首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 54 毫秒
1.
We have examined the distribution and extent of phosphorylation of the tight junction-associated protein ZO-1 in the epithelial MDCK cell line, and in three cell types that do not form tight junctions: S180 (sarcoma) cells, S180 cells transfected with E-cadherin (S180L), and primary cultures of astrocytes. In shortterm calcium chelation experiments on MDCK cells, removal of extracellular calcium caused cells to pull apart. However, ZO-1 remained concentrated at the plasma membrane and no change in ZO-1 phosphorylation was observed. Maintenance of MDCK cells in low calcium medium, conditions where no tight junctions are found, resulted in altered ZO-1 distribution and lower total phosphorylation of the protein. In S180 cells, ZO-1 was diffusely distributed along the entire cell surface, with concentration of the antigen in motile regions of the cell. Cell-cell contact was not a prerequisite for ZO-1 localization at the plasma membrane in this cell type, and the phosphate content of ZO-1 was found to be lower in S180 cells relative to MDCK cells. Expression of Ecadherin in S180L cells did not alter either the distribution or phosphorylation of ZO-1. In contrast to S180 cells, ZO-1 in primary cultures of astrocytes was concentrated at sites of cell-cell contact, and the phosphorylation state was the same as that in control MDCK cells. Comparison of one-dimensional proteolytic digests of 32P-labeled ZO-1 revealed the phosphorylation of two peptides in control MDCK cells that was absent in both MDCK cells grown in low calcium and in S180 cells.We would like to thank Cheryl Richards for her help with the cell culture and immunohistochemistry; David Begg, Gary Firestone, Vik Maraj, Manijeh Pasdar and Colin Rasmussen for helpful discussions; Jaclyn Peebles and Greg Morrison for help with graphics and photography; and Grace Martin and Bob Campenot for rat tail collagen. We are grateful to all the members of our laboratories for their friendship, advice and support. This work was supported by an Establishment Award to B.R.S. from the Alberta Heritage Foundation for Medical Research and grants to B.R.S. from the Kidney Foundation of Canada and the Medical Research Council of Canada. A.H. is funded by a Studentship from the AHFMR. K.L.S. was supported by a grant from the National Institutes of Health (DK-42799) to Gary L. Firestone. B.R.S. is a Medical Research Council of Canada and AHFMR Scholar.  相似文献   

2.
Tight junctional inhibition of entry of Toxoplasma gondii into MDCK cells   总被引:1,自引:0,他引:1  
Various conditions of cultures were performed to investigate the role of tight junctions formed between adjacent MDCK cells on the entry of Toxoplasma. When MDCK cells were cocultured with excess number of Toxoplasma at the seeding density of 1 x 10(5), 3 x 10(5), and 5 x 10(5) cells/ml for 4 days, the number of intracellular parasites decreased rapidly as the host cells reached saturation density, i.e., the formation of tight junctions. When the concentration of calcium in the media (1.8 mM in general) was shifted to 5 microM that resulted in the elimination of tight junction, the penetration of Toxoplasma increased about 2-fold (p less than 0.05) in the saturated culture, while that of non-saturated culture decreased by half. Trypsin-EDTA which was treated to conquer the tight junctions of saturated culture favored the entry of Toxoplasma about 2.5-fold (p less than 0.05) compared to the non-treated, while that of non-saturated culture decreased to about one fifth. It was suggested that the tight junctions of epithelial cells play a role as a barrier for the entry of Toxoplasma and Toxoplasma penetrate into host cells through membrane structure-specific, i.e., certain kind of receptors present on the basolateral rather than apical surface of MDCK cells.  相似文献   

3.
We have explored the effect of the protein kinase inhibitor H7 on tight junction formation in a MDCK cell model for the development of cell-cell contact, tight junctions and epithelial polarity: the "Ca++ switch" model. In this developmental model, which is thought to mimic processes during the early morphogenesis of epithelial tissues, the protein kinase inhibitor H7 markedly inhibits the development of transepithelial resistance of confluent MDCK cells during the "switch" from low (1-5 microM) to normal (1.8 mM) Ca++ media compared with control MDCK cells. Moreover, indirect immunofluorescence using specific antisera against two tight junctional proteins, ZO1 and cingulin, revealed that H7 inhibits the sorting of these proteins from an intracellular site to the lateral surfaces of MDCK cells when the Ca++ in the medium is raised. These data suggest protein kinase mediation in sorting events that lead to the assembly of tight junctions.  相似文献   

4.
Hepatocyte growth factor (HGF) is a paracrine cytokine that influences epithelial morphogenesis by modulating cell–cell adhesion and cell polarity. We have examined the role of HGF in the tight junction (TJ) formation. We followed the assembly and disassembly at the plasma membrane of the major component of the TJ, zonula occludens-1 (ZO-1) protein, after HGF treatment. We applied HGF to the basolateral compartment of MDCK cell monolayers grown on transwell filters to analyze the effect of HGF on polarized cells. Confocal laser scanning microscopy showed that HGF caused a marked reduction of ZO-1 at the lateral sites and a concomitant increase in the cytoplasm. We used the calcium switch assay to analyze the effect of HGF in early TJ development. In MDCK cells cultured in low calcium levels, ZO-1 is distributed intracellularly. The presence of HGF greatly retarded the movement of ZO-1 from the cytosol to the membrane after restoration of normal (1.8 mM) calcium levels for 1.5 and 3 hr. The presence of HGF during the calcium switch caused increased tyrosine phosphorylation of β-catenin. The incubation of MDCK cells with vanadate, a potent tyrosine-specific phosphatase inhibitor, also affected the ZO-1 localization at the plasma membrane during the calcium switch. This was concomitant with increased tyrosine phosphorylation of β-catenin. These results suggest that HGF affects the TJ assembly, and this phenomenon may be important in loosening of intercellular junctions and migration of epithelial cells during HGF-induced morphogenesis. J. Cell. Physiol. 176:465–471, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

5.
We characterized the role of the E-cadherin adhesion system in the formation of epithelial tight junctions using the calcium switch model. In MDCK cells cultured in low (micromolar) calcium levels, the tight junctional protein Zonula Occludens-1 (ZO-1) is distributed intracellularly in granular clusters, the larger of which codistribute with E-cadherin. Two hours after activation of E-cadherin adhesion by transfer to normal (1.8 mM) calcium levels, ZO-1 dramatically redistributed to the cell surface, where it localized in regions rich in E-cadherin. Immunoprecipitation with ZO-1 antibodies of extracts from cells kept in low calcium and 2 h after shifting to 1.8 mM Ca2+ demonstrated the association of ZO-1 with alpha-, beta-, and gamma- catenins. E-cadherin was not detected in the ZO-1 immunoprecipitates but it was found in beta-catenin immunoprecipitates that excluded ZO-1, suggesting that the binding of ZO-1 to catenins may weaken the interaction of these proteins with E-cadherin. Immunofluorescence and immunoelectron microscopy confirmed a close association of beta-catenin and ZO-1 at 0 and 2 h after Ca2+ switch. 48 h after Ca2+ switch, upon complete polarization of the epithelium, most of the ZO-1 had segregated from lateral E-cadherin and formed a distinct, separate apical ring. The ZO-1-catenin complex was not detected in fully polarized monolayers. MDCK cells permanently transformed with Moloney sarcoma virus, which expresses low levels of E-cadherin, displayed clusters of cytoplasmic ZO-1 granules and very little of this protein at the cell surface. Upon transfection with E-cadherin into Moloney sarcoma virus-MDCK cells, ZO-1 redistributed to E-cadherin-rich lateral plasma membrane but later failed to segregate into mature tight junctions. Our experiments suggest that catenins participate in the mobilization of ZO-1 from the cytosol to the cell surface early in the development of tight junctions and that neoplastic transformation may block the formation of tight junctions, either by decreasing the levels of E-cadherin or by preventing a late event: the segregation of tight junction from the zonula adherens.  相似文献   

6.
The establishment of epithelial cell polarity correlates with the formation of specialized cell-cell junctions and striking changes in the organization of microtubules. A significant fraction of the microtubules in MDCK cells become stabilized, noncentrosomally organized, and arranged in longitudinal bundles in the apical-basal axis. This correlation suggests a functional link between cell-cell junction formation and control of microtubule organization. We have followed the distribution of pp170, a recently described microtubule-binding protein, during establishment of epithelial cell polarity. This protein shows the typical patchy distribution along microtubules in subconfluent fibroblasts and epithelial cells, often associated with the peripheral ends of a subpopulation of microtubules. In contrast to its localization in confluent fibroblasts (A72) and HeLa cells, however, pp170 accumulates in patches delineating the regions of cell-cell contacts in confluent polarizing epithelial cells (MDCK and Caco-2). Double immunolocalization with antibodies specific for cell-cell junction proteins, confocal microscopy, and immunoelectron microscopy on polarized MDCK cells suggest that pp170 accumulates at desmosomal plaques. Furthermore, microtubules and desmosomes are found in close contact. Maintenance of the desmosomal association of pp170 is dependent on intact microtubules in 3-d-old, but not in 1-d-old MDCK cell cultures. This suggests a regulated interaction between microtubules and desmosomes and a role for pp170 in the control of changes in the properties of microtubules induced by epithelial cell-cell junction formation.  相似文献   

7.
Junctional complexes such as tight junctions (TJ) and adherens junctions are required for maintaining cell surface asymmetry and polarized transport in epithelial cells. We have shown that Rab13 is recruited to junctional complexes from a cytosolic pool after cell-cell contact formation. In this study, we investigate the role of Rab13 in modulating TJ structure and functions in epithelial MDCK cells. We generate stable MDCK cell lines expressing inactive (T22N mutant) and constitutively active (Q67L mutant) Rab13 as GFP-Rab13 chimeras. Expression of GFP-Rab13Q67L delayed the formation of electrically tight epithelial monolayers as monitored by transepithelial electrical resistance (TER) and induced the leakage of small nonionic tracers from the apical domain. It also disrupted the TJ fence diffusion barrier. Freeze-fracture EM analysis revealed that tight junctional structures did not form a continuous belt but rather a discontinuous series of stranded clusters. Immunofluorescence studies showed that the expression of Rab13Q67L delayed the localization of the TJ transmembrane protein, claudin1, at the cell surface. In contrast, the inactive Rab13T22N mutant did not disrupt TJ functions, TJ strand architecture nor claudin1 localization. Our data revealed that Rab13 plays an important role in regulating both the structure and function of tight junctions.  相似文献   

8.
The role of the epithelial adhesion molecule uvomorulin in the formation of the epithelial junctional complex in the Madin-Darby canine kidney (MDCK) cell line was investigated. Experiments were carried out to determine whether specific inhibition of uvomorulin function would interfere selectively with the formation, stability, or function of the apical zonula adherens (ZA) and zonula occludens (ZO), or whether it would interfere with all forms of intercellular contact including the desmosomes. The effects of blocking antibodies and Fab fragments to uvomorulin on the formation of the junctional complex was examined with a Ca2+ switch assay for de novo junction assembly. The formation of the ZO, the ZA, and the desmosomes was assayed by fluorescence staining with an antibody to the tight junction-specific protein ZO-1, with rhodamine-phalloidin for ZA-associated actin filaments, and with an anti-desmoplakin antibody, respectively. Under different conditions and times of antibody treatment the extent of inhibition of the formation of each of the junctional elements was very similar. The ability of the cells to eventually overcome the inhibitory effect of the antibodies and form junctions correlated with the reappearance of uvomorulin at the regions of cell-cell contact. Therefore uvomorulin seems to mediate an early adhesion event between epithelial cells that is a prerequisite for the assembly of all elements of the junctional complex. In contrast, the transepithelial electrical resistance of confluent, well-established monolayers of MDCK cells grown on filters was not greatly affected by treatment with the various antibodies or Fab fragments. A small transient decrease in resistance observed with the polyclonal alpha-uvomorulin IgG may be due to a more subtle modulation of the junctional complex.  相似文献   

9.
Calcium-induced assembly of adherens junctions in keratinocytes   总被引:11,自引:10,他引:1       下载免费PDF全文
Extracellular calcium concentration has been shown to control the stratification of cultured keratinocytes, presumably by regulation of formation of desmosomes. Previous studies have shown that keratinocytes cultured in medium containing 0.1 mM Ca++ form loose colonies without desmosomes. If the Ca++ is raised to 1 mM, desmosomes are assembled and the distribution of keratin filaments is altered. We have examined the disposition of vinculin and actin in keratinocytes under similar conditions. Using immunofluorescence microscopy we show that raising [Ca++] in the medium dramatically alters the distribution of vinculin and actin and results in the formation of adherens-type junctions within 15 min after switching to high calcium medium. Borders of cells at the edge of colonies, which are not proximal to other cells, are not affected, while cells in the interior of the colony form junctions around their periphery. Attachment plaques in keratinocytes grown in low calcium medium are located at the ventral plane of the cell, but junctions formed after switching to high calcium are not, as demonstrated by interference reflection microscopy. In cells colabeled with antibodies against vinculin and desmoplakin, vinculin-containing adherens junctions were visible before desmosomal junctions when cells were switched to high calcium. Although newly formed vinculin-containing structures in high calcium cells, like desmosomes, colocalize with phase-dense structures, superimposition of video fluorescence images using digitized fluorescence microscopy indicates that adherens junctions and desmosomes are discrete structures. Adherens junctions, like desmosomes, may play an essential role in controlling stratification of keratinocytes.  相似文献   

10.
We have used freeze-fracture electron microscopy to investigate the relationship between the formation of the tight junction in the establishment of a differential distribution of intramembranous particles (IMPs) between the luminal and basolateral membranes of a canine kidney cell line (MDCK). This involves a characterization of the IMP distribution in these membranes in confluent monolayers of MDCK cells, in EGTA-dissociated cells, and in cells at various stages of reassociation. While normal confluent MDCK monolayer cultures exhibit tight junctions and an IMP differential distribution between the luminal and basolateral membranes, cultures dissociated with EGTA lose both formed tight junctional elements and the differential IMP distribution. We have also found that as tight junctions reform between reaggregating MDCK cells, intramembranous particles appear to rapidly redistribute with respect to them. An asymmetric distribution of these particles in the luminal and basolateral membranes is eventually achieved. Tight junction formation appears so closely linked to the genesis of IMP polarity that at early time points when only a string of tight junctional components spans the junctional zone, differential IMP distributions are seen. Thus, our dissociation studies suggest a close relationship between the integrity of the tight junction and the maintenance of IMP polarity between the luminal and basolateral membranes, while cell reassociation studies suggest that the tight junction may be functionally linked to the genesis of IMP polarity.  相似文献   

11.
Constitutive activation of Ras or Ras-mediated signaling pathways is one of the initial steps during tumorigenesis that promotes neoplastic transformation. Recently it was reported that in Ha-Ras overexpressing MDCK cells the tight junction proteins claudin-1, occludin and ZO-1 were absent at cell-cell contact sites but present in the cytoplasm. Inhibition of MEK1 activity recruited all three proteins to the cell membrane leading to a restoration of the tight junction barrier function in MDCK cells. In order to evaluate the relevance of the MEK1 pathway in tight junction regulation in breast cancer cells, we investigated the effect ofMEK1 inhibition on expression of claudin-1, occludin and ZO-1 in natively claudin-1 expressing T47-D cells (low Ras activity), claudin-1 negative MCF-7 cells (elevated Ras activity) as well as two retroviral claudin-1 transduced MCF-7 daughter cell lines with prominent membrane and cytoplasmic claudin-1 dominant homing, respectively. Although we effectively blocked phosphorylation of MAPKs ERK-1 and ERK-2 using the selective MEK1 inhibitor PD98059, no quantitative changes of mRNA or protein levels of claudin-1, occludin and ZO-1 could be detected in all cell lines investigated. Furthermore, immnfluorescence analysis of claudin-1 revealed that inhibition of the MAPK pathway did not alter th e subcellular cytoplasmic distribution of claudin-1 to be more membrane specific. Finally, the diffusion barrier properties of tight junctions as analyzed by transepithelial resistance (TER) or paracellular flux analysis of 3 and 40 kDa dextran of tight junctions were not altered in the claudin-1 positive T47-D and the MCF-7 cell lines. Our findings indicate that the proposed involvement of the Ras-MEK-ERK pathway is likely not involved in the dysregulated tight junction formation in breast tumor cells and indicates that elevated activity of Ras might not be of general importance for the disruption of tight junction structures in breast tumors.  相似文献   

12.
Na,K-ATPase is a key enzyme that regulates a variety of transport functions in epithelial cells. In this study, we demonstrate a role for Na,K-ATPase in the formation of tight junctions, desmosomes, and epithelial polarity with the use of the calcium switch model in Madin-Darby canine kidney cells. Inhibition of Na,K-ATPase either by ouabain or potassium depletion prevented the formation of tight junctions and desmosomes and the cells remained nonpolarized. The formation of bundled stress fibers that appeared transiently in control cells was largely inhibited in ouabain-treated or potassium-depleted cells. Failure to form stress fibers correlated with a large reduction of RhoA GTPase activity in Na,K-ATPase-inhibited cells. In cells overexpressing wild-type RhoA GTPase, Na,K-ATPase inhibition did not affect the formation of stress fibers, tight junctions, or desmosomes, and epithelial polarity developed normally, suggesting that RhoA GTPase is an essential component downstream of Na,K-ATPase-mediated regulation of these junctions. The effects of Na,K-ATPase inhibition were mimicked by treatment with the sodium ionophore gramicidin and were correlated with the increased intracellular sodium levels. Furthermore, ouabain treatment under sodium-free condition did not affect the formation of junctions and epithelial polarity, suggesting that the intracellular Na(+) homeostasis plays a crucial role in generation of the polarized phenotype of epithelial cells. These results thus demonstrate that the Na,K-ATPase activity plays an important role in regulating both the structure and function of polarized epithelial cells.  相似文献   

13.
The dynamics of the actin cytoskeleton spatial organization and transepithelial electric resistance (TEER) in the MDCK1 cell monolayer exposed to arginine–vasopressin (AVP) and forskolin, a protein kinase A (PKA) activator, have been studied. These physiologically active substances are shown to depolymerize filamentous actin in MDCK1 cells (in both the apical and basal cytoplasm) and, concurrently, to considerably decrease the TEER of the cell monolayer. A decrease in TEER suggests an increase in the ion current through the cell monolayer. Correspondingly, the created ion gradient stimulates AVP-sensitive water flow. To clarify the routes of ions and water in MDCK monolayer, the localization of claudin-1 and -2 in tight junctions of ATCC (American Type Culture Collection) MDCK (a low TEER) and MDCK1 (a high TEER) cells was studied by immunofluorescence assay. Claudin-1 and -2 are detectable in the tight junctions of ATCC MDCK cells; however, the tight junctions of MDCK1 cells contain only claudin-1, whereas poreforming claudin-2 is absent. The exposure of MDCK1 cells to forskolin fails to change the distribution of the studied claudins, thereby suggesting that a decrease in TEER caused by forskolin is associated with a change in transcellular, rather than paracellular, permeability of the monolayer  相似文献   

14.
Under the action of supplemental calcium, H6 mouse embryonal carcinoma cell aggregates undergo compaction, a morphological phenomenon similar to mouse embryonic compaction. Formation of various types of cell junctions, especially gap junctions, is associated with compaction of the embryo and we sought to analyze the pattern of junction formation during aggregation and compaction of H6 cells. At 24 hr of aggregation, gap junctions were abundant in both uncompacted and compacted aggregates but quantitative analysis of freeze fracture replicas of these junctions showed a 20-fold increase in the size of the largest gap junctions in compacted aggregates. Such a difference in size could even be detected at 12 hr of aggregation. Tight junctions were not normally formed in 12 hr aggregates but initial stages of tight junction formation could be noticed in 12 hr compacted aggregates. More definitive tight junctions and desmosomes were evident only after 48 hr of aggregation. Thus we have observed that both uncompacted and compacted aggregates can form gap junctions at similar frequencies, suggesting that cell flattening, which contributes to the compacted morphology, is not a requisite for gap junctions. Likewise, generation of the compacted morphology seems to be independent of gap junction formation. This supports the idea that compaction in embryonal carcinoma cells results from calcium-induced cell flattening, probably through the mobilization of cytoskeletal elements. Calcium-dependent features of H6 cell aggregation and compaction enables the independent analysis of separate steps in compaction.  相似文献   

15.
Tricellular tight junctions (tTJs) are specialized tight junctions (TJs) that seal the intercellular space at tricellular contacts (TCs), where the vertices of three epithelial cells meet. Tricellulin and angulin family membrane proteins are known constituents of tTJs, but the molecular mechanism of tTJ formation remains elusive. Here, we investigated the roles of angulin-1 and tricellulin in tTJ formation in MDCK II cells by genome editing. Angulin-1–deficient cells lost the plasma membrane contact at TCs with impaired epithelial barrier function. The C terminus of angulin-1 bound to the TJ scaffold protein ZO-1, and disruption of their interaction influenced the localization of claudins at TCs, but not the tricellular sealing. Strikingly, the plasma membrane contact at TCs was formed in tricellulin- or claudin-deficient cells. These findings demonstrate that angulin-1 is responsible for the plasma membrane seal at TCs independently of tricellulin and claudins.  相似文献   

16.
A Callé 《Acta anatomica》1985,122(3):138-144
Intercellular junctions in the odontoblastic layer have been studied with a freeze-fracture technique. Children's tooth germs were fixed, sliced and demineralized. Samples of the pulpodentinal border were routinely prepared for freeze-fracture. Three kinds of intercellular junctions were detected between human odontoblast cell bodies: gap junctions, desmosomes and tight junctions. Numerous gap junctions are responsible for intercellular communication at different levels of the cell bodies. Focal tight junctions, parallel to the axis of the cell, and desmosomes are sites of cell-to-cell adhesion between lateral plasma membranes. At the distal end of the cell bodies, junctional complexes consist of zonular tight junctions and gap junctions. These zonular tight junctions, never before described between odontoblasts, contribute to the pseudo-epithelial organization of the odontoblastic layer. They constitute a predentin-pulp barrier, the permeability of which must be studied to establish their role in relation to dentin formation.  相似文献   

17.
Tight junctions control paracellular permeability and cellpolarity. Rho GTPase regulates tight junction assembly, and ATP depletion of Madin-Darby canine kidney (MDCK) cells (an in vitro modelof renal ischemia) disrupts tight junctions. The relationship between Rho GTPase signaling and ATP depletion was examined. Rho inhibition resulted in decreased localization of zonula occludens-1 (ZO-1) and occludin at cell junctions; conversely, constitutive Rhosignaling caused an accumulation of ZO-1 and occludin at cell junctions. Inhibiting Rho before ATP depletion resulted in more extensive loss of junctional components between transfected cells thancontrol junctions, whereas cells expressing activated Rho bettermaintained junctions during ATP depletion than control cells. ATPdepletion and Rho signaling altered phosphorylation signalingmechanisms. ZO-1 and occludin exhibited rapid decreases in phosphoaminoacid content following ATP depletion, which was restored on recovery.Expression of Rho mutant proteins in MDCK cells also altered levels ofoccludin serine/threonine phosphorylation, indicating that occludin isa target for Rho signaling. We conclude that Rho GTPase signalinginduces posttranslational effects on tight junction components. Ourdata also demonstrate that activating Rho signaling protects tightjunctions from damage during ATP depletion.

  相似文献   

18.
为阐明泛素连接酶LNX在维持上皮细胞之间连接的作用,构建了四环素诱导表达LNX的MDCK细胞株;以免疫荧光法观察细胞连接蛋白E-钙黏素和ZO-1在细胞内的分布,发现LNX的表达使E-钙黏素和ZO-1在细胞内的分布发生明显改变,大量E-钙黏素和ZO-1聚集在胞浆中,而在细胞膜上的分布则明显减少;透射电镜观察上皮细胞间连接的超微结构显示,LNX的表达导致紧密连接和黏附连接的正常结构消失;用钙离子转换实验检测黏附连接的形成发现,表达LNX的MDCK细胞间的黏附连接形成的速度明显滞后于正常细胞.上述结果表明,LNX的表达影响了E-钙黏素在细胞膜上的正常分布,从而延迟黏附连接复合体的形成,导致上皮细胞间连接结构的异常.  相似文献   

19.
Summary The unincubated chick blastoderm, which consists of a complete upper epithelial layer of one cell thickness (epiblast) and an incomplete lower layer (hypoblast), was examined with the electron microscope in order to define the types of cell contact present. The terminal contacts between the cells of the epiblast invariably involved several focal tight junctions, but only occasionally involved tight junctions. Desmosomes were not observed in these areas, but were encountered in various phases of development in the deeper contact regions between epiblast cells. This deeper region also showed sporadic focal tight junctions and frequent micropapillae. These micropapillae were also common on the surfaces of hypoblast cells. Intercellular spaces between epiblast and hypoblast cells and within the hypoblast were often wide, narrowing to occasional focal tight junctions. Tight junctions and desmosomes were not observed in association with hypoblast cells. Gap junctions were not observed in any region of the embryo.These observations are discussed in relation to the morphogenetic movements occurring in the forming hypoblast and also the influence of this layer on the subsequent development of the embryo. Comparisons are drawn between the contact morphology in the unincubated blastoderm and that in later stages of development.Supported by the Medical Research Council of Canada.  相似文献   

20.
A functional assay has been developed to identify cell surface proteins involved in the formation of epithelial tight junctions. Transepithelial electrical resistance was used to measure the presence of intact tight junctions in monolayers of Madin-Darby canine kidney (MDCK) cells cultured on nitrocellulose filters. The strain I MDCK cells used have a transmonolayer resistance greater than 2,000 ohm . cm2. When the monolayers were incubated at 37 degrees C without Ca2+, the intercellular junctions opened and the transmonolayer resistance dropped to the value of a bare filter, i.e., less than 40 ohm . cm2. When Ca2+ was restored, the cell junctions resealed and the resistance recovered rapidly. Polyclonal antibodies raised against intact MDCK cells inhibited the Ca2+-dependent recovery of electrical resistance when applied to monolayers that had been opened by Ca2+ removal. Cross-linking of cell surface molecules was not required because monovalent Fab' fragments also inhibited. In contrast, a variety of other antibodies that recognize specific proteins on the MDCK cell surface failed to inhibit the recovery of resistance. Monoclonal antibodies have been raised and screened for their ability to inhibit resistance recovery. One such monoclonal antibody has been obtained that stained the lateral surface of MDCK cells. This antibody, rr1, recognized a 118-kD polypeptide in MDCK cell extracts and an 81-kD fragment released from the cell surface by trypsinization in the presence of Ca2+. Sequential immunoprecipitation with antibody rr1 and a monoclonal antibody to uvomorulin showed that this polypeptide is related to uvomorulin. The role of uvomorulin-like and liver cell adhesion molecule (L-CAM)-like polypeptides in the establishment of the epithelial occluding barrier is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号