首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
The negative growth response of North American boreal forest trees to warm summers is well documented and the constraint of competition on tree growth widely reported, but the potential interaction between climate and competition in the boreal forest is not well studied. Because competition may amplify or mute tree climate‐growth responses, understanding the role current forest structure plays in tree growth responses to climate is critical in assessing and managing future forest productivity in a warming climate. Using white spruce tree ring and carbon isotope data from a long‐term vegetation monitoring program in Denali National Park and Preserve, we investigated the hypotheses that (a) competition and site moisture characteristics mediate white spruce radial growth response to climate and (b) moisture limitation is the mechanism for reduced growth. We further examined the impact of large reproductive events (mast years) on white spruce radial growth and stomatal regulation. We found that competition and site moisture characteristics mediated white spruce climate‐growth response. The negative radial growth response to warm and dry early‐ to mid‐summer and dry late summer conditions intensified in high competition stands and in areas receiving high potential solar radiation. Discrimination against 13C was reduced in warm, dry summers and further diminished on south‐facing hillslopes and in high competition stands, but was unaffected by climate in open floodplain stands, supporting the hypothesis that competition for moisture limits growth. Finally, during mast years, we found a shift in current year's carbon resources from radial growth to reproduction, reduced 13C discrimination, and increased intrinsic water‐use efficiency. Our findings highlight the importance of temporally variable and confounded factors, such as forest structure and climate, on the observed climate‐growth response of white spruce. Thus, white spruce growth trends and productivity in a warming climate will likely depend on landscape position and current forest structure.  相似文献   

2.
Accurately assessing the impact of climate changes on tree growth or forest productivity is vital to better understand global carbon cycles. Here, we carried out dendroclimatological research on Yezo spruce (Picea jezoensis var. microsperma) along an elevation gradient in two sites to investigate the effect of rapid warming on spruce growth in northeast China. Results indicated that trees at two low-elevation sites had significantly wider ring widths and higher basal area increment (BAI) compared with high-elevation sites. Ring widths and BAI of Yezo spruce at low elevations showed a clear growth increase during the 1940s–1970s followed by a significant decline after 1980. However, trees at high elevations showed a relatively stable growth during the 1940s–1970s followed by a significant increase after 1980. Rapid warming after 1980 increased the radial growth of Yezo spruce at high-elevation sites, but reduced tree growth at low-elevation sites. Winter precipitation and growing season temperature were positively correlated with radial growth of Yezo spruce at high elevations, but negatively correlated with tree growth at low elevations. A clear pattern of growth and growth-climate relationship changed in 1980. The temperature threshold for determining the impact of climate on Yezo spruce could change with latitude or site. Difference in drought caused by warming may be the main reason for the opposite response of tree growing at different altitudes in northeast China. The mechanism of rapid warming driving contrasting growth at different elevations should also be investigated in other tree species in NE Asia. In the context of future climate warming, our findings are of great significance for tree growth in assessing forest dynamics and carbon cycling.  相似文献   

3.
为探究林分密度和气候因子对蒙古栎径向生长的影响,利用树木年代学方法研究了不同林分密度调控(间伐)下次生蒙古栎林径向生长变化,并结合气象数据,分析了蒙古栎生长变化的驱动因子。结果表明: 次生蒙古栎林径向生长受林分密度的影响显著。低密度原始林蒙古栎径向年均增长量为3.12 mm,2个中密度次生蒙古栎林分别为1.55和1.42 mm,高密度次生蒙古栎林为0.96 mm。20%的间伐强度对促进高密度(1900 株·hm-2以上)栎林径向生长恢复作用有限,而对于中等密度(1600 株·hm-2)栎林效果显著。该地区蒙古栎径向生长主要对当年1月和2月的降水变化敏感。抚育间伐降低了蒙古栎径向生长对气候因子的敏感性。在未来暖干化的气候情境下,密度调控有利于减缓气候变化对蒙古栎生长的不利影响。  相似文献   

4.
The creation of forest openings is a frequently observed phenomenon in many types of forests. On the southeastern Tibetan Plateau, where the average elevation is greater than 4000 m above sea level, differences in tree growth between forest stands with openings and completely closed stands are poorly characterized. Here, we presented a dendrochronological study of Tibetan juniper (Juniperus tibetica Kom.) and Sikkim spruce (Picea spinulosa (Griff.) Beissn.) in an open and a closed stand, near Qamdo of eastern Tibet. We found that the growth of juniper responded to climate in a similar way in the open and closed stands, and was positively correlated with temperature from October to January and with the Palmer Drought Severity Index (PDSI) from September to June. In contrast, the growth of spruce responded to climate differently in the open and closed stands: growth was positively correlated with the PDSI from September to May in the open stand, whereas it was positively correlated to November and December temperatures (of the prior year) and current June temperature in the closed stand. Interannual variation in, and standard deviations among, juniper tree ring widths were similar in both stands for the past four centuries, whereas they differed in spruce over the past two centuries, particularly in the 1900s. These results suggest that juniper tree ring growth is less sensitive to stand structure than that of spruce, thus providing more reliable climate signals. The data obtained from our study will help forest managers understand the ecology of juniper and spruce in open and closed stands and are therefore useful for management planning.  相似文献   

5.
Aim The spruce–moss forest is the main forest ecosystem of the North American boreal forest. We used stand structure and fire data to examine the long‐term development and growth of the spruce–moss ecosystem. We evaluate the stability of the forest with time and the conditions needed for the continuing regeneration, growth and re‐establishment of black spruce (Picea mariana) trees. Location The study area occurs in Québec, Canada, and extends from 70°00′ to 72°00′ W and 47°30′ to 56°00′ N. Methods A spatial inventory of spruce–moss forest stands was performed along 34 transects. Nineteen spruce–moss forests were selected. A 500 m2 quadrat at each site was used for radiocarbon and tree‐ring dating of time since last fire (TSLF). Size structure and tree regeneration in each stand were described based on diameter distribution of the dominant and co‐dominant tree species [black spruce and balsam fir (Abies balsamea)]. Results The TSLF of the studied forests ranges from 118 to 4870 cal. yr bp . Forests < 325 cal. yr bp are dominated by trees of the first post‐fire cohort and are not yet at equilibrium, whereas older forests show a reverse‐J diameter distribution typical of mature, old‐growth stands. The younger forests display faster height and radial growth‐rate patterns than the older forests, due to factors associated with long‐term forest development. Each of the stands examined established after severe fires that consumed all the soil organic material. Main conclusions Spruce–moss forests are able to self‐regenerate after fires that consume the organic layer, thus allowing seed regeneration at the soil surface. In the absence of fire the forests can remain in an equilibrium state. Once the forests mature, tree productivity eventually levels off and becomes stable. Further proof of the enduring stability of these forests, in between fire periods, lies in the ages of the stands. Stands with a TSLF of 325–4870 cal. yr bp all exhibited the same stand structure, tree growth rates and species characteristics. In the absence of fire, the spruce–moss forests are able to maintain themselves for thousands of years with no apparent degradation or change in forest type.  相似文献   

6.
The modification of typical age-related growth by environmental changes is poorly understood, In part because there is a lack of consensus at individual tree level regarding age-dependent growth responses to climate warming as stands develop. To increase our current understanding about how multiple drivers of environmental change can modify growth responses as trees age we used tree ring data of a mountain subtropical pine species along an altitudinal gradient covering more than 2,200 m of altitude. We applied mixed-linear models to determine how absolute and relative age-dependent growth varies depending on stand development; and to quantify the relative importance of tree age and climate on individual tree growth responses. Tree age was the most important factor for tree growth in models parameterised using data from all forest developmental stages. Contrastingly, the relationship found between tree age and growth became non-significant in models parameterised using data corresponding to mature stages. These results suggest that although absolute tree growth can continuously increase along tree size when trees reach maturity age had no effect on growth. Tree growth was strongly reduced under increased annual temperature, leading to more constant age-related growth responses. Furthermore, young trees were the most sensitive to reductions in relative growth rates, but absolute growth was strongly reduced under increased temperature in old trees. Our results help to reconcile previous contrasting findings of age-related growth responses at the individual tree level, suggesting that the sign and magnitude of age-related growth responses vary with stand development. The different responses found to climate for absolute and relative growth rates suggest that young trees are particularly vulnerable under warming climate, but reduced absolute growth in old trees could alter the species’ potential as a carbon sink in the future.  相似文献   

7.
伊春地区红松和红皮云杉径向生长对气候变化的响应   总被引:1,自引:0,他引:1  
树木生长-气候关系对准确评估气候变化对森林生态系统影响、预测森林生产力与植被动态及揭示树木对气候变化的响适应策略至关重要。在全球变暖背景下,升温可能会对树木的生长产生影响,从而改变区域森林生态系统的生产力或碳储量。本研究利用生长-气候响应函数、滑动相关分析等树木年轮学方法,探讨伊春地区阔叶红松林内红松和红皮云杉径向生长的主要限制因子及两者径向生长对快速升温(1980年后)响应的异同。结果表明:1980年前红松径向生长有明显加速的趋势,红皮云杉上升趋势较弱;而1980年后红松径向生长趋势显著下降,红皮云杉则下降不明显。红皮云杉径向生长与上一年9月及当年6月平均气温显著负相关,而红松径向生长与上一年12月及当年1月、4月和6月最低气温显著正相关。1980年快速升温后,高温对两树种生长的抑制作用增强,尤其是红松。生长季末(9月)降水对红松和红皮云杉的限制作用由升温前的负相关转变为升温后的显著正相关。温度是限制红松和红皮云杉径向生长的主要气候因子,降水影响相对较弱;其中红松径向生长对气候变化的响应比红皮云杉更敏感。快速升温后,红松和红皮云杉生长-气候关系的变化可能与升温导致的暖干旱化有关。若气候变暖持续或加剧,二者径向生长的气候限制因子也将由温度转变为水分;红松和红皮云杉会出现生长衰退,尤其是红松。  相似文献   

8.
Unprecedented rates of climate warming over the past century have resulted in increased forest stress and mortality worldwide. Decreased tree growth in association with increasing temperatures is generally accepted as a signal of temperature‐induced drought stress. However, variations in tree growth alone do not reveal the physiological mechanisms behind recent changes in tree growth. Examining stable carbon isotope composition of tree rings in addition to tree growth can provide a secondary line of evidence for physiological drought stress. In this study, we examined patterns of black spruce growth and carbon isotopic composition in tree rings in response to climate warming and drying in the boreal forest of interior Alaska. We examined trees at three nested scales: landscape, toposequence, and a subsample of trees within the toposequence. At each scale, we studied the potential effects of differences in microclimate and moisture availability by sampling on northern and southern aspects. We found that black spruce radial growth responded negatively to monthly metrics of temperature at all examined scales, and we examined ?13C responses on a subsample of trees as representative of the wider region. The negative ?13C responses to temperature reveal that black spruce trees are experiencing moisture stress on both northern and southern aspects. Contrary to our expectations, ?13C from trees on the northern aspect exhibited the strongest drought signal. Our results highlight the prominence of drought stress in the boreal forest of interior Alaska. We conclude that if temperatures continue to warm, we can expect drought‐induced productivity declines across large regions of the boreal forest, even for trees located in cool and moist landscape positions.  相似文献   

9.
研究人工林径向生长与气候变化的关系对全球气候变暖背景下人工林合理经营有着重要的意义。该文对在辽东山区广泛栽培的黄花落叶松(Larix olgensis)和日本落叶松(Larix kaempferi)人工林, 运用树木年轮气候学方法建立了辽宁草河口和湾甸子林场落叶松人工林年表, 分析了落叶松径向生长对气候变化的响应以及气候条件、树种、立地条件和林分因子(林龄、密度、蓄积量等)的相对影响程度。结果发现在影响年轮-气候关系的因素中, 气象因子的潜在蒸发散(PET)的影响力最大; 林龄、密度和蓄积量同时也具有重要的影响作用。中龄落叶松人工林径向生长主要与气温呈正相关关系, 成熟落叶松人工林径向生长主要与气温呈负相关关系; 而其他因素, 如树种、立地条件等的影响作用不大。这表明在气候变暖背景下随着林龄增加, 林分会逐渐受到气温升高导致的水分亏缺的限制, 导致明显的生长下降趋势, 因而气候变暖对成熟落叶松人工林威胁更为严重, 所以要注重对成熟林的优先保护, 同时可以预测, 随着东北地区今后气候进一步变暖, 可能将逐步影响到林龄更小的林分的生长, 因此需要进一步研究如何在落叶松人工林经营中采取科学的措施来更好地应对未来气候变化。  相似文献   

10.
When site factors reduce growth rates, tree lifespan tends to increase. This study investigates processes leading to such inverse relationship in Fagus sylvatica stands distributed along two elevation gradients, with an emphasis on climatic response, suppression periods, and growth trends. Dendrochronological records from old‐growth beech populations sampled at different elevations within two different bioclimatic regions (Alps vs. Apennines), were used to investigate factors that control tree lifespan. Differences between old‐growth (12) and nearby managed (15) stands were used to assess effects of silvicultural practices on maximum age. Logging reduced tree lifespan not only by removing older trees, but also by reducing the number of years beech individuals spent in the shaded understory. Tree lifespan and growth rates were affected by climate (spring–summer temperature) and were inversely related to one another along elevation gradients. The greatest lifespan was observed in old‐growth high‐mountain populations, and was related not only to slower growth due to a shorter growing season, but also to multidecadal periods of growth suppression during the initial development stages in the understory (i.e., slower growth rates at the youngest cambial ages). Past unfavorable climatic periods (in this case, the Little Ice Age) also helped increase tree lifespan. Using a linear model, we estimated a reduction in beech lifespan of 23 ± 5 years for each degree of warming. Basal area increment of trees with the maximum observed lifespan showed an increasing trend over time. Because growth of old (>300 years) trees has increased in the Alps, while it has recently declined in the Apennines, different bioclimatic regions can have opposite responses to global climatic change. In the next decades, if warming continues, beech lifespan could be reduced in the Alps by faster growth and in the Apennines by drought‐induced mortality.  相似文献   

11.
川西亚高山不同年龄紫果云杉径向生长对气候因子的响应   总被引:1,自引:0,他引:1  
运用树木年轮气候学的基本方法,建立王朗自然保护区紫果云杉在集中分布上限区域的年轮宽度年表,选取差值年表分析不同年龄云杉的径向生长同逐月气候因子的相关及响应关系,结果显示:幼龄组云杉年表的敏感度高于中龄组和老龄组云杉,幼龄组云杉对生长季前及生长季的气温状况显著正相关;中龄组云杉年表仅与当年4月份和7月份的月平均最低气温显著正相关;老龄组云杉的年轮宽度指数同上年生长季(上年8月份)的月平均气温和月平均最低温显著负相关,上年生长季高温的"滞后效应"在老龄组云杉体现的更为突出;幼龄组与中龄组云杉对当年6月份降水持续增加显示出明显的负相关关系,上年12月份的降水会对幼龄组和老龄组云杉径向生长不利。研究表明幼龄组云杉包含的气候信息要优于中龄组和老龄组云杉,在该区域进行相关研究时应根据研究需要选取不同年龄跨度的云杉年表。  相似文献   

12.
Stand Structural Dynamics of North American Boreal Forests   总被引:1,自引:0,他引:1  
Stand structure, the arrangement and interrelationships of live and dead trees, has been linked to forest regeneration, nutrient cycling, wildlife habitat, and climate regulation. The objective of this review was to synthesize literature on stand structural dynamics of North American boreal forests, addressing both live tree and coarse woody debris (CWD) characteristics under different disturbance mechanisms (fire, clearcut, wind, and spruce budworm), while identifying regional differences based on climate and surficial deposit variability. In fire origin stands, both live tree and CWD attributes are influenced initially largely by the characteristics of the stand replacing fire and later increasingly by autogenic processes. Differences in stand structure have also been observed between various stand cover types. Blowdown and insect outbreaks are two significant non-stand replacing disturbances that can alter forest stand structure through removing canopy trees, freeing up available growing space, and creating microsites for new trees to establish. Climate and surficial deposits are highly variable in the boreal forest due to its extensive geographic range, influencing stand and landscape structure by affecting tree colonization, stand composition, successional trajectories, CWD dynamics, and disturbance regimes including regional fire cycles. Further, predicted climate change scenarios are likely to cause regional-specific alterations in stand and landscape structure, with the implications on ecosystem components including wildlife, biodiversity, and carbon balance still unclear. Some stand structural attributes are found to be similar between clearcut and fire origin stands, but others appear to be quite different. Future research shall focus on examining structural variability under both disturbance regimes and management alternatives emulating both stand replacing and non-stand replacing natural disturbances.

  相似文献   


13.
Warming-induced drought has widely affected forest dynamics in most places of the northern hemisphere. In this study, we assessed how climate warming has affected Picea crassifolia (Qinghai spruce) forests using tree growth-climate relationships and the normalized difference vegetation index (NDVI) along the Qilian Mountains, northeastern Tibet Plateau (the main range of Picea crassifolia). Based on the analysis on trees radial growth data from the upper tree line and the regional NDVI data, we identified a pervasive growth decline in recent decades, most likely caused by warming-induced droughts. The drought stress on Picea crassifolia radial growth were expanding from northeast to southwest and the favorable moisture conditions for tree growth were retreating along the identical direction in the study area over the last half century. Compared to the historical drought stress on tree radial growth in the 1920s, recent warming-induced droughts display a longer-lasting stress with a broader spatial distribution on regional forest growth. If the recent warming continues without the effective moisture increasing, then a notable challenge is developed for Picea crassifolia in the Qilian Mountains. Elaborate forest management is necessary to counteract the future risk of climate change effects in this region.  相似文献   

14.
Predicting plant community responses to changing environmental conditions is a key element of forecasting and mitigating the effects of global change. Disturbance can play an important role in these dynamics, by initiating cycles of secondary succession and generating opportunities for communities of long‐lived organisms to reorganize in alternative configurations. This study used landscape‐scale variations in environmental conditions, stand structure, and disturbance from an extreme fire year in Alaska to examine how these factors affected successional trajectories in boreal forests dominated by black spruce. Because fire intervals in interior Alaska are typically too short to allow relay succession, the initial cohorts of seedlings that recruit after fire largely determine future canopy composition. Consequently, in a dynamically stable landscape, postfire tree seedling composition should resemble that of the prefire forest stands, with little net change in tree composition after fire. Seedling recruitment data from 90 burned stands indicated that postfire establishment of black spruce was strongly linked to environmental conditions and was highest at sites that were moist and had high densities of prefire spruce. Although deciduous broadleaf trees were absent from most prefire stands, deciduous trees recruited from seed at many sites and were most abundant at sites where the fires burned severely, consuming much of the surface organic layer. Comparison of pre‐ and postfire tree composition in the burned stands indicated that the expected trajectory of black spruce self‐replacement was typical only at moist sites that burned with low fire severity. At severely burned sites, deciduous trees dominated the postfire tree seedling community, suggesting these sites will follow alternative, deciduous‐dominated trajectories of succession. Increases in the severity of boreal fires with climate warming may catalyze shifts to an increasingly deciduous‐dominated landscape, substantially altering landscape dynamics and ecosystem services in this part of the boreal forest.  相似文献   

15.
Land-use history and large-scale disturbances interact to shape secondary forest structure and composition. How introduced species respond to disturbances such as hurricanes in post-agriculture forest recovery is of particular interest. To examine the effects of hurricane disturbance and previous land use on forest dynamics and composition, we revisited 37 secondary forest stands in former cattle pastures across Puerto Rico representing a range of exposure to the winds of Hurricane Georges in 1998. Stands ranged from 21 to>80 yr since agricultural abandonment and were measured 9 yr posthurricane. Stem density decreased as stands aged, while basal area and species richness tended to increase. Hurricane disturbance exerted contrasting effects on stand structure, contingent on stand age. In older stands, the basal area of large trees fell, shifting to a stand structure characteristic of younger stands, while the basal area of large trees tended to rise in younger stands with increasing hurricane disturbance. These results demonstrate that large-scale natural disturbances can alter the successional trajectory of secondary forest stands recovering from human land use, but stand age, precipitation and soil series were better predictors of changes in stand structure across all study sites. Species composition changed substantially between census intervals, but neither age nor hurricane disturbance consistently predicted species composition change. However, exposure to hurricane winds tended to decrease the abundance of the introduced tree Spathodea campanulata, particularly in smaller size classes. In all sites the abundance of the introduced tree Syzygium jambos showed a declining trend, again most strongly in smaller size classes, suggesting natural thinning through succession.  相似文献   

16.
The relationships between climatic variables and Scots pine (Pinus sylvestris L.) growth and needle dynamics were studied in three stands in Estonia and in four stands located near the northern timberline in Lapland. The trees sampled in Estonia had low correlations with the analysed climatic variables (air temperature, precipitation and indices of atmospheric circulation). Moreover, the weak cross-correlation of the time-series of the Estonian sample trees indicated that Scots pine is affected mainly by local factors in that region. In Lapland, however, height increment and needle production correlated strongly among trees within a stand (mean r=0.45 and 0.46, respectively) and between stands (r=0.32 and 0.37). Radial increment also showed a high inter-correlation among the trees within a stand in Lapland (r=0.45). Both height increment and needle production were strongly influenced by the temperature regime of the previous summer in Lapland (mean r=0.64 and 0.64, respectively). Radial increment was correlated with the mean July temperature of the current year (mean r=0.29). The correlations between the indices of atmospheric circulation and tree attributes were weak, while the strongest correlation was between the Ponta Delgada NAO index (PD–NAO) and height increment and needle production in Lapland. Height increment, needle production and radial increment have increased since the 1990s in the trees growing in Lapland. This may indicate a positive effect of climate warming on tree growth in Lapland. In Estonia, where climatic conditions do not limit tree growth, the climate warming seems not to directly influence the growth and needle dynamics of Scots pine.  相似文献   

17.
Climate change has increased the occurrence, severity, and impact of disturbances on forested ecosystems worldwide, resulting in a need to identify factors that contribute to an ecosystem’s resilience or capacity to recover from disturbance. Forest resilience to disturbance may decline with climate change if mature trees are able to persist under stressful environmental conditions that do not permit successful recruitment and survival after a disturbance. In this study, we used the change in proportional representation of black spruce pre- to post-fire as a surrogate for resilience. We explored links between patterns of resilience and tree ring signals of drought stress across topographic moisture gradients within the boreal forest. We sampled 72 recently (2004) burned stands of black spruce in interior Alaska (USA); the relative dominance of black spruce after fire ranged from almost no change (high resilience) to a 90% decrease (low resilience). Variance partitioning analysis indicated that resilience was related to site environmental characteristics and climate–growth responses, with no unique contribution of pre-fire stand composition. The largest shifts in post-fire species composition occurred in sites that experienced the compounding effects of pre-fire drought stress and shallow post-fire organic layer thickness. These sites were generally located at warmer and drier landscape positions, suggesting they are less resilient to disturbance than sites in cool and moist locations. Climate–growth responses can provide an estimate of stand environmental stress to climate change and as such are a valuable tool for predicting landscape variations in forest ecosystem resilience.  相似文献   

18.
North American fire‐adapted forests are experiencing changes in fire frequency and climate. These novel conditions may alter postwildfire responses of fire‐adapted trees that survive fires, a topic that has received little attention. Historical, frequent, low‐intensity wildfire in many fire‐adapted forests is generally thought to have a positive effect on the growth and vigor of trees that survive fires. Whether such positive effects can persist under current and future climate conditions is not known. Here, we evaluate long‐term responses to recurrent 20th‐century fires in ponderosa pine, a fire‐adapted tree species, in unlogged forests in north central Idaho. We also examine short‐term responses to individual 20th‐century fires and evaluate whether these responses have changed over time and whether potential variability relates to climate variables and time since last fire. Growth responses were assessed by comparing tree‐ring measurements from trees in stands burned repeatedly during the 20th century at roughly the historical fire frequency with trees in paired control stands that had not burned for at least 70 years. Contrary to expectations, only one site showed significant increases in long‐term growth responses in burned stands compared with control stands. Short‐term responses showed a trend of increasing negative effects of wildfire (reduced diameter growth in the burned stand compared with the control stand) in recent years that had drier winters and springs. There was no effect of time since the previous fire on growth responses to fire. The possible relationships of novel climate conditions with negative tree growth responses in trees that survive fire are discussed. A trend of negative growth responses to wildfire in old‐growth forests could have important ramifications for forest productivity and carbon balance under future climate scenarios.  相似文献   

19.
During the past decades managed forest ecosystems in Central Europe underwent vast changes, induced by extreme climate conditions and occasionally adverse forest management. Tree ring width patterns mirror these changes and thus have been widely examined as environmental archives and reliable empirical data sources in ‘tree growth modelling’. Dendrochronologists often suppose linear co-variation among the covariates, variable independence and homoscedasticity. Conventionally, these assumptions were achieved by eliminating biological age trends (detrending) and removing the autocorrelation from the time series (pre-whitening). Particularly detrending might be biased according to the scientific problem and sometimes inflexible age models. In this study, we tackle these issues and examine the suitability of a flexible Generalized Additive Model (GAM) on recently developed tree ring width time series of 30 Norway spruce stands (Picea abies [L.] H. Karst) from Central Germany.The model was established to simultaneously cope with the mentioned detrending issue, to unravel nonlinear climate-growth relationships and to predict mean ring width time series for spruce stands in the region. Particularly the latter was of primary interest, since recent forest planning relies on static yield tables that often underestimate the actual growth.The model reliably captured the empirical data, indicated by a small Generalized Cross Validation criterion (GCV = 0.045) and a deviance explained of 88.6 %. The flexible additive smoothers accounted for the social status of individual trees, captured low frequency variations of changing growth conditions adequately and displayed a rather flat biological age trend. The radial increment responded positively to summer season precipitation of the current and previous year. Positive temperature responses were found during the early vegetation period, whereas high summer season temperatures negatively affected the radial growth. The seasonal transition from spring to summer in June induced a shift in the climate response of the linear predictor, leading to a distinct negative effect of temperature and a no-role of precipitation on the linear predictor.Most important, utilizing the calibrated GAM for the purely climate-driven prediction of mean ring width time series from five independent spruce sites revealed proper coherencies. Herein, the mean ring width for sites located within the climatic-optimum for spruce growth were more exactly predicted than for sites with adverse spruce growth conditions. In addition, large mean ring widths were systematically underestimated, whereas small mean ring widths were precisely predicted. Overall, we strongly recommend GAMs as a powerful tool for the investigation of nonlinear climate-growth relationships and for the prediction of radial growth in managed forest ecosystems.  相似文献   

20.
1. Three permanent plots (100×0 m) were established in the subalpine Norway spruce (Picea abies (L.) Karst.) forest of Paneveggio in the spring of 1993, to begin a long-term forest ecosystem research project. The main purpose of these plots was to provide information about subalpine Norway spruce stand dynamics and to provide suggestions for close-to-nature silviculture. 2. The three stands were selected to represent the most common forest structures in the Paneveggio forest. The first stand is close to forestry roads, has a relatively regular and continuous canopy, and thinning and cutting operations only ended in the 1980s; the second stand is far from forest roads and has developed without anthropogenic influence for several decades; the third one is located at the present upper limit of the pure spruce forest and, apparently, was heavily used in the past as a pasture. 3. The first step in the investigation was to describe the structure and to study the history of the three stands using both written evidence from manage- ment plans and biological archives from tree rings. 4. The stands in plots 1 and 2 began to establish after a disturbance that removed part of the previous stands according to dendroecological studies, which are partially supported by written evidence. The remaining parts of these stands were eliminated by two major disturbances that occurred during the following decades. Written records about the use of the forest lead us to assume that the initial disturbances that occurred in the two stands were logging activities as a part of a group shelterwood system. The stand in plot 2 has developed without significant human interference for about half a century as confirmed by the presence of many dead trees. The stand in plot 3 consists of old trees that were part of an open stand and a secondary population that established after cessation of grazing. 5. The study has confirmed that dendroecological techniques can be used to identify occurrence and intensity of previous disturbance in forests stands, although at Paneveggio it is difficult to distinguish between natural and anthropogenic disturbances in the tree ring record. The presence of human activity necessitates investigation of multiple lines of evidence. 6. Paneveggio's forest management plans were useful in the interpretation of the data obtained through dendroecological analysis, although events did not always correspond because data from the management plans (yearly thinning, felling, wind-throw damage) never gave stand-level details, but applied to areas of several hectares. Despite these limitations, the information included in the management plans is of crucial importance in studying stand history and only by using all these sources of information is it possible to delineate the most important features of the history and disturbance that affected the origin and subsequent growth of the forest stands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号