptides from the egg jelly of the starfish Asterias amurensis, functions as a chemotactic factor for sperm. It transiently increases the intracellular cGMP level of sperm, which in turn induces a transient elevation of intracellular Ca(2+) concentration ([Ca(2+)](i)). Using a fluorescent Ca(2+)-sensitive dye, Fluo-4 AM, we measured the changes in sperm [Ca(2+)](i) in response to asterosap. KB-R7943 (KB), a selective inhibitor of Na(+)/Ca(2+) exchanger (NCX), significantly inhibited the asterosap-induced transient elevation of [Ca(2+)](i), suggesting that asterosap influences [Ca(2+)](i) through activation of a K+-dependent NCX (NCKX). An NCKX activity of starfish sperm also shows K(+) dependency like other NCKXs. Therefore, we cloned an NCKX from the starfish testes and predicted that it codes for a 616 amino acid protein that is a member of the NCKX family. Pharmacological evidence suggests that this exchanger participates in the asterosap-induced Ca(2+) entry into sperm.  相似文献   

10.
Externally applied Ni(2+), which apparently competes with Ca(2+) in all three isoforms of Na(+)/Ca(2+) exchanger, inhibits exchange activity of NCX1 or NCX2 with a 10-fold higher affinity than that of NCX3, whereas stimulation of exchange by external Li(+) is significantly greater in NCX2 and NCX3 than in NCX1 (Iwamoto, T., and Shigekawa, M. (1998) Am. J. Physiol. 275, C423-C430). Here we identified structural domains in the exchanger that confer differential sensitivity to Ni(2+) or Li(+) by measuring intracellular Na(+)-dependent (45)Ca(2+) uptake in CCL39 cells stably expressing NCX1/NCX3 chimeras or mutants. We found that two segments in the exchanger corresponding mostly to the internal alpha-1 and alpha-2 repeats are individually responsible for the alteration of Ni(2+) sensitivity, both together accounting for approximately 80% of the difference between NCX1 and NCX3. In contrast, the segment corresponding to the alpha-2 repeat fully accounts for the differential Li(+) sensitivity between the isoforms. The Ni(2+) sensitivity was mimicked, respectively, by simultaneous substitution of two amino acids in the alpha-1 repeat (N125G/T127I in NCX1 and G159N/I161T in NCX3) and substitution of one amino acid in the alpha-2 repeat (V820A in NCX1 and A809V in NCX3). On the other hand, the Li(+) sensitivity was mimicked by double substitution mutation in the alpha-2 repeat (V820A/Q826V in NCX1 and A809V/V815Q in NCX3). Single substitution mutations at Asn(125) and Val(820) of NCX1 caused significant alterations in the interactions of the exchanger with Ca(2+) and Ni(2+), and Ni(2+) and Li(+), respectively, although the extent of alteration varied depending on the nature of side chains of substituted residues. Since the above four important residues are mostly in the putative loops of the alpha repeats, these regions might form an ion interaction domain in the exchanger.  相似文献   

11.
12.
Phospholemman (PLM) is a small sarcolemmal protein that modulates the activities of Na(+)/K(+)-ATPase and the Na(+)/Ca(2+) exchanger (NCX), thus contributing to the maintenance of intracellular Na(+) and Ca(2+) homeostasis. We characterized the expression and subcellular localization of PLM, NCX, and the Na(+)/K(+)-ATPase alpha1-subunit during perinatal development. Western blotting demonstrates that PLM (15kDa), NCX (120kDa), and Na(+)/K(+)-ATPase alpha-1 (approximately 100kDa) proteins are all more than 2-fold higher in ventricular membrane fractions from newborn rabbit hearts (1-4-day old) compared to adult hearts. Our immunocytochemistry data demonstrate that PLM, NCX, and Na(+)/K(+)-ATPase are all expressed at the sarcolemma of newborn ventricular myocytes. Taken together, our data indicate that PLM, NCX, and Na(+)/K(+)-ATPase alpha-1 proteins have similar developmental expression patterns in rabbit ventricular myocardium. Thus, PLM may have an important regulatory role in maintaining cardiac Na(+) and Ca(2+) homeostasis during perinatal maturation.  相似文献   

13.
Sodium-calcium exchangers have long been considered inert with respect to monovalent cations such as lithium, choline, and N-methyl-d-glucamine. A key question that has remained unsolved is how despite this, Li(+) catalyzes calcium exchange in mammalian tissues. Here we report that a Na(+)/Ca(2+) exchanger, NCLX cloned from human cells (known as FLJ22233), is distinct from both known forms of the exchanger, NCX and NCKX in structure and kinetics. Surprisingly, NCLX catalyzes active Li(+)/Ca(2+) exchange, thereby explaining the exchange of these ions in mammalian tissues. The NCLX protein, detected as both 70- and 55-KDa polypeptides, is highly expressed in rat pancreas, skeletal muscle, and stomach. We demonstrate, moreover, that NCLX is a K(+)-independent exchanger that catalyzes Ca(2+) flux at a rate comparable with NCX1 but without promoting Na(+)/Ba(2+) exchange. The activity of NCLX is strongly inhibited by zinc, although it does not transport this cation. NCLX activity is only partially inhibited by the NCX inhibitor, KB-R7943. Our results provide a cogent explanation for a fundamental question. How can Li(+) promote Ca(2+) exchange whereas the known exchangers are inert to Li(+) ions? Identification of this novel member of the Na(+)/Ca(2+) superfamily, with distinct characteristics, including the ability to transport Li(+), may provide an explanation for this phenomenon.  相似文献   

14.
Ca(2+), which enters cardiac myocytes through voltage-dependent Ca(2+) channels during excitation, is extruded from myocytes primarily by the Na(+)/Ca(2+) exchanger (NCX1) during relaxation. The increase in intracellular Ca(2+) concentration in myocytes by digitalis treatment and after ischemia/reperfusion is also thought to result from the reverse mode of the Na(+)/Ca(2+) exchange mechanism. However, the precise roles of the NCX1 are still unclear because of the lack of its specific inhibitors. We generated Ncx1-deficient mice by gene targeting to determine the in vivo function of the exchanger. Homozygous Ncx1-deficient mice died between embryonic days 9 and 10. Their hearts did not beat, and cardiac myocytes showed apoptosis. No forward mode or reverse mode of the Na(+)/Ca(2+) exchange activity was detected in null mutant hearts. The Na(+)-dependent Ca(2+) exchange activity as well as protein content of NCX1 were decreased by approximately 50% in the heart, kidney, aorta, and smooth muscle cells of the heterozygous mice, and tension development of the aortic ring in Na(+)-free solution was markedly impaired in heterozygous mice. These findings suggest that NCX1 is required for heartbeats and survival of cardiac myocytes in embryos and plays critical roles in Na(+)-dependent Ca(2+) handling in the heart and aorta.  相似文献   

15.
Rapid and precise control of Na(+)/Ca(2+) exchanger (NCX1) activity is essential in the maintenance of beat-to-beat Ca(2+) homeostasis in cardiac myocytes. Here, we show that phospholemman (PLM), a 15-kDa integral sarcolemmal phosphoprotein, is a novel endogenous protein inhibitor of cardiac NCX1. Using a heterologous expression system that is devoid of both endogenous PLM and NCX1, we first demonstrated by confocal immunofluorescence studies that both exogenous PLM and NCX1 co-localized at the plasma membrane. Reciprocal co-immunoprecipitation studies revealed specific protein-protein interaction between PLM and NCX1. The functional consequences of direct association of PLM with NCX1 was the inhibition of NCX1 activity, as demonstrated by whole-cell patch clamp studies to measure NCX1 current density and radiotracer flux assays to assess Na(+)-dependent (45)Ca(2+) uptake. Inhibition of NCX1 by PLM was specific, because a single mutation of serine 68 to alanine in PLM resulted in a complete loss of inhibition of NCX1 current, although association of the PLM mutant with NCX1 was unaltered. In native adult cardiac myocytes, PLM co-immunoprecipitated with NCX1. We conclude that PLM, a member of the FXYD family of small ion transport regulators known to modulate Na(+)-K(+)-ATPase, also regulates Na(+)/Ca(2+) exchange in the heart.  相似文献   

16.
Recent evidence suggests the expression of a Na(+)/Ca(2+) exchanger (NCX) in vascular endothelial cells. To elucidate the functional role of endothelial NCX, we studied Ca(2+) signaling and Ca(2+)-dependent activation of endothelial nitric-oxide synthase (eNOS) at normal, physiological Na(+) gradients and after loading of endothelial cells with Na(+) ions using the ionophore monensin. Monensin-induced Na(+) loading markedly reduced Ca(2+) entry and, thus, steady-state levels of intracellular free Ca(2+) ([Ca(2+)](i)) in thapsigargin-stimulated endothelial cells due to membrane depolarization. Despite this reduction of overall [Ca(2+)](i), Ca(2+)-dependent activation of eNOS was facilitated as indicated by a pronounced leftward shift of the Ca(2+) concentration response curve in monensin-treated cells. This facilitation of Ca(2+)-dependent activation of eNOS was strictly dependent on the presence of Na(+) ions during treatment of the cells with monensin. Na(+)-induced facilitation of eNOS activation was not due to a direct effect of Na(+) ions on the Ca(2+) sensitivity of the enzyme. Moreover, the effect of Na(+) was not related to Na(+) entry-induced membrane depolarization or suppression of Ca(2+) entry, since neither elevation of extracellular K(+) nor the Ca(2+) entry blocker 1-(beta-[3-(4-methoxyphenyl)-propoxy]-4-methoxyphenethyl)-1H-imidazol e hydrochloride (SK&F 96365) mimicked the effects of Na(+) loading. The effects of monensin were completely blocked by 3', 4'-dichlorobenzamil, a potent and selective inhibitor of NCX, whereas the structural analog amiloride, which barely affects Na(+)/Ca(2+) exchange, was ineffective. Consistent with a pivotal role of Na(+)/Ca(2+) exchange in Ca(2+)-dependent activation of eNOS, an NCX protein was detected in caveolin-rich membrane fractions containing both eNOS and caveolin-1. These results demonstrate for the first time a crucial role of cellular Na(+) gradients in regulation of eNOS activity and suggest that a tight functional interaction between endothelial NCX and eNOS may take place in caveolae.  相似文献   

17.
We have recently described a novel K(+)-dependent Na(+)/Ca(2+) exchanger, NCKX2, that is abundantly expressed in brain neurons (Tsoi, M., Rhee, K.-H., Bungard, D., Li, X.-F., Lee, S.-L., Auer, R. N., and Lytton, J. (1998) J. Biol. Chem. 273, 4115--4162). The precise role for NCKX2 in neuronal Ca(2+) homeostasis is not yet clearly understood but will depend upon the functional properties of the molecule. Here, we have performed whole-cell patch clamp analysis to characterize cation dependences and ion stoichiometry for rat brain NCKX2, heterologously expressed in HEK293 cells. Outward currents generated by reverse NCKX2 exchange depended on external Ca(2+) with a K(12) of 1.4 or 101 microm without or with 1 mm Mg(2+), and on external K(+) with a K(1/2) of about 12 or 36 mm with choline or Li(+) as counter ion, respectively. Na(+) inhibited outward currents with a K(1/2) of about 60 mm. Inward currents generated by forward NCKX2 exchange depended upon external Na(+) with a K(1/2) of 30 mm and a Hill coefficient of 2.8. K(+) inhibited the inward currents by a maximum of 40%, with a K(1/2) of 2 mm or less, depending upon the conditions. The transport stoichiometry of NCKX2 was determined by observing the change in reversal potential as individual ion gradients were altered. Our data support a stoichiometry for rat brain NCKX2 of 4 Na(+):(1 Ca(2+) + 1 K(+)). These findings provide the first electrophysiological characterization of rat brain NCKX2, and the first evidence that a single recombinantly expressed NCKX polypeptide encodes a K(+)-transporting Na(+)/Ca(2+) exchanger with a transport stoichiometry of 4 Na(+):(1 Ca(2+) + 1 K(+)).  相似文献   

18.
The Na+/Ca2+ exchanger is an ion transporter that exchanges Na+ and Ca2+ in either Ca2+ efflux or Ca2+ influx mode, depending on membrane potential and transmembrane ion gradients. In arterial smooth muscle cells, the Na+/Ca2+ exchanger is thought to participate in the maintenance of vascular tone by regulating cytosolic Ca2+ concentration. Recent pharmacological and genetic engineering studies have revealed that the Ca2+ influx mode of vascular Na+/Ca2+ exchanger type-1 (NCX1) is involved in the pathogenesis of salt-dependent hypertension. SEA0400, a specific Na+/Ca2+ exchange inhibitor that preferentially blocks the Ca2+ influx mode, lowers arterial blood pressure in salt-dependent hypertensive models, but not in normotensive rats or other types of hypertensive rats. Furthermore, heterozygous mice with reduced expression of NCX1 are resistant to development of salt-dependent hypertension, whereas transgenic mice with vascular smooth muscle-specific overexpression of NCX1 readily develop hypertension after high-salt loading. SEA0400 reverses the cytosolic Ca2+ elevation and vasoconstriction induced by nanomolar ouabain, as well as humoral factors in salt-loaded animals. One possibility is that circulating endogenous cardiotonic steroids may be necessary for NCX1-mediated hypertension. These findings help to explain how arterial smooth muscle cells in blood vessels contribute to salt-elicited blood pressure elevation and suggest that NCX1 inhibitors might be therapeutically useful for salt-dependent hypertension.  相似文献   

19.
The activity of the cardiac Na(+)/Ca(2+) exchanger (NCX1.1) undergoes continuous modulation during the contraction-relaxation cycle because of the accompanying changes in the electrochemical gradients for Na(+) and Ca(2+). In addition, NCX1.1 activity is also modulated via secondary, ionic regulatory mechanisms mediated by Na(+) and Ca(2+). In an effort to evaluate how ionic regulation influences exchange activity under pulsatile conditions, we studied the behavior of the cloned NCX1.1 during frequency-controlled changes in intracellular Na(+) and Ca(+) (Na(i)(+) and Ca(i)(2+)). Na(+)/Ca(2+) exchange activity was measured by the giant excised patch-clamp technique with conditions chosen to maximize the extent of Na(+)- and Ca(2+)-dependent ionic regulation so that the effects of variables such as pulse frequency and duration could be optimally discerned. We demonstrate that increasing the frequency or duration of solution pulses leads to a progressive decline in pure outward, but not pure inward, Na(+)/Ca(2+) exchange current. However, when the exchanger is permitted to alternate between inward and outward transport modes, both current modes exhibit substantial levels of inactivation. Changes in regulatory Ca(2+), or exposure of patches to limited proteolysis by alpha-chymotrypsin, reveal that this "coupling" is due to Na(+)-dependent inactivation originating from the outward current mode. Under physiological ionic conditions, however, evidence for modulation of exchange currents by Na(i)(+)-dependent inactivation was not apparent. The current approach provides a novel means for assessment of Na(+)/Ca(2+) exchange ionic regulation that may ultimately prove useful in understanding its role under physiological and pathophysiological conditions.  相似文献   

20.
We have previously demonstrated that rat cerebellar Type-1 astrocytes express a very active genistein sensitive Na(+)/Ca(2+) exchanger, which accounts for most of the total plasma membrane Ca(2+) fluxes and for the clearance of loads induced by physiological agonists. In this work, we have explored the mechanism by which the reverse Na(+)/Ca(2+) exchange is involved in agonist-induced Ca(2+) signaling in rat cerebellar astrocytes. Microspectrofluorometric measurements of Cai(2+) with Fluo-3 demonstrate that the Cai(2+) signals associated long (> 20 s) periods of reverse operation of the Na(+)/Ca(2+) exchange are amplified by a mechanism compatible with calcium-calcium release, while those associated with short (< 20 s) pulses are not amplified. This was confirmed by pharmacological experiments using ryanodine receptors agonist (4-chloro-m-cresol) and the endoplasmic reticulum ATPase inhibitor (thapsigargin). Confocal microscopy demonstrates a high co-localization of immunofluorescent labeled Na(+)/Ca(2+) exchanger and RyRs. Low (< 50 micromol/L) or high (> 500 micromol/L) concentrations of L-glutamate (L-Glu) or L-aspartate causes a rise in which is completely blocked by the Na(+)/Ca(2+) exchange inhibitors KB-R7943 and SEA0400. The most important novel finding presented in this work is that L-Glu activates the reverse mode of the Na(+)/Ca(2+) exchange by inducing Na(+) entry through the electrogenic Na(+)-Glu-co-transporter and not through the ionophoric L-Glu receptors, as confirmed by pharmacological experiments with specific blockers of the ionophoric L-Glu receptors and the electrogenic Glu transporter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号