首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The non-membrane-bound lamina-associated polypeptide 2 isoform, LAP2alpha, forms nucleoskeletal structures with A-type lamins and interacts with chromosomes in a cell cycle-dependent manner. LAP2alpha contains a LEM (LAP2, emerin, and MAN1) domain in the constant N terminus that binds to chromosomal barrier-to-autointegration factor, and a C-terminal unique region that is essential for chromosome binding. Here we show that C-terminal LAP2alpha fragment efficiently bound to mitotic chromosomes and inhibited assembly of endogenous LAP2alpha, nuclear membranes, and lamins A/C in in vitro nuclear assembly assays. Full-length recombinant LAP2alpha, which bound to chromosomes, and N-terminal fragment, which did not bind, had no effect on assembly. This suggested an essential role for the LAP2alpha C terminus in chromosome association and for the N-terminal LEM domain in subsequent assembly stages. In vivo analysis upon transient expression of GFP-tagged LAP2alpha fragments confirmed that, unlike the N-terminal fragment, the C-terminal fragment was able to bind to chromosomes during mitosis, if expressed weakly. At higher expression levels, C-terminal LAP2alpha fragment and full-length protein led to cell cycle arrest in interphase and apoptosis, as shown by fluorescence-activated cell sorter analysis, time lapse microscopy, and BrdUrd incorporation assays. These data indicated distinct functions of LAP2alpha in cell cycle progression during interphase and in nuclear reassembly during mitosis.  相似文献   

2.
LAP2alpha is a LEM family protein associated with nucleoplasmic A-type lamins and chromatin in interphase. Like lamins and other lamina proteins LAP2alpha is cytoplasmic in metaphase, but it associates with chromosomes prior to nuclear envelope formation in late anaphase to telophase. In vitro phosphorylation analysis and mass spectrometry identified a cluster of at least three mitotic cyclin-dependent kinase 1 phosphorylation sites in the C-terminal chromatin-binding region of LAP2alpha as well as four additional potential sites in the cluster, some of which were targeted alternatively in LAP2alpha mutated at the major sites. LAP2alpha mutants containing serine --> alanine mutations at all seven sites revealed a clear phenotype. Mutated LAP2alpha remained associated with chromosomes throughout mitosis, but the dissociation of lamins into the cytoplasm and nuclear envelope disassembly were not affected. These data demonstrate the in vivo significance of mitotic phosphorylation for the dynamic behavior of LAP2alpha in the cell cycle and show that, unlike the interaction with lamins, the chromatin association of LAP2alpha is regulated by multiple mitosis-specific phosphorylation at sites clustered within a defined region in the C terminus of the protein.  相似文献   

3.
LAP2 belongs to a family of nuclear membrane proteins sharing a 43 residue LEM domain. All LAP2 isoforms have the same N-terminal 'constant' region (LAP2-c), which includes the LEM domain, plus a C-terminal 'variable' region. LAP2-c polypeptide inhibits nuclear assembly in Xenopus extracts, and binds in vitro to barrier-to-autointegration factor (BAF), a DNA-bridging protein. We tested 17 Xenopus LAP2-c mutants for nuclear assembly inhibition, and binding to BAF and BAF small middle dotDNA complexes. LEM domain mutations disrupted all activities tested. Some mutations outside the LEM domain had no effect on binding to BAF, but disrupted activity in Xenopus extracts, suggesting that LAP2-c has an additional unknown function required to inhibit nuclear assembly. Mutagenesis results suggest that BAF changes conformation when complexed with DNA. The binding affinity of LAP2 was higher for BAF small middle dotDNA complexes than for BAF, suggesting that these interactions are physiologically relevant. Nucleoplasmic domains of XENOPUS: LAP2 isoforms varied 9-fold in their affinities for BAF, but all isoforms supershifted BAF small middle dotDNA complexes. We propose that the LEM domain is a core BAF-binding domain that can be modulated by the variable regions of LAP2 isoforms.  相似文献   

4.
The lamina-associated polypeptide (LAP) 2 family comprises up to six alternatively spliced proteins in mammalian cells and three isoforms in Xenopus. LAP2beta is a type II integral protein of the inner nuclear membrane, which binds to lamin B and the chromosomal protein BAF, and may link the nuclear membrane to the underlying lamina and provide docking sites for chromatin. LAP2alpha shares only the N-terminus with the other isoforms and contains a unique C-terminus. It is a nonmembrane protein associated with the nucleoskeleton and may help to organize higher order chromatin structure by interacting with A-lamins and chromosomes. Recent studies using mutant proteins have just begun to unravel functions of LAP2 isoforms during postmitotic nuclear reassembly. LAP2alpha associates with chromosomes via an alpha-specific domain at early stages of assembly, possibly providing a structural framework for chromosome reorganization. The subsequent interaction of both LAP2alpha and LAP2beta with the chromosomal BAF may stabilize chromatin structure and target membranes to the chromosomes. At later stages LAP2 may regulate the assembly of lamins. LAP2 isoforms have been found to share a homologous approximately 40 amino acid long region, the LEM domain, with nuclear membrane proteins MAN1 and emerin, which has been implicated in Emery-Dreifuss muscular dystrophy.  相似文献   

5.
Lamina-associated polypeptide (LAP) 2 of the inner nuclear membrane (now LAP2beta) and LAP2alpha are related proteins produced by alternative splicing, and contain a common 187 amino acid N-terminal domain. We show here that, unlike LAP2beta, LAP2alpha behaved like a nuclear non-membrane protein in subcellular fractionation studies and was localized throughout the nuclear interior in interphase cells. It co-fractionated with LAP2beta in nuclear lamina/matrix-enriched fractions upon extraction of nuclei with detergent, salt and nucleases. During metaphase LAP2alpha dissociated from chromosomes and became concentrated around the spindle poles. Furthermore, LAP2alpha was mitotically phosphorylated, and phosphorylation correlated with increased LAP2alpha solubility upon extraction of cells in physiological buffers. LAP2alpha relocated to distinct sites around chromosomes at early stages of nuclear reassembly and intermediarily co-localized with peripheral lamin B and intranuclear lamin A structures at telophase. During in vitro nuclear assembly LAP2alpha was dephosphorylated and assembled into insoluble chromatin-associated structures, and recombinant LAP2alpha was found to interact with chromosomes in vitro. Some LAP2alpha may also associate with membranes prior to chromatin attachment. Altogether the data suggest a role of LAP2alpha in post-mitotic nuclear assembly and in the dynamic structural organization of the nucleus.  相似文献   

6.
Lamina-associated polypeptides (LAPs) are important components of the nuclear lamina, the dense network of filaments that supports the nuclear envelope and also extends into the nucleoplasm. The main protein constituents of the nuclear lamina are the constitutively expressed B-type lamins and the developmentally regulated A- and C-type lamins. LAP2alpha is the only non-membrane-associated member of the LAP family. It preferentially binds lamin A/C, has been implicated in cell-cycle regulation and chromatin organization, and has also been found to be a component of retroviral preintegration complexes. As an approach to understanding the role of LAP2alpha in cellular pathways, we have determined the crystal structure of the C-terminal domain of LAP2alpha, residues 459-693. The C-terminal domain is dimeric and possesses an extensive four-stranded, antiparallel coiled coil. The surface involved in binding lamin A/C is proposed based on results from alanine-scanning mutagenesis and a solid-phase overlay binding assay.  相似文献   

7.
The phosphorylation-dependent anchorage of retinoblastoma protein Rb in the nucleus is essential for its function. We show that its pocket C domain is both necessary and sufficient for nuclear anchorage by transiently expressing green fluorescent protein (GFP) chimeras of Rb fragments in tissue culture cells and by extracting the cells with hypotonic solutions. Solid phase binding assays using glutathione S-transferase-fusion of Rb pockets A, B, and C revealed a direct association of lamin C exclusively to pocket C. Lamina-associated polypeptide (LAP) 2alpha, a binding partner of lamins A/C, bound strongly to pocket C and weakly to pocket B. When LAP2alpha was immunoprecipitated from soluble nuclear fractions, lamins A/C and hypophosphorylated Rb were coprecipitated efficiently. Similarly, immunoprecipitation of expressed GFP-Rb fragments by using anti-GFP antibodies coprecipitated LAP2alpha, provided that pocket C was present in the GFP chimeras. On redistribution of endogenous lamin A/C and LAP2alpha into nuclear aggregates by overexpressing dominant negative lamin mutants in tissue culture cells, Rb was also sequestered into these aggregates. In primary skin fibroblasts, LAP2alpha is expressed in a growth-dependent manner. Anchorage of hypophosphorylated Rb in the nucleus was weakened significantly in the absence of LAP2alpha. Together, these data suggest that hypophosphorylated Rb is anchored in the nucleus by the interaction of pocket C with LAP2alpha-lamin A/C complexes.  相似文献   

8.
K Furukawa  N Panté  U Aebi    L Gerace 《The EMBO journal》1995,14(8):1626-1636
Lamina-associated polypeptide 2 (LAP2) is an integral membrane protein of the inner nuclear membrane, which binds directly to both lamin B1 and chromosomes in a mitotic phosphorylation-regulated manner. The biochemical and physiological properties of LAP2 suggest an important role in nuclear envelope re-assembly at the end of mitosis and/or anchoring of the nuclear lamina and interphase chromosomes to the nuclear envelope. We describe the cDNA cloning of LAP2 and characterization of its membrane topology and targeting to the nuclear envelope. The LAP2 cDNA sequence predicts a protein of 452 amino acids, containing a large hydrophilic domain with several potential cdc2 kinase phosphorylation sites and a single putative membrane-spanning sequence at residues 410-433. Immunogold localization of an LAP2 epitope in isolated nuclear envelopes indicates that the large amino-terminal hydrophilic domain (residues 1-409) is exposed to the nucleoplasm. By expressing deletion mutants of LAP2 in cultured cells, we have identified multiple regions in its nucleoplasmic domain that promote localization at the nuclear envelope. These data suggest that targeting of LAP2 to the nuclear envelope is mediated by cooperative interactions with multiple binding sites at the inner nuclear membrane.  相似文献   

9.
The mammalian lamina-associated polypeptide 2 (LAP2) gene encodes six isoforms (LAP2alpha, beta, delta, epsilon, gamma, zeta) that are synthesised from alternatively spliced mRNAs. The mammalian LAP2alpha is one of the predominant isoforms and localised in the nucleoplasm whereas LAP2beta, delta, epsilon, and gamma are integral membrane proteins of the inner nuclear membrane. We have analysed the LAP2 gene structure of the zebrafish Danio rerio as an attractive lower vertebrate model organism. The zebrafish LAP2 (ZLAP2) gene without regulatory sequences spans approximately 19 kb of genomic DNA. It contains 15 exons that encode the isoforms ZLAP2beta, gamma, and omega which are localised in the inner nuclear membrane. By radiation hybrid mapping, we have located the gene onto linkage group 4 between EST markers fc01g04 (213.97cR) and fb49f01 (215.69cR). The identification of a chicken genomic clone comprising the complete coding region of the avian LAP2 gene enabled us to compare the LAP2 gene structure amongst vertebrates. In contrast to the mammalian LAP2 gene, the zebrafish and the chicken sequences do not encode for an alpha-isoform. In parallel we searched for an alpha-isoform in birds using polyclonal and monoclonal LAP2 antibodies specific for the common evolutionary conserved aminoterminal domain present in all isoforms. We detected LAP2beta as the predominant isoform but no LAP2alpha in tissues of 10-day-old chicken embryos and cultured chicken fibroblasts thus confirming the genomic analysis. The comparison of each zebrafish and chicken LAP2 exon with the corresponding exons of the human LAP2 gene demonstrates that the degree of identity at the amino acid level is much higher between the human and chicken than between the human and zebrafish sequences. By Blast search with the nucleotide and amino acid sequences of the human LAP2alpha, we did not find any significant homologies in databases of the zebrafish and chicken sequences. Our data suggest that LAP2alpha is a novelty of mammals.  相似文献   

10.
Lamina-associated polypeptide 2beta (LAP2beta) of vertebrates is an integral membrane protein of the inner nuclear membrane that is generated by alternative splicing from the LAP2 gene. In the majority of Xenopus somatic cells including cultured kidney epithelial cells (A6 cells) there is only one major LAP2 isoform expressed that has the highest similarities with the mammalian LAP2beta whereas isoforms corresponding in size to the mammalian LAP2gamma and alpha are not detectable. We selected A6 cells and A6 cells stably expressing GFP fusion proteins of Xenopus LAP2beta (XLAP2Pbeta) as a model system to study interactions between LAP2beta and lamins. In vitro binding experiments with GST-XLAP2beta fusion proteins and immunoprecipitations with antibodies to GFP revealed that XLAP2beta is part of a complex that contains A- and B-type lamins. For the targeting to the nuclear envelope and the in vivo formation of this complex, GFP fusion proteins were sufficient comprising only the carboxyterminal 135 amino acids of XLAP2beta or the comparable region of zebrafish LAP2beta. A highly conserved 36 amino acids long sequence is located in this region of LAP2beta that is part of the lamina-binding domain previously identified in rat LAP2beta. GFP-LAP2beta fusion proteins of Xenopus, zebrafish, and rat that contained this sequence do compete with endogenous LAP2 in transfected cells for the same binding sites in the lamina. Our data indicate that the lamina-binding site of LAP2beta has been highly conserved during vertebrate evolution and suggests that this region of LAP2beta mediates the interactions between polymers of A- and B-type lamins.  相似文献   

11.
12.
Kaposi's sarcoma-associated herpesvirus latency-associated nuclear antigen (LANA) tethers viral terminal repeat (TR) DNA to mitotic chromosomes to mediate episome persistence. The 1,162-amino-acid LANA protein contains both N- and C-terminal chromosome attachment regions. The LANA C-terminal domain self-associates to specifically bind TR DNA and mitotic chromosomes. Here, we used alanine scanning substitutions spanning residues 1023 to 1145 to investigate LANA self-association, DNA binding, and C-terminal chromosome association. No residues were essential for LANA oligomerization, as assayed by coimmunoprecipitation experiments, consistent with redundant roles for amino acids in self-association. Different subsets of amino acids were important for DNA binding, as assayed by electrophoretic mobility shift assay, and mitotic chromosome association, indicating that distinct C-terminal LANA subdomains effect DNA and chromosome binding. The DNA binding domains of LANA and EBNA1 are predicted to be structurally homologous; certain LANA residues important for DNA binding correspond to those with roles in EBNA1 DNA binding, providing genetic support for at least partial structural homology. In contrast to the essential role of N-terminal LANA chromosome targeting residues in DNA replication, deficient C-terminal chromosome association did not reduce LANA-mediated DNA replication.  相似文献   

13.
Humans express three major splicing isoforms of LAP2, a lamin- and chromatin-binding nuclear protein. LAP2beta and gamma are integral membrane proteins, whereas alpha is intranuclear. When truncated recombinant human LAP2beta proteins were added to cell-free Xenopus laevis nuclear assembly reactions at high concentrations, a domain common to all LAP2 isoforms (residues 1-187) inhibited membrane binding to chromatin, whereas the chromatin- and lamin-binding region (residues 1-408) inhibited chromatin expansion. At lower concentrations of the common domain, membranes attached to chromatin with a unique scalloped morphology, but these nuclei neither accumulated lamins nor replicated. At lower concentrations of the chromatin- and lamin-binding region, nuclear envelopes and lamins assembled, but nuclei failed to enlarge and replicated on average 2. 5-fold better than controls. This enhancement was not due to rereplication, as shown by density substitution experiments, suggesting the hypothesis that LAP2beta is a downstream effector of lamina assembly in promoting replication competence. Overall, our findings suggest that LAP2 proteins mediate membrane-chromatin attachment and lamina assembly, and may promote replication by influencing chromatin structure.  相似文献   

14.
Somatic and germinal cells of 15 fish and 33 amphibian species were examined by SDS-PAGE followed by immunoblotting to determine the expression of LAP2 (lamina-associated polypeptide 2). LAP2 expression in frogs, salamanders and fish does not vary with the mode of reproduction. In fish and frog cells, a rim-like LAP2 positive region was detected around the nucleus by indirect immunofluorescence microscopy. The cell distribution and expression patterns of LAP2 in fish, frogs and salamanders are comparable with those found in Xenopus and zebrafish. The mammalian somatic cell pattern, which may also occur in gymnophione amphibians, includes LAP2alpha, beta and gamma as major isoforms, whereas LAP2alpha does not occur in cells of fish, frogs and salamanders. In fish, LAP2gamma is the major isoform of somatic cells, suggesting that LAP2gamma may be ancestral. However, in the rainbow trout, as in frogs and salamanders, LAP2beta was the major somatic isoform. Fish and frog sperm only express low molecular weight polypeptides. In contrast, fish and frog oocytes express an oocyte-specific LAP2 isoform of high molecular weight. In the toad Bufo marinus this isoform becomes upregulated in pre-vitellogenic oocytes of 150-200 microm in diameter. The absence of LAP2alpha and the differential expression of LAP2 isoforms in somatic and germ cells, as found in fish and frogs, may be ancestral vertebrate characters. In spite of differences in developmental time, the LAP2 isoforms of somatic cells are upregulated during gastrulation, suggesting that LAP2 may be implicated in the early development of fish and frog.  相似文献   

15.
Protein phosphatase 1 (PP1) binding proteins are quintessential regulators, determining substrate specificity and defining subcellular localization and activity of the latter. Here, we describe a novel PP1 binding protein, the nuclear membrane protein lamina associated polypeptide 1B (LAP1B), which interacts with the DYT1 dystonia protein torsinA. The PP1 binding domain in LAP1B was here identified as the REVRF motif at amino acids 55-59. The LAP1B:PP1 complex can be immunoprecipitated from cells in culture and rat cortex and the complex was further validated by yeast co-transformations and blot overlay assays. PP1, which is enriched in the nucleus, binds to the N-terminal nuclear domain of LAP1B, as shown by immunocolocalization and domain specific binding studies. PP1 dephosphorylates LAP1B, confirming the physiological relevance of this interaction. These findings place PP1 at a key position to participate in the pathogenesis of DYT1 dystonia and related nuclear envelope-based diseases.  相似文献   

16.
The nucleoplasmic protein, Lamina-associated polypeptide (LAP) 2alpha, is one of six alternatively spliced products of the LAP2gene, which share a common N-terminal region. In contrast to the other isoforms, which also share most of their C termini, LAP2alpha has a large unique C-terminal region that contains binding sites for chromatin, A-type lamins, and retinoblastoma protein. By immunoprecipitation analyses of LAP2alpha complexes from cells expressing differently tagged LAP2alpha proteins and fragments, we demonstrate that LAP2alpha forms higher order structures containing multiple LAP2alpha molecules in vivo and that complex formation is mediated by the C terminus. Solid phase binding assays using recombinant and in vitro translated LAP2alpha fragments showed direct interactions of LAP2alpha C termini. Cross-linking of LAP2alpha complexes and multiangle light scattering of purified LAP2alpha revealed the existence of stable homo-trimers in vivo and in vitro. Finally, we show that, in contrast to the LAP2alpha-lamin A interaction, its self-association is not affected by a disease-linked single point mutation in the LAP2alpha C terminus.  相似文献   

17.
18.
19.
HA95 is a chromatin-associated protein that interfaces the nuclear envelope (NE) and chromatin. We report an interaction between HA95 and the inner nuclear membrane protein lamina-associated polypeptide (LAP) 2 beta, and a role of this association in initiation of DNA replication. Precipitation of GST-LAP2 beta fusion proteins and overlays of immobilized HA95 indicate that a first HA95-binding region lies within amino acids 137-242 of LAP2 beta. A second domain sufficient to bind HA95 colocalizes with the lamin B-binding domain of LAP2beta at residues 299-373. HA95-LAP2 beta interaction is not required for NE formation. However, disruption of the association of HA95 with the NH2-terminal HA95-binding domain of LAP2 beta abolishes the initiation, but not elongation, of DNA replication in purified G1 phase nuclei incubated in S-phase extract. Inhibition of replication initiation correlates with proteasome-mediated proteolysis of Cdc6, a component of the prereplication complex. Rescue of Cdc6 degradation with proteasome inhibitors restores replication. We propose that an interaction of LAP2beta, or LAP2 proteins, with HA95 is involved in the control of initiation of DNA replication.  相似文献   

20.
LAP1s (lamina-associated polypeptide 1s) are type 2 integral membrane proteins with a single membrane-spanning region of the inner nuclear membrane. We report here on the cloning of the full-length cDNA of human LAP1B (huLAP1B) that encodes 584 amino acids. The sequence homology between the predicted rat LAP1B and huLAP1B was found to be 73.6%. A topological analysis was carried out by transiently expressing N-terminal GFP fused deletion mutants of huLAP1B in cells. The transmembrane (TM) domain (aa 346-368) is required for the localization of the nuclear and endoplasmic reticulum membrane and that the TM domain and the C-terminal half of the nucleoplasmic domain (aa 190-331) are sufficient for the proper localization of LAP1B. In contrast, the well-conserved lumenal domain of the nuclear membrane is not required for its topological function. Biochemical analysis showed that huLAP1B is retained within the nucleus via interactions of the nucleoplasmic portion with nuclear components.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号