首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
Wnt signaling plays key roles in cellular and physiological processes, including cell proliferation, differentiation and migration during development and tissue homeostasis in adults. This pathway can be defined as Wnt/β-catenin-dependent or β-catenin-independent or “non-canonical”, both signaling are involved in neurite and synapse development/maintenance. Porcupine (PORCN), an acylase that o-acylates Wnt ligands, a major modification in secretion and interaction with its receptors. We use Wnt-C59, a specific PORCN inhibitor, to block the secretion of endogenous Wnts in embryonic hippocampal neurons (DIV 4). Under these conditions, the activity of exogenous Wnt ligands on the complexity of the dendritic tree and axonal polarity were evaluated Cultured primary embryonic hippocampal neurons obtained from Sprague–Dawley rat fetuses (E18), were cultured until day in vitro (DIV) 4 (according to Banker´s protocol) and treated with Wnt-C59 for 24 h, Wnt ligands were added to the cultures on DIV 3 for 24 h. Dendritic arbors and neurites were analysis by fluorescence microscopy. Transfection with Lipofectamine 2000 on DIV 2 of plasmid expressing eGFP and KIF5-Cherry was carried out to evaluate neuronal polarity. Immunostaining was performed with MAP1B and Tau protein. Immunoblot analysis was carried out with Wnt3a, β-catenin and GSK-3β (p-Ser9). Quantitative analysis of dendrite morphology was carried out with ImageJ (NIH) software with Neuron J Plugin. We report, here, that Wnt-C59 treatment changed the morphology of the dendritic arbors and neurites of embryonic hippocampal neurons, with decreases β-catenin and Wnt3a and an apparent increase in GSK-3β (p-Ser9) levels. No effect was observed on axonal polarity. In sister cultures, addition of exogenous Wnt3a, 5a and 7a ligands rescued the changes in neuronal morphology. Wnt3a restored the length of neurites to near that of the control, but Wnt7a increased the neurite length beyond that of the control. Wnt5a also restored the length of neurites relative to Wnt concentrations. Results indicated that Wnt ligands, added exogenously, restored dendritic arbor complexity in embryonic hippocampal neurons, previously treated with a high affinity specific Porcupine inhibitor. We proposed that PORCN is an emerging molecular target of interest in the search for preclinical options to study and treat Wnt-related diseases.  相似文献   

2.
Neurons are highly polarized cells that have structurally and functionally distinct processes called axons and dendrites. How neurons establish polarity is one of the fundamental questions of neuroscience. In the last decade, significant progress has been made in identifying and understanding the molecular mechanisms responsible for neuronal polarization, primarily through researches conducted on cultured neurons. Advances in phosphoproteomics technologies and molecular tools have enabled comprehensive signal analysis and visualization and manipulation of signaling molecules for analyzing neuronal polarity. Furthermore, advances in gene transfer techniques have revealed the role of extracellular and intracellular signaling molecules in neuronal polarization in vivo. This review discusses the latest insights and techniques for the elucidation of the molecular mechanisms that control neuronal polarity.  相似文献   

3.
4.
Recent genetic studies in Drosophila identified a novel non-canonical Wnt pathway, the planar cell polarity (PCP) pathway, that signals via JNK to control epithelial cell polarity in Drosophila. Most recently, a pathway regulating convergent extension movements during gastrulation in vertebrate embryos has been shown to be a vertebrate equivalent of the PCP pathway. However, it is not known whether the JNK pathway functions in this non-canonical Wnt pathway to regulate convergent extension movements in vertebrates. In addition, it is not known whether JNK is in fact activated by Wnt stimulation. Here we show that Wnt5a is capable of activating JNK in cultured cells, and present evidence that the JNK pathway mediates the action of Wnt5a to regulate convergent extension movements in Xenopus. Our results thus demonstrate that the non-canonical Wnt/JNK pathway is conserved in both vertebrate and invertebrate and define that JNK has an activity to regulate morphogenetic cell movements.  相似文献   

5.
Increasingly complex: new players enter the Wnt signaling network   总被引:11,自引:0,他引:11  
Wnt proteins can activate different intracellular signaling cascades in various organisms by interacting with receptors of the Frizzled family. The first identified Wnt signaling pathway, the Wnt/beta-catenin pathway, has been studied in much detail and is highly conserved among species. As to non-canonical Wnt pathways, the current situation is more nebulous partly because the intracellular mediators of this pathway are not yet fully understood and, in some cases, even identified. However, there are increasing data that prove the existence of non-canonical Wnt signaling and demonstrate its involvement in different developmental processes. In vertebrates, Wnt-11 and Wnt-5A can activate the Wnt/JNK pathway, which resembles the planar cell polarity pathway in Drosophila. The Wnt/Ca(2+)-pathway has only been described in Xenopus and zebrafish so far and it is unclear whether it also exists in other organisms. Two recent papers provide us with new insight into non-canonical Wnt signaling by (1) presenting a new intracellular mediator of non-canonical signaling in Xenopus1 and (2) implicating the existence of an additional non-canonical Wnt signaling pathway in flies.  相似文献   

6.
7.
The c-jun N-terminal kinase (JNK) proteins are encoded by three genes (Jnk1-3), giving rise to 10 isoforms in the mammalian brain. The differential roles of JNK isoforms in neuronal cell death and development have been noticed in several pathological and physiological contexts. However, the mechanisms underlying the regulation of different JNK isoforms to fulfill their specific roles are poorly understood. Here, we report an isoform-specific regulation of JNK3 by palmitoylation, a posttranslational modification, and the involvement of JNK3 palmitoylation in axonal development and morphogenesis. Two cysteine residues at the COOH-terminus of JNK3 are required for dynamic palmitoylation, which regulates JNK3's distribution on the actin cytoskeleton. Expression of palmitoylation-deficient JNK3 increases axonal branching and the motility of axonal filopodia in cultured hippocampal neurons. The Wnt family member Wnt7a, a known modulator of axonal branching and remodelling, regulates the palmitoylation and distribution of JNK3. Palmitoylation-deficient JNK3 mimics the effect of Wnt7a application on axonal branching, whereas constitutively palmitoylated JNK3 results in reduced axonal branches and blocked Wnt7a induction. Our results demonstrate that protein palmitoylation is a novel mechanism for isoform-specific regulation of JNK3 and suggests a potential role of JNK3 palmitoylation in modulating axonal branching.  相似文献   

8.
Wnt signaling is a key regulator of bone metabolism and fracture healing. The canonical Wnt/β-catenin pathway is regarded as the dominant mechanism, and targeting this pathway has emerged as a promising strategy for the treatment of osteoporosis and poorly healing fractures. In contrast, little is known about the role of non-canonical Wnt signaling in bone. Recently, it was demonstrated that the serpentine receptor Fzd9, a Wnt receptor of the Frizzled family, is essential for osteoblast function and positively regulates bone remodeling via the non-canonical Wnt pathway without involving β-catenin-dependent signaling. Here we investigated whether the Fzd9 receptor is essential for fracture healing using a femur osteotomy model in Fzd9 −/− mice. After 10, 24 and 32 days the fracture calli were analyzed using biomechanical testing, histomorphometry, immunohistochemistry, and micro-computed tomography. Our results demonstrated significantly reduced amounts of newly formed bone at all investigated healing time points in the absence of Fzd9 and, accordingly, a decreased mechanical competence of the callus tissue in the late phase of fracture healing. In contrast, cartilage formation and numbers of osteoclasts degrading mineralized matrix were unaltered. β-Catenin immunolocalization showed that canonical Wnt-signaling was not affected in the absence of Fzd9 in osteoblasts as well as in proliferating and mature chondrocytes within the fracture callus. The expression of established differentiation markers was not altered in the absence of Fzd9, whereas chemokines Ccl2 and Cxcl5 seemed to be reduced. Collectively, our results suggest that non-canonical signaling via the Fzd9 receptor positively regulates intramembranous and endochondral bone formation during fracture healing, whereas it does not participate in the formation of cartilage or in the osteoclastic degradation of mineralized matrix. The finding that Fzd9, in addition to its role in physiological bone remodeling, regulates bone repair may have implications for the development of treatments for poorly or non-healing fractures.  相似文献   

9.
Role of the integrin-linked kinase (ILK) in determining neuronal polarity   总被引:2,自引:0,他引:2  
The establishment of axon-dendrite polarity in mammalian neurons has recently been shown to involve the kinases Akt and GSK-3beta. Here we report the function of the integrin-linked kinase (ILK) in neuronal polarization. ILK distribution is differential: with more of it present in the axonal tips than that in the dendritic tips of a polarized neuron. Inactivation of ILK by chemical inhibitors, a kinase-inactive mutant or siRNAs inhibited axon formation, whereas a kinase hyperactive ILK mutant induced the formation of multiple axons. Biochemical studies indicate that ILK is upstream of Akt and GSK-3beta. Manipulations of multiple intracellular components indicate that ILK is functionally upstream of Akt and GSK-3beta but downstream of PI3K in neuronal polarity. These results reveal a key role of ILK in the formation of neuronal polarity and suggest a signaling pathway important for neuronal polarity.  相似文献   

10.
Recombinant Wnt-3a stimulated the rapid formation of elongated processes in Ewing sarcoma family tumor (ESFT) cells that were identified as neurites. The processes stained positively for polymerized actin and microtubules as well as synapsin I and growth-associated protein 43. Inhibition of the Wnt receptor, Frizzled3 (Fzd3), with antiserum or by short interfering RNA (siRNA) markedly reduced neurite extension. Knockdown of Dishevelled-2 (Dvl-2) and Dvl-3 also suppressed neurite outgrowth. Surprisingly, disruption of the Wnt/Fzd/lipoprotein receptor-related protein (LRP) complex and the associated beta-catenin signaling by treating cells either with the Wnt antagonist Dickkopf-1 (Dkk1) or LRP5/LRP6 siRNA enhanced neuritogenesis. Neurite outgrowth induced by Dkk1 or with LRP5/LRP6 siRNA was inhibited by secreted Fzd-related protein 1, a Wnt antagonist that binds directly to Wnt. Moreover, Dkk1 stimulation of neurite outgrowth was blocked by Fzd3 siRNA. These results suggested that Dkk1 shifted endogenous Wnt activity from the beta-catenin pathway to Fzd3-mediated, noncanonical signaling that is responsible for neurite formation. In particular, c-Jun amino-terminal kinase (JNK) was important for neurite outgrowth stimulated by both Wnt-3a and Dkk1. Our data demonstrate that Fzd3, Dvl, and JNK activity mediate Wnt-dependent neurite outgrowth and that ESFT cell lines will be useful experimental models for the study of Wnt-dependent neurite extension.  相似文献   

11.

Background

Adiponectin-transgenic mice had many small adipocytes in both subcutaneous and visceral adipose tissues, and showed higher sensitivity to insulin, longer life span, and reduced chronic inflammation. We hypothesized that adiponectin regulates Wnt signaling in adipocytes and thereby modulates adipocyte proliferation and chronic inflammation in adipose tissue.

Materials and Methods

We examined the expression of all Wnt ligands and their receptors and the activity of Wnt signaling pathways in visceral adipose tissue from wild-type mice and two lines of adiponectin-transgenic mice. The effects of adiponectin were also investigated in cultured 3T3-L1 cells.

Results

The Wnt5b, Wnt6, Frizzled 6 (Fzd6), and Fzd9 genes were up-regulated in both lines of transgenic mice, whereas Wnt1, Wnt2, Wnt5a, Wnt9b, Wnt10b, Wnt11, Fzd1, Fzd2, Fzd4, Fzd7, and the Fzd coreceptor low-density-lipoprotein receptor-related protein 6 (Lrp6) were reduced. There was no difference in total β-catenin levels in whole-cell extracts, non-phospho-β-catenin levels in nuclear extracts, or mRNA levels of β-catenin target genes, indicating that hyperadiponectinemia did not affect canonical Wnt signaling. In contrast, phosphorylated calcium/calmodulin-dependent kinase II (p-CaMKII) and phosphorylated Jun N-terminal kinase (p-JNK) were markedly reduced in adipose tissue from the transgenic mice. The adipose tissue of the transgenic mice consisted of many small cells and had increased expression of adiponectin, whereas cyclooxygenase-2 expression was reduced. Wnt5b expression was elevated in preadipocytes of the transgenic mice and decreased in diet-induced obese mice, suggesting a role in adipocyte differentiation. Some Wnt genes, Fzd genes, and p-CaMKII protein were down-regulated in 3T3-L1 cells cultured with a high concentration of adiponectin.

Conclusion

Chronic hyperadiponectinemia selectively modulated the expression of Wnt ligands, Fzd receptors and LRP coreceptors accompanied by the inhibition of the Wnt/Ca2+ and JNK signaling pathways, which may be involved in the altered adipocyte cellularity, endogenous adiponectin production, and anti-inflammatory action induced by hyperadiponectinemia.  相似文献   

12.
Wnt proteins form a family of secreted glycoproteins that are involved in different developmental processes such as differentiation, proliferation, cell migration and cell polarity. To exert its function, Wnt proteins activate different intracellular signaling cascades. Whereas the canonical, Wnt/beta-catenin pathway is well characterized, less is known about the function of non-canonical Wnt pathways in vertebrates. I here summarize recent findings implicating important roles for Wnt/Ca(2+) and Wnt/JNK signaling during different aspects of early Xenopus laevis development, namely axis formation and gastrulation movements.  相似文献   

13.
Axon development involves spatial-temporal cytoskeletal reorganization. However, how the cytoskeleton remodeling is modulated by extracellular cues is unclear. Here, we report a role of Wnt/Ca(2+) signaling in regulating actin and growth cone dynamics. We found that treatment of cultured cortical neurons with Wnt5a, a non-canonical Wnt, either globally or locally, caused an increase in the activity of calpain, a calcium-dependent protease responsible for the cleavage of several actin binding proteins, including spectrin. Treatment with Wnt5a promoted growth cone advance, as well as axonal growth, and these effects were prevented by chelating intracellular calcium, inhibition or down-regulation of calpain, or blockade of spectrin cleavage by competitive peptides. Interestingly, both Wnt5a and activated calpain were found to be mainly distributed in the axon-rich intermediate zone of neocortex. Down-regulating calpain expression interfered with the growth of callosal axons in vivo. Thus, Wnt5a serves as a physiological cue to stimulate localized calpain activity, which in turn promotes growth cone advance and axonal growth.  相似文献   

14.
Wnt signaling has diverse actions in cardiovascular development and disease processes. Secreted frizzled-related protein 5 (Sfrp5) has been shown to function as an extracellular inhibitor of non-canonical Wnt signaling that is expressed at relatively high levels in white adipose tissue. The aim of this study was to investigate the role of Sfrp5 in the heart under ischemic stress. Sfrp5 KO and WT mice were subjected to ischemia/reperfusion (I/R). Although Sfrp5-KO mice exhibited no detectable phenotype when compared with WT control at baseline, they displayed larger infarct sizes, enhanced cardiac myocyte apoptosis, and diminished cardiac function following I/R. The ischemic lesions of Sfrp5-KO mice had greater infiltration of Wnt5a-positive macrophages and greater inflammatory cytokine and chemokine gene expression when compared with WT mice. In bone marrow-derived macrophages, Wnt5a promoted JNK activation and increased inflammatory gene expression, whereas treatment with Sfrp5 blocked these effects. These results indicate that Sfrp5 functions to antagonize inflammatory responses after I/R in the heart, possibly through a mechanism involving non-canonical Wnt5a/JNK signaling.  相似文献   

15.
Although genetic evidence has demonstrated a role for Wnt5b during cartilage and limb development, little is known about the mechanisms underlying Wnt5b-regulated chondrocyte differentiation. We observed that Wnt5b inhibited chondrocyte hypertrophy and expression of type X collagen. In addition, Wnt5b regulated the overall size of chondrogenic cultures, suggesting that Wnt5b regulates other processes involved in cartilage development. We therefore investigated the signaling pathways by which Wnt5b influences differentiation. Wnt5b activated known calcium-dependent signaling pathways and JNK, a component of the planar cell polarity pathway. Since the planar cell polarity pathway regulates process such as cell migration and cell aggregation that are involved in limb development, we assayed for effects of Wnt5b on these processes. We observed a marked increase chondroprogenitor cell migration with Wnt5b expression. This effect was blocked by inhibition of JNK, but not by inhibition of other Wnt5b-responsive factors. Expression of Wnt5b also disrupted the cellular aggregation associated with mesenchymal condensation. Decreased aggregation was associated with reduced cadherin expression as well as increased cadherin receptor turnover. This increase in cadherin receptor turnover was associated with an increase in Src-dependent beta-catenin phosphorylation downstream of Wnt5b. Our data demonstrate that not only does Wnt5b inhibit chondrocyte hypertrophy, but document a novel role for Wnt5b in modulating cellular migration through the JNK-dependent and cell adhesion through an activation of Src and subsequent cadherin receptor turnover.  相似文献   

16.
Wnt proteins are secreted glycoproteins that bind to the N-terminal extra-cellular cysteine-rich domain of the Frizzled (Fzd) receptor family. The Fzd receptors can respond to Wnt proteins in the presence of Wnt co-receptors to activate the canonical and non-canonical Wnt pathways. Recent studies indicated that, among the Fzd family, Fzd7 is the Wnt receptor most commonly upregulated in a variety of cancers including colorectal cancer, hepatocellular carcinoma and triple negative breast cancer. Fzd7 plays an important role in stem cell biology and cancer development and progression. In addition, it has been demonstrated that siRNA knockdown of Fzd7, the anti-Fzd7 antibody or the extracellular peptide of Fzd7 (soluble Fzd7 peptide) displayed anti-cancer activity in vitro and in vivo mainly due to the inhibition of the canonical Wnt signaling pathway. Furthermore, pharmacological inhibition of Fzd7 by small interfering peptides or a small molecule inhibitor suppressed β-catenin-dependent tumor cell growth. Therefore, targeted inhibition of Fzd7 represents a rational and promising new approach for cancer therapy.  相似文献   

17.
The JIP1 scaffold protein regulates axonal development in cortical neurons   总被引:1,自引:0,他引:1  
The development of neuronal polarity is essential for the determination of neuron connectivity and for correct brain function. The c-Jun N-terminal kinase (JNK)-interacting protein-1 (JIP1) is highly expressed in neurons and has previously been characterized as a regulator of JNK signaling.JIP1 has been shown to localize to neurites in various neuronal models, but the functional significance of this localization is not fully understood [1-4]. JIP1 is also a cargo of the motor protein kinesin-1, which is important for axonal transport [2, 4]. Here we demonstrate that before primary cortical neurons become polarized, JIP1 specifically localizes to a single neurite and that after axonal specification,it accumulates in the emerging axon. JIP1 is necessary for normal axonal development and promotes axonal growth dependent upon its binding to kinesin-1 and via a newly described interaction with the c-Abl tyrosine kinase. JIP1associates with and is phosphorylated by c-Abl, and the mutation of the c-Abl phosphorylation site on JIP1 abrogates its ability to promote axonal growth. JIP1 is therefore an important regulator of axonal development and is a key target of c-Abl-dependent pathways that control axonal growth.  相似文献   

18.
The Wnt signaling pathway was identified as crucial mediator of cardiomyocyte hypertrophy. In this study we found that activation of non-canonical Wnt signaling by Wnt5a stimulates protein synthesis and enlargement of cardiomyocyte surface area. These hypertrophic features were inhibited in Dapper-1 (Dpr1) depleted cells. On the molecular level, we observed inhibition of the non-canonical Wnt/planar-cell-polarity (PCP) pathway denoted by reduction of c-jun-n-terminal-kinase (JNK) phosphorylation. Upstream of JNK, increased protein levels of the Wnt/PCP trans-membrane receptor van-Gogh-like-2 (Vangl2) were observed along with an enrichment of Vangl2 in perinuclear located vesicles. The findings suggest that Dpr1 is essential for execution of the Wnt/PCP pathway and regulation of the Vangl2/JNK axis. Depletion of Dpr1 inhibits non-canonical Wnt signaling induced cardiomyocyte hypertrophy by blocking Wnt/PCP signaling.  相似文献   

19.
Wnts were previously shown to regulate the neurogenesis of neural stem or progenitor cells. Here, we explored the underlying molecular mechanisms through which Wnt signaling regulates neurotrophins (NTs) in the NT-induced neuronal differentiation of human mesenchymal stem cells (hMSCs). NTs can increase the expression of Wnt1 and Wnt7a in hMSCs. However, only Wnt7a enables the expression of synapsin-1, a synaptic marker in mature neurons, to be induced and triggers the formation of cholinergic and dopaminergic neurons. Human recombinant (hr)Wnt7a and general neuron makers were positively correlated in a dose- and time-dependent manner. In addition, the expression of synaptic markers and neurites was induced by Wnt7a and lithium, a glycogen synthase kinase-3β inhibitor, in the NT-induced hMSCs via the canonical/β-catenin pathway, but was inhibited by Wnt inhibitors and frizzled-5 (Frz5) blocking antibodies. In addition, hrWnt7a triggered the formation of cholinergic and dopaminergic neurons via the non-canonical/c-jun N-terminal kinase (JNK) pathway, and the formation of these neurons was inhibited by a JNK inhibitor and Frz9 blocking antibodies. In conclusion, hrWnt7a enhances the synthesis of synapse and facilitates neuronal differentiation in hMSCS through various Frz receptors. These mechanisms may be employed widely in the transdifferentiation of other adult stem cells.  相似文献   

20.
The receptor tyrosine kinase-like orphan receptor (Ror) proteins are conserved tyrosine kinase receptors that play roles in a variety of cellular processes that pattern tissues and organs during vertebrate and invertebrate development. Ror signaling is required for skeleton and neuronal development and modulates cell migration, cell polarity, and convergent extension. Ror has also been implicated in two human skeletal disorders, brachydactyly type B and Robinow syndrome. Rors are widely expressed during metazoan development including domains in the nervous system. Here, we review recent progress in understanding the roles of the Ror receptors in neuronal migration, axonal pruning, axon guidance, and synaptic plasticity. The processes by which Ror signaling execute these diverse roles are still largely unknown, but they likely converge on cytoskeletal remodeling. In multiple species, Rors have been shown to act as Wnt receptors signaling via novel non-canonical Wnt pathways mediated in some tissues by the adapter protein disheveled and the non-receptor tyrosine kinase Src. Rors can either activate or repress Wnt target expression depending on the cellular context and can also modulate signal transduction by sequestering Wnt ligands away from their signaling receptors. Future challenges include the identification of signaling components of the Ror pathways and bettering our understanding of the roles of these pleiotropic receptors in patterning the nervous system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号