首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The human LEM-domain protein family is involved in fundamental aspects of nuclear biology. The LEM-domain interacts with the barrier-to-autointegration factor (BAF), which itself binds DNA. LEM-domain proteins LAP2, emerin and MAN1 are proteins of the inner nuclear membrane; they have important functions: maintaining the integrity of the nuclear lamina and regulating gene expression at the nuclear periphery.LEM4/ANKLE-2 has been proposed to participate in nuclear envelope reassembly after mitosis and to mediate dephosphorylation of BAF through binding to phosphatase PP2A. Here, we used CRISPR/Cas9 to create several cell lines deficient in LEM4/ANKLE-2. By using time-lapse video microscopy, we show that absence of this protein severely compromises the post mitotic re-association of the nuclear proteins BAF, LAP2α and LaminA to chromosomes. These defects give rise to a strong mechanical instability of the nuclear envelope in telophase and to a chromosomal instability leading to increased number of hyperploid cells. Reintroducing LEM4/ANKLE-2 in the cells by transfection could efficiently restore the telophase association of BAF and LAP2α to the chromosomes. This rescue phenotype was abolished for N- or C-terminally truncated mutants that had lost the capacity to bind PP2A. We demonstrate also that, in addition to binding to PP2A, LEM4/ANKLE-2 binds BAF through its LEM-domain, providing further evidence for a generic function of this domain as a principal interactor of BAF.  相似文献   

2.
3.
LAP2 belongs to a family of nuclear membrane proteins sharing a 43 residue LEM domain. All LAP2 isoforms have the same N-terminal 'constant' region (LAP2-c), which includes the LEM domain, plus a C-terminal 'variable' region. LAP2-c polypeptide inhibits nuclear assembly in Xenopus extracts, and binds in vitro to barrier-to-autointegration factor (BAF), a DNA-bridging protein. We tested 17 Xenopus LAP2-c mutants for nuclear assembly inhibition, and binding to BAF and BAF small middle dotDNA complexes. LEM domain mutations disrupted all activities tested. Some mutations outside the LEM domain had no effect on binding to BAF, but disrupted activity in Xenopus extracts, suggesting that LAP2-c has an additional unknown function required to inhibit nuclear assembly. Mutagenesis results suggest that BAF changes conformation when complexed with DNA. The binding affinity of LAP2 was higher for BAF small middle dotDNA complexes than for BAF, suggesting that these interactions are physiologically relevant. Nucleoplasmic domains of XENOPUS: LAP2 isoforms varied 9-fold in their affinities for BAF, but all isoforms supershifted BAF small middle dotDNA complexes. We propose that the LEM domain is a core BAF-binding domain that can be modulated by the variable regions of LAP2 isoforms.  相似文献   

4.
5.
The LEM motif is a sequence of 40-50 amino acids that has been identified in a number of non-related proteins of the inner nuclear membrane including the lamina-associated polypeptides 2 (LAP2), emerin, MAN1 and the Drosophila protein otefin. This evolutionary conserved sequence motif can mediate via the interaction with the small protein BAF the binding of LEM-domain proteins to DNA. Taking advantage of its sequenced genome we analyzed whether Drosophila possesses beside otefin additional genes coding for proteins with a LEM motif. A putative candidate gene was the annotated gene CG9424 which we named Bocksbeutel. Of all putative Drosophila LEM-domain proteins, otefin and Bocksbeutel exhibited the highest similarity in the LEM motif (53% identical amino acids). The Bocksbeutel gene can code for two isoforms of 399 and 351 amino acids that are produced by alternative splicing. In the alpha-isoform a transmembrane domain is localized close to the carboxyterminus. This segment is absent in the shorter beta-isoform. By RT-PCR we could show that in the embryo the mRNA coding for the alpha-isoform and in significantly lower amounts the mRNA coding for the beta-isoform are expressed. When expressed in transfected cells as GFP fusion proteins, the beta-isoform is localized predominantly in the nucleoplasm and the alpha-isoform is targeted to the nuclear envelope, indicating that Bocksbeutel-alpha is localized in the inner nuclear membrane. Bocksbeutel-alpha is the predominant isoform expressed in cells, larvae, and flies. Indirect immunofluorescence with Bocksbeutel-specific antibodies on tissues and cultured cells revealed that Bocksbeutel proteins are localized in the nuclear envelope and in the cytoplasm. By RNA interference we have down-regulated the expression of Bocksbeutel, BAF, otefin, and lamin DmO in Drosophila Kc167 cells. The down-regulation of Bocksbeutel and otefin had no influence on the viability of Kc167 cells and the intracellular localization of all other nuclear and nuclear envelope proteins analyzed. In contrast, when lamin DmO was reduced by RNAi the distribution of Bocksbeutel and otefin in the nuclear envelope of Kc167 cells was significantly altered. We conclude that the two LEM-domain proteins Bocksbeutel and otefin are no limiting components for the maintenance of the nuclear architecture in cultured Drosophila cells at interphase.  相似文献   

6.
7.
Barrier-to-autointegration factor (BAF) is a conserved 10 kDa DNA-binding protein. BAF interacts with LEM-domain proteins including emerin, LAP2 beta, and MAN1 in the inner nuclear membrane. Using fluorescence recovery after photobleaching (FRAP) and fluorescence loss in photobleaching (FLIP), we compared the mobility of BAF to its partners emerin, LAP2 beta, and MAN1 in living HeLa cells. Like endogenous BAF, GFP-BAF was enriched at the nuclear envelope, and found inside the nucleus and in the cytoplasm during interphase. At every location, FRAP and FLIP analysis showed that GFP-BAF diffused rapidly; the halftimes for recovery in a 0.8 microm square area were 260 ms at the nuclear envelope, and even faster inside the nucleus and in the cytoplasm. GFP-fused emerin, LAP2 beta, and MAN1 were all relatively immobile, with recovery halftimes of about 1 min, for a 2 microm square area. Thus, BAF is dynamic and mobile during interphase, in stark contrast to its nuclear envelope partners. FLIP results further showed that rapidly diffusing cytoplasmic and nuclear pools of GFP-BAF were distinctly regulated, with nuclear GFP-BAF unable to replenish cytoplasmic BAF. Fluorescence resonance energy transfer (FRET) results showed that CFP-BAF binds directly to YFP-emerin at the inner nuclear membrane of living cells. We propose a "touch-and-go" model in which BAF binds emerin frequently but transiently during interphase. These findings contrast with the slow mobility of both GFP-BAF and GFP-emerin during telophase, when they colocalized at the 'core' region of telophase chromosomes at early stages of nuclear assembly.  相似文献   

8.
The human blood granulocyte (neutrophil) is adapted to find and destroy infectious agents. The nucleus of the human neutrophil has a segmented appearance, consisting of a linear or branched array of three or four lobes. Adequate levels of lamin B receptor (LBR) are necessary for differentiation of the lobulated nucleus. The levels of other components of the nuclear envelope may also be important for nuclear shape determination. In the present study, immunostaining and immunoblotting procedures explored the levels of various components of the nuclear envelope and heterochromatin, comparing freshly isolated human neutrophils with granulocytic forms of HL-60 cells, a tissue culture model system. In comparison to granulocytic HL-60 cells, blood neutrophil nuclear envelopes contain low-to-negligible amounts of LBR, lamins A/C, B1 and B2, LAP2β and emerin. Surprisingly, a “mitotic” chromosome marker, H3(S10)phos, is elevated in neutrophil nuclei, compared to granulocytic HL-60 cells. Furthermore, neutrophil nuclei appear to be more fragile to methanol fixation, than observed with granulocytic HL-60 cells. Thus, the human neutrophil nucleus appears to be highly specialized, possessing a paucity of nuclear envelope-stabilizing proteins. In consequence, the neutrophil nucleus appears to be very malleable, supporting rapid migration through tight tissue spaces.  相似文献   

9.
LAP2alpha is a LEM family protein associated with nucleoplasmic A-type lamins and chromatin in interphase. Like lamins and other lamina proteins LAP2alpha is cytoplasmic in metaphase, but it associates with chromosomes prior to nuclear envelope formation in late anaphase to telophase. In vitro phosphorylation analysis and mass spectrometry identified a cluster of at least three mitotic cyclin-dependent kinase 1 phosphorylation sites in the C-terminal chromatin-binding region of LAP2alpha as well as four additional potential sites in the cluster, some of which were targeted alternatively in LAP2alpha mutated at the major sites. LAP2alpha mutants containing serine --> alanine mutations at all seven sites revealed a clear phenotype. Mutated LAP2alpha remained associated with chromosomes throughout mitosis, but the dissociation of lamins into the cytoplasm and nuclear envelope disassembly were not affected. These data demonstrate the in vivo significance of mitotic phosphorylation for the dynamic behavior of LAP2alpha in the cell cycle and show that, unlike the interaction with lamins, the chromatin association of LAP2alpha is regulated by multiple mitosis-specific phosphorylation at sites clustered within a defined region in the C terminus of the protein.  相似文献   

10.
11.
12.
13.
Barrier-to-autointegration factor (BAF) is a DNA-bridging protein, highly conserved in metazoans. BAF binds directly to LEM (LAP2, emerin, MAN1) domain nuclear membrane proteins, including LAP2 and emerin. We used site-directed mutagenesis and biochemical analysis to map functionally important residues in human BAF, including those required for direct binding to DNA or emerin. We also tested wild-type BAF and 25 point mutants for their effects on nuclear assembly in Xenopus egg extracts, which contain approximately 12 microM endogenous BAF dimers. Exogenous BAF caused two distinct effects: at low added concentrations, wild-type BAF enhanced chromatin decondensation and nuclear growth; at higher added concentrations, wild-type BAF completely blocked chromatin decondensation and nuclear growth. Mutants fell into four classes, including one that defines a novel functional surface on the BAF dimer. Our results suggest that BAF, unregulated, potently compresses chromatin structure, and that BAF interactions with both DNA and LEM proteins are critical for membrane recruitment and chromatin decondensation during nuclear assembly.  相似文献   

14.
15.
16.
Four ergosterol derivatives (1–4) have been isolated for the first time from the fruiting bodies of a basidiomycete fungus, Lactarius hatsudake, through activity-guided fractionation. Their structures were determined, using spectroscopic analysis, as: (22E,24R)-ergosta-5,7,22-dien-3β-ol (ergosterol, 1); 5,8-epidioxy-(22E,24R)-ergosta-6,22-dien-3β-ol (ergosterol peroxide, 2); 5,8-epidioxy-(24S)-ergosta-6-en-3β-ol (3); and (22E,24R)-ergosta-7,22-dien-3β,5,6β-triol (cerevisterol, 4). Compounds 2 and 3 showed selective inhibitory activity against Crotalus adamenteus venom phospholipase A2 (PLA2) enzyme, but not against Apis mellifcra bee venom PLA2. The antiphospholipase A2 activity of compounds 2 and 3 are reported here for the first time.  相似文献   

17.
LEM-domain proteins share a folded structure, the 'LEM-domain', which binds a conserved chromatin protein named BAF. Most LEM-domain proteins are found at the nuclear membrane, but some are nucleoplasmic. All characterized members of this family bind nuclear lamin filaments. We summarize the 'founding' LEM-domain proteins LAP2, emerin and MAN1 ('SANE' or 'XMAN' in Xenopus) and their emerging roles in gene regulation and nuclear assembly. These roles are placed in the context of human diseases ('laminopathies') caused by mutations in either emerin or A-type lamins. Other LEM-domain proteins might modify the phenotype or severity of human laminopathy, or cause new laminopathies. We summarize evidence that the human genome encodes at least four additional LEM-domain proteins, designated Lem2 (NET-25), Lem3, Lem4 and Lem5. Early adaptation of a consistent nomenclature, such as the "Lem" names proposed here, will facilitate rapid progress in this field. Further investigation of 'founder' and novel members of this family will be important to understand nuclear structure, and presents new opportunities to understand human disease.  相似文献   

18.
19.
The barrier-to-autointegration factor BAF binds to the LEM domain (Em(LEM)) of the nuclear envelope protein emerin and plays an essential role in the nuclear architecture of metazoan cells. In addition, the BAF(2) dimer bridges and compacts double-stranded DNA nonspecifically via two symmetry-related DNA binding sites. In this article we present biophysical and structural studies on a complex of BAF(2) and Em(LEM). Light scattering, analytical ultracentrifugation, and NMR indicate a stoichiometry of one molecule of Em(LEM) bound per BAF(2) dimer. The equilibrium dissociation constant (K(d)) for the interaction of the BAF(2) dimer and Em(LEM), determined by isothermal titration calorimetry, is 0.59 +/- 0.03 microm. Z-exchange spectroscopy between corresponding cross-peaks of the magnetically non-equivalent subunits of the BAF(2) dimer in the complex yields a dissociation rate constant of 78 +/- 2s(-1). The solution NMR structure of the BAF(2)-Em(LEM) complex reveals that the LEM and DNA binding sites on BAF(2) are non-overlapping and that both subunits of the BAF(2) dimer contribute approximately equally to the Em(LEM) binding site. The relevance of the implications of the structural and biophysical data on the complex in the context of the interaction between the BAF(2) dimer and Em(LEM) at the nuclear envelope is discussed.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号