首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Phytophthora and other oomycetes secrete a large number of putative host cytoplasmic effectors with conserved FLAK motifs following signal peptides, termed crinkling and necrosis inducing proteins (CRN), or Crinkler. Here, we first investigated the evolutionary patterns and mechanisms of CRN effectors in Phytophthora sojae and compared them to two other Phytophthora species. The genes encoding CRN effectors could be divided into 45 orthologous gene groups (OGG), and most OGGs unequally distributed in the three species, in which each underwent large number of gene gains or losses, indicating that the CRN genes expanded after species evolution in Phytophthora and evolved through pathoadaptation. The 134 expanded genes in P. sojae encoded family proteins including 82 functional genes and expressed at higher levels while the other 68 genes encoding orphan proteins were less expressed and contained 50 pseudogenes. Furthermore, we demonstrated that most expanded genes underwent gene duplication or/and fragment recombination. Three different mechanisms that drove gene duplication or recombination were identified. Finally, the expanded CRN effectors exhibited varying pathogenic functions, including induction of programmed cell death (PCD) and suppression of PCD through PAMP-triggered immunity or/and effector-triggered immunity. Overall, these results suggest that gene duplication and fragment recombination may be two mechanisms that drive the expansion and neofunctionalization of the CRN family in P. sojae, which aids in understanding the roles of CRN effectors within each oomycete pathogen.  相似文献   

3.
4.
5.
6.
The Fascinating World of RNA Interference   总被引:1,自引:0,他引:1       下载免费PDF全文
Micro- and short-interfering RNAs represent small RNA family that are recognized as critical regulatory species across the eukaryotes. Recent high-throughput sequencing have revealed two more hidden players of the cellular small RNA pool. Reported in mammals and Caenorhabditis elegans respectively, these new small RNAs are named piwi-interacting RNAs (piRNAs) and 21U-RNAs. Moreover, small RNAs including miRNAs have been identified in unicellular alga Chlamydomonas reinhardtii, redefining the earlier concept of multi-cellularity restricted presence of these molecules. The discovery of these species of small RNAs has allowed us to understand better the usage of genome and the number of genes present but also have complicated the situation in terms of biochemical attributes and functional genesis of these molecules. Nonetheless, these new pools of knowledge have opened up avenues for unraveling the finer details of the small RNA mediated pathways.  相似文献   

7.
8.
As central components of RNA silencing, small RNAs play diverse and important roles in many biological processes in eukaryotes. Aberrant reduction or elevation in the levels of small RNAs is associated with many developmental and physiological defects. The in vivo levels of small RNAs are precisely regulated through modulating the rates of their biogenesis and turnover. 2′-O-methylation on the 3′ terminal ribose is a major mechanism that increases the stability of small RNAs. The small RNA methyltransferase HUA ENHANCER1 (HEN1) and its homologs methylate microRNAs and small interfering RNAs (siRNAs) in plants, Piwi-interacting RNAs (piRNAs) in animals, and siRNAs in Drosophila. 3′ nucleotide addition, especially uridylation, and 3′-5′ exonucleolytic degradation are major mechanisms that turnover small RNAs. Other mechanisms impacting small RNA stability include complementary RNAs, cis-elements in small RNA sequences and RNA-binding proteins. Investigations are ongoing to further understand how small RNA stability impacts their accumulation in vivo in order to improve the utilization of RNA silencing in biotechnology and therapeutic applications.  相似文献   

9.
10.
《Fungal Biology Reviews》2013,26(4):172-180
Although extensively cataloged and functionally diverse in plants and animals, the role and targets of small RNAs remain mostly uncharacterized in filamentous fungi. To date, much of the knowledge of small RNAs in filamentous fungi has been derived from studies of a limited group of fungi, most notably in Neurospora crassa. While most of the recently discovered classes of small RNAs appear to be unique to fungi some are commonly found in eukaryotes. It is noteworthy that the RNA silencing protein machinery involved in small RNA biogenesis has also diverged greatly, particularly within filamentous fungi, and may explain the diversity of small RNA classes. In this review, we summarize important classes of eukaryotic small RNAs and provide a current analysis of the RNA silencing machinery based on available fungal genome sequences. Finally, we discuss opportunities for exploiting knowledge of small RNAs and RNA silencing for practical application such as engineering plants resistant to fungal pathogens.  相似文献   

11.
Although extensively cataloged and functionally diverse in plants and animals, the role and targets of small RNAs remain mostly uncharacterized in filamentous fungi. To date, much of the knowledge of small RNAs in filamentous fungi has been derived from studies of a limited group of fungi, most notably in Neurospora crassa. While most of the recently discovered classes of small RNAs appear to be unique to fungi some are commonly found in eukaryotes. It is noteworthy that the RNA silencing protein machinery involved in small RNA biogenesis has also diverged greatly, particularly within filamentous fungi, and may explain the diversity of small RNA classes. In this review, we summarize important classes of eukaryotic small RNAs and provide a current analysis of the RNA silencing machinery based on available fungal genome sequences. Finally, we discuss opportunities for exploiting knowledge of small RNAs and RNA silencing for practical application such as engineering plants resistant to fungal pathogens.  相似文献   

12.
Post-transcriptional gene silencing by siRNAs and miRNAs   总被引:23,自引:0,他引:23  
Recent years have seen a rapid increase in our understanding of how double-stranded RNA (dsRNA) and 21- to 25-nucleotide small RNAs, microRNAs (miRNAs) and small interfering RNAs (siRNAs), control gene expression in eukaryotes. This RNA-mediated regulation generally results in sequence-specific inhibition of gene expression; this can occur at levels as different as chromatin modification and silencing, translational repression and mRNA degradation. Many details of the biogenesis and function of miRNAs and siRNAs, and of the effector complexes with which they associate have been elucidated. The first structural information on protein components of the RNA interference (RNAi) and miRNA machineries is emerging, and provides some insight into the mechanism of RNA-silencing reactions.  相似文献   

13.
小RNAs作用机制的研究进展   总被引:2,自引:1,他引:1  
谢兆辉 《遗传》2009,31(12):1205-1213
RNAi的发现引发了生物学的一次革命, 也揭示了一种原来未被发现的, 通过小RNAs(大小~20–30 nt)家族在转录水平或转录后水平调解基因表达的方式。在真核生物中, 这些小RNAs包括siRNAs、miRNAs、piRNAs、scnRNAs、21U-RNAs和其他一些小RNAs等。它们通过调节基因表达来控制细胞的代谢、生长和分化, 维持基因组的完整性, 协调生殖细胞的成熟和抑制病毒对细胞的侵袭以及转座成分的转座。文章综述了这些小RNAs在鉴定和生物合成方面的研究进展, 并讨论了它们对基因表达的调节作用。  相似文献   

14.
15.
Phytophthora infestans is a devastating pathogen in agricultural systems. Recently, an RNA silencing suppressor (PSR2, ‘Phytophthora suppressor of RNA silencing 2’) has been described in P. infestans. PSR2 has been shown to increase the virulence of Phytophthora pathogens on their hosts. This gene is one of the few effectors present in many economically important Phytophthora species. In this study, we investigated: (i) the evolutionary history of PSR2 within and between species of Phytophthora; and (ii) the interaction between sequence variation, gene expression and virulence. In P. infestans, the highest PiPSR2 expression was correlated with decreased symptom expression. The highest gene expression was observed in the biotrophic phase of the pathogen, suggesting that PSR2 is important during early infection. Protein sequence conservation was negatively correlated with host range, suggesting host range as a driver of PSR2 evolution. Within species, we detected elevated amino acid variation, as observed for other effectors; however, the frequency spectrum of the mutations was inconsistent with strong balancing selection. This evolutionary pattern may be related to the conservation of the host target(s) of PSR2 and the absence of known corresponding R genes. In summary, our study indicates that PSR2 is a conserved effector that acts as a master switch to modify plant gene regulation early during infection for the pathogen's benefit. The conservation of PSR2 and its important role in virulence make it a promising target for pathogen management.  相似文献   

16.
17.
Identification and characterization of small RNAs involved in RNA silencing   总被引:22,自引:0,他引:22  
Aravin A  Tuschl T 《FEBS letters》2005,579(26):5830-5840
Double-stranded RNA (dsRNA) is a potent trigger of sequence-specific gene silencing mechanisms known as RNA silencing or RNA interference. The recognition of the target sequences is mediated by ribonucleoprotein complexes that contain 21- to 28-nucleotide (nt) guide RNAs derived from processing of the trigger dsRNA. Here, we review the experimental and bioinformatic approaches that were used to identify and characterize these small RNAs isolated from cells and tissues. The identification and characterization of small RNAs and their expression patterns is important for elucidating gene regulatory networks.  相似文献   

18.
Cheng J  Sagan SM  Jakubek ZJ  Pezacki JP 《Biochemistry》2008,47(31):8130-8138
Tombusviruses use a 19 kDa protein (p19) as a suppressor of the RNA silencing pathway during infection. The p19 protein binds to short-interfering RNA (siRNA) as a dimer and shows a high selectivity for short duplex RNAs over other RNA species. Since p19 can bind to synthetic and RNA silencing generated small RNAs with little sequence dependence and with size selectivity, this protein has utility as a tool for studying RNA silencing pathways in eukaryotes. However, the ability of p19 to serve as a tool for studying RNA silencing pathways may be complicated by the presence of other endogenous small RNAs such as micro-RNAs (miRNAs). To understand the importance of endogenous small RNA components with respect to p19's ability to bind to siRNAs, we examined the interactions of p19 with human miR-122, a 23-nucleotide duplex miRNA containing several mismatched base pairs that is highly abundant in the liver. The binding characteristics were compared with those of an siRNA optimized against the human kinase CSK. The binding studies were performed using fluorescence polarization experiments on duplex oligonucleotides containing Cy3 dye labels at the 5'-end of one of the strands of RNA as well as electrophoretic gel mobility shift assays. Both methods indicate that the synthetic siRNA with no mismatches in base pairing bound with >3-fold selectivity over that of miR-122. Our results suggest that p19 can distinguish between siRNAs and miRNA species, although the difference in binding constants is not so large that interactions with endogenous miRNAs can be totally ignored.  相似文献   

19.
RNA silencing mediated by small RNAs (sRNAs) is a conserved regulatory process with key antiviral and antimicrobial roles in eukaryotes. A widespread counter-defensive strategy of viruses against RNA silencing is to deploy viral suppressors of RNA silencing (VSRs), epitomized by the P19 protein of tombusviruses, which sequesters sRNAs and compromises their downstream action. Here, we provide evidence that specific Nicotiana species are able to sense and, in turn, antagonize the effects of P19 by activating a highly potent immune response that protects tissues against Tomato bushy stunt virus infection. This immunity is salicylate- and ethylene-dependent, and occurs without microscopic cell death, providing an example of “extreme resistance” (ER). We show that the capacity of P19 to bind sRNA, which is mandatory for its VSR function, is also necessary to induce ER, and that effects downstream of P19-sRNA complex formation are the likely determinants of the induced resistance. Accordingly, VSRs unrelated to P19 that also bind sRNA compromise the onset of P19-elicited defense, but do not alter a resistance phenotype conferred by a viral protein without VSR activity. These results show that plants have evolved specific responses against the damages incurred by VSRs to the cellular silencing machinery, a likely necessary step in the never-ending molecular arms race opposing pathogens to their hosts.  相似文献   

20.
In eukaryotes, ARGONAUTE proteins (AGOs) associate with microRNAs (miRNAs), short interfering RNAs (siRNAs), and other classes of small RNAs to regulate target RNA or target loci. Viral infection in plants induces a potent and highly specific antiviral RNA silencing response characterized by the formation of virus-derived siRNAs. Arabidopsis thaliana has ten AGO genes of which AGO1, AGO2, and AGO7 have been shown to play roles in antiviral defense. A genetic analysis was used to identify and characterize the roles of AGO proteins in antiviral defense against Turnip mosaic virus (TuMV) in Arabidopsis. AGO1, AGO2 and AGO10 promoted anti-TuMV defense in a modular way in various organs, with AGO2 providing a prominent antiviral role in leaves. AGO5, AGO7 and AGO10 had minor effects in leaves. AGO1 and AGO10 had overlapping antiviral functions in inflorescence tissues after systemic movement of the virus, although the roles of AGO1 and AGO10 accounted for only a minor amount of the overall antiviral activity. By combining AGO protein immunoprecipitation with high-throughput sequencing of associated small RNAs, AGO2, AGO10, and to a lesser extent AGO1 were shown to associate with siRNAs derived from silencing suppressor (HC-Pro)-deficient TuMV-AS9, but not with siRNAs derived from wild-type TuMV. Co-immunoprecipitation and small RNA sequencing revealed that viral siRNAs broadly associated with wild-type HC-Pro during TuMV infection. These results support the hypothesis that suppression of antiviral silencing during TuMV infection, at least in part, occurs through sequestration of virus-derived siRNAs away from antiviral AGO proteins by HC-Pro. These findings indicate that distinct AGO proteins function as antiviral modules, and provide a molecular explanation for the silencing suppressor activity of HC-Pro.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号