首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Associations between cocoa consumption in humans, excreted metabolites and total antioxidant capacity (TAC) have been scarcely investigated. The aims of the study were to investigate the epicatechin (( - )-Ec) metabolites excreted in urine samples after an intake of 40 g of cocoa powder along with the TAC of these urine samples and the relation between both the analyses. Each of the 21 volunteers received two interventions, one with a polyphenol-rich food (PRF) and one with a polyphenol-free food (PFF) in a randomized cross-over study. Urine samples were taken before and during 24 h at 0-6, 6-12 and 12-24 h periods after test intake. The excreted ( - )-Ec metabolites and the TAC were determined in urine samples by LC-MS/MS and TEAC assay, respectively. The maximum excretion of ( - )-Ec metabolites and the maximum TAC value were observed in urine samples excreted between 6 and 12 h after PRF consumption. Significance of TAC increase was found in urine samples excreted during 0-6 and 6-12 h (66.6 and 72.67%, respectively, with respect to the 0 h).  相似文献   

2.
We evaluated the levels of (-)-epicatechin (EC) and its metabolites in plasma and urine after intake of chocolate or cocoa by male volunteers. EC metabolites were analyzed by HPLC and LC/MS after glucuronidase and/or sulfatase treatment. The maximum levels of total EC metabolites in plasma were reached 2 hours after either chocolate or cocoa intake. Sulfate, glucuronide, and sulfoglucuronide (mixture of sulfate and glucuronide) conjugates of nonmethylated EC were the main metabolites present in plasma rather than methylated forms. Urinary excretion of total EC metabolites within 24 hours after chocolate or cocoa intake was 29.8 ± 5.3% and 25.3 ± 8.1% of total EC intake. EC in chocolate and cocoa was partly absorbed and was found to be present as a component of various conjugates in plasma, and these were rapidly excreted in urine.  相似文献   

3.
We evaluated the levels of (-)-epicatechin (EC) and its metabolites in plasma and urine after intake of chocolate or cocoa by male volunteers. EC metabolites were analyzed by HPLC and LC/MS after glucuronidase and/or sulfatase treatment. The maximum levels of total EC metabolites in plasma were reached 2 hours after either chocolate or cocoa intake. Sulfate, glucuronide, and sulfoglucuronide (mixture of sulfate and glucuronide) conjugates of nonmethylated EC were the main metabolites present in plasma rather than methylated forms. Urinary excretion of total EC metabolites within 24 hours after chocolate or cocoa intake was 29.8 ± 5.3% and 25.3 ± 8.1% of total EC intake. EC in chocolate and cocoa was partly absorbed and was found to be present as a component of various conjugates in plasma, and these were rapidly excreted in urine.  相似文献   

4.
The urinary excretions by young healthy men of histamine and its metabolites, N tau-methylhistamine, imidazole acetic acid, and imidazole acetic acid conjugate(s), increased 1-3 h after food intake. The increase was seen even after the intake of konnyaku (mannan) as a protein-deficient food, suggesting that physical stimulation of the gastric mucosa by food is the main cause of histamine release. This suggestion was confirmed by the following findings in patients and mice. In patients with stomach diseases, gastrectomy resulted in decreases in the excretion of histamine and its metabolites in the urine, and patients subjected to intravenous hyperalimentation excreted less histamine and its metabolites in the urine than normal subjects. In mice, a correlation of histamine excretion with food intake was demonstrated experimentally. Namely, mice fed only during the night (21:00-0:00) showed increased excretions of histamine and its metabolites at 23:00-3:00, whereas those fed in the morning (9:00-12:00) showed increased excretions of those compounds at 11:00-15:00. All these results are consistent with the idea that urinary histamine and its metabolites mainly originate from the stomach.  相似文献   

5.
After absorption in the gastrointestinal tract, (-)-epicatechin is extensively transformed into various conjugated metabolites. These metabolites, chemically different from the aglycone forms found in foods, are the compounds that reach the circulatory system and the target organs. Therefore, it is imperative to identify and quantify these circulating metabolites to investigate their roles in the biological effects associated with (-)-epicatechin intake. Using authentic synthetic standards of (-)-epicatechin sulfates, glucuronides, and O-methyl sulfates, a novel LC-MS/MS-MRM analytical methodology to quantify (-)-epicatechin metabolites in biological matrices was developed and validated. The optimized method was subsequently applied to the analysis of plasma and urine metabolites after consumption of dark chocolate, an (-)-epicatechin-rich food, by humans. (-)-Epicatechin-3'-β-d-glucuronide (C(max) 290±49nM), (-)-epicatechin 3'-sulfate (C(max) 233±60nM), and 3'-O-methyl epicatechin sulfates substituted in the 4', 5, and 7 positions were the most relevant (-)-epicatechin metabolites in plasma. When plasmatic metabolites were divided into their substituent groups, it was revealed that (-)-epicatechin glucuronides, sulfates, and O-methyl sulfates represented 33±4, 28±5, and 33±4% of total metabolites (AUC(0-24)(h)), respectively, after dark chocolate consumption. Similar metabolites were found in urine samples collected over 24h. The total urine excretion of (-)-epicatechin was 20±2% of the amount ingested. In conclusion, we describe the entire metabolite profile and its degree of elimination after administration of (-)-epicatechin-containing food. These results will help us understand more precisely the mechanisms and the main metabolites involved in the beneficial physiological effects of flavanols.  相似文献   

6.
Red raspberries, containing ellagitannins and cyanidin-based anthocyanins, were fed to volunteers and metabolites appearing in plasma and urine were analysed by UHPLC-MS. Anthocyanins were not absorbed to any extent with sub nmol/L concentrations of cyanidin-3-O-glucoside and a cyanidin-O-glucuronide appearing transiently in plasma. Anthocyanins excreted in urine corresponded to 0.007% of intake. More substantial amounts of phase II metabolites of ferulic acid and isoferulic acid, along with 4′-hydroxyhippuric acid, potentially originating from pH-mediated degradation of cyanidin in the proximal gastrointestinal tract, appeared in urine and also plasma where peak concentrations were attained 1–1.5 h after raspberry intake. Excretion of 18 anthocyanin-derived metabolites corresponded to 15.0% of intake, a figure substantially higher than obtained in other anthocyanin feeding studies. Ellagitannins pass from the small to the large intestine where the colonic microbiota mediate their conversion to urolithins A and B which appeared in plasma and were excreted almost exclusively as sulfate and glucuronide metabolites. The urolithin metabolites persisted in the circulatory system and were excreted in urine for much longer periods of time than the anthocyanin metabolites although their overall urinary recovery was lower at 7.0% of intake. It is events originating in the proximal and distal gastrointestinal tract, and subsequent phase II metabolism, that play an important role in the bioavailability of both anthocyanins and ellagitannins and it is their metabolites which appear in the circulatory system, that are key to elucidating the mode of action(s) underlying the protective effects of these compounds on human health.  相似文献   

7.
Rosmarinic acid (RA) is contained in various Lamiaceae herbs used commonly as culinary herbs. Although RA has various potent physiological actions, little is known on its bioavailability. We therefore investigated the absorption and metabolism of orally administered RA in rats. After being deprived of food for 12 h, RA (50 mg/kg body weight) or deionized water was administered orally to rats. Blood samples were collected from a cannula inserted in the femoral artery before and at designated time intervals after administration of RA. Urine excreted within 0 to 8 h and 8 to 18 h post-administration was also collected. RA and its related metabolites in plasma and urine were measured by LC-MS after treatment with sulfatase and/or beta-glucuronidase. RA, mono-methylated RA (methyl-RA) and m-coumaric acid (COA) were detected in plasma, with peak concentrations being reached at 0.5, 1 and 8 h after RA administration, respectively. RA, methyl-RA, caffeic acid (CAA), ferulic acid (FA) and COA were detected in urine after RA administration. These components in plasma and urine were present predominantly as conjugated forms such as glucuronide or sulfate. The percentage of the original oral dose of RA excreted in the urine within 18 h of administration as free and conjugated forms was 0.44 +/- 0.21% for RA, 1.60 +/- 0.74% for methyl-RA, 1.06 +/- 0.35% for CAA, 1.70 +/- 0.45% for FA and 0.67 +/- 0.29% for COA. Approximately 83% of the total amount of these metabolites was excreted in the period 8 to 18 h after RA administration. These results suggest that RA was absorbed and metabolized as conjugated and/or methylated forms, and that the majority of RA absorbed was degraded into conjugated and/or methylated forms of CAA, FA and COA before being excreted gradually in the urine.  相似文献   

8.
Tseng YL  Sun CY  Kuo FH 《Steroids》2006,71(9):817-827
Recently, the endogenous origin of nandrolone (19-nortestosterone) and other 19-norsteroids has been a focus of research in the field of drug testing in sport. In the present study, we investigated metabolites conjugated to a glucuronic acid and to a sulfuric acid in urine following administration of four xenobiotic 19-norsteroids. Adult male volunteers administered a single oral dose (10 mg) of each of four 19-norsteroids. Urinary samples collected from 0 to 120 h were subjected to methanolysis and beta-glucuronidase hydrolysis and were derivatized by N-methyl-N-trimethylsilyltrifluoroacetamide (MSTFA) before gas chromatography-mass spectrometry analysis. We confirmed that 19-norandrosterone (19-NA) and 19-noretiocholanolone (19-NE) were present in both glucuronide (g) and sulfate (s) conjugates and 19-norepiandrosterone (19-NEA) was excreted exclusively as a sulfate fraction in urine of all 19-norsteroids tested. The overall levels of the three metabolites can be ranked as follows: 19-NA(g+s)>19-NE(g+s)>19-NEA(s). The concentration profiles of these three metabolites in urine peaked between 2 to 12h post-administration and declined thereafter until approximately 72-96 h. 19-NA was most prominent throughout the first 24 h post-administration, except for a case in which an inverse relationship was found after 6h post-administration of nandrolone. Furthermore, we found that sulfate conjugates were present in both 19-NA and 19-NE metabolites in urine of all 19-norsteroids tested. The averaged total amounts of metabolites (i.e. 19-NA(s+g)+19-NE(s+g)+19-NEA(s)) excreted in urine were 38.6, 42.9, 48.3 and 21.6% for nandrolone, 19-nor-4-androsten-3,17-dione, 19-nor-4-androsten-3beta,17beta-diol and 19-nor-5-androstene-3beta,17beta-diol, respectively. Results from the excretion studies demonstrate significance of sulfate-conjugated metabolites on interpretation of misuse of the 19-norsteroids.  相似文献   

9.
The metabolism of four sulphonamides in cows   总被引:1,自引:0,他引:1       下载免费PDF全文
1. The metabolism of sulphanilamide, sulphadimidine (4,6-dimethyl-2-sulphanilamidopyrimidine), sulphamethoxazole (5-methyl-3-sulphanilamidoisoxazole) and sulphadoxine (5,6-dimethoxy-4-sulphanilamidopyrimidine) given by intravenous injection has been examined in cows. 2. The sulphonamides were present mainly as unchanged drugs in blood samples collected 2h after administration. 3. The sulphonamides were excreted in the milk partly as unchanged drugs and partly as conjugated metabolites whereas only small amounts were excreted as the N(4)-acetyl derivatives. 4. The unchanged drug and the N(4)-acetyl derivative were the major constituents in urine samples after administration of sulphanilamide, sulphamethoxazole and sulphadoxine. 5. Besides the unchanged drug, the N(4)-acetyl derivative and the conjugated metabolites, three further metabolites of sulphadimidine were isolated from urine samples and identified. They were 5-hydroxy-4,6-dimethyl-2-sulphanilamidopyrimidine, 4-hydroxymethyl-6-methyl-2-sulphanilamidopyrimidine and sulphaguanidine.  相似文献   

10.
Dietary intervention studies have shown that flavanols and inorganic nitrate can improve vascular function, suggesting that these two bioactives may be responsible for beneficial health effects of diets rich in fruits and vegetables. We aimed to study interactions between cocoa flavanols (CF) and nitrate, focusing on absorption, bioavailability, excretion, and efficacy to increase endothelial function. In a double-blind randomized, dose–response crossover study, flow-mediated dilation (FMD) was measured in 15 healthy subjects before and at 1, 2, 3, and 4 h after consumption of CF (1.4–10.9 mg/kg bw) or nitrate (0.1–10 mg/kg bw). To study flavanol–nitrate interactions, an additional intervention trial was performed with nitrate and CF taken in sequence at low and high amounts. FMD was measured before (0 h) and at 1 h after ingestion of nitrate (3 or 8.5 mg/kg bw) or water. Then subjects received a CF drink (2.7 or 10.9 mg/kg bw) or a micro- and macronutrient-matched CF-free drink. FMD was measured at 1, 2, and 4 h thereafter. Blood and urine samples were collected and assessed for CF and nitric oxide (NO) metabolites with HPLC and gas-phase reductive chemiluminescence. Finally, intragastric formation of NO after CF and nitrate consumption was investigated. Both CF and nitrate induced similar intake-dependent increases in FMD. Maximal values were achieved at 1 h postingestion and gradually decreased to reach baseline values at 4 h. These effects were additive at low intake levels, whereas CF did not further increase FMD after high nitrate intake. Nitrate did not affect flavanol absorption, bioavailability, or excretion, but CF enhanced nitrate-related gastric NO formation and attenuated the increase in plasma nitrite after nitrate intake. Both flavanols and inorganic nitrate can improve endothelial function in healthy subjects at intake amounts that are achievable with a normal diet. Even low dietary intake of these bioactives may exert relevant effects on endothelial function when ingested together.  相似文献   

11.
Eight women were recruited for studying the effects of a meal on overall antioxidant status. Subjects resided in a metabolic research unit for two 36-h periods. During period A, subjects fasted overnight (12 h) and were then given a breakfast, a lunch, a snack, and a dinner. During period B, subjects fasted for 23 h and were then given a dinner. These meals were designed to contain negligible antioxidants. Blood samples were collected for analyzing total antioxidant capacity (TAC) and individual antioxidants. The results showed that serum TAC significantly increased by up to 23% after the consumption of the lunch and dinner during period A. Serum TAC did not increase until after the consumption of the dinner during period B. Among the antioxidants (vitamin C, alpha-tocopherol, bilirubin, and uric acid) examined, serum uric acid was the only one that showed a significant postprandial increase, which was also parallel to the postprandial response in serum TAC. These results indicate that food intake, even if low in antioxidants, can increase the serum total antioxidant activity.  相似文献   

12.
After oral administration of metandienone (17 alpha-methyl-androsta-1,4-dien-17 beta-ol-3-one) to male volunteers conjugated metabolites are isolated from urine via XAD-2-adsorption, enzymatic hydrolysis and preparative high-performance liquid chromatography (HPLC). Four conjugated metabolites are identified by gas chromatography-mass spectrometry (GC/MS) with electron impact (EI)-ionization after derivatization with N-methyl-N-trimethyl-silyl-trifluoroacetamide/trimethylsilyl-imidazole (MSTFA/TMS-Imi) and comparison with synthesized reference compounds: 17 alpha-methyl-5 beta-androst-1-en-17 beta-ol-3-one (II), 17 alpha-methyl-5 beta-androst-1-ene-3 alpha,17 beta-diol (III), 17 beta-methyl-5 beta-androst-1-ene-3 alpha,17 alpha-diol (IV) and 17 alpha-methyl-5 beta-androstane-3 alpha,17 beta-diol (V). After administration of 40 mg of metandienone four bis-hydroxy-metabolites--6 beta,12-dihydroxy-metandienone (IX), 6 beta,16 beta-dihydroxy-metandienone (X), 6 beta,16 alpha-dihydroxy-metandienone (XI) and 6 beta,16 beta-dihydroxy-17-epimetandienone (XII)--were detected in the unconjugated fraction. The metabolites III, IV and V are excreted in a comparable amount to the unconjugated excreted metabolites 17-epimetandienone (VI), 6 beta-hydroxy-metandienone (VII) and 6 beta-hydroxy-17-epimetandienone (VIII). Whereas the unconjugated excreted metabolites show maximum excretion rates between 4 and 12 h after administration the conjugated metabolites III, IV and V are excreted with maximum rates between 12 and 34 h.  相似文献   

13.
Epidemiological studies suggest that a moderate consumption of anthocyanins may be associated with protection against coronary heart disease. The main dietary sources of anthocyanins include red-coloured fruits and red wine. Although dietary anthocyanins comprise a diverse mixture of molecules, little is known how structural diversity relates to their bioavailability and biological function. The aim of the present study was to evaluate the absorption and metabolism of the 3-monoglucosides of delphinidin, cyanidin, petunidin, peonidin and malvidin in humans and to examine both the effect of consuming a red wine extract on plasma antioxidant status and on monocyte chemoattractant protein 1 production in healthy human subjects. After a 12-h overnight fast, seven healthy volunteers received 12 g of an anthocyanin extract and provided 13 blood samples in the 24 h following the test meal. Furthermore, urine was collected during this 24-h period. Anthocyanins were detected in their intact form in both plasma and urine samples. Other anthocyanin metabolites could also be detected in plasma and urine and were identified as glucuronides of peonidin and malvidin. Anthocyanins and their metabolites appeared in plasma about 30 min after ingestion of the test meal and reached their maximum value around 1.6 h later for glucosides and 2.5 h for glucuronides. Total urinary excretion of red wine anthocyanins was 0.05+/-0.01% of the administered dose within 24 h. About 94% of the excreted anthocyanins was found in urine within 6 h. In spite of the low concentration of anthocyanins found in plasma, an increase in the antioxidant capacity and a decrease in MCP-1 circulating levels in plasma were observed.  相似文献   

14.
When administered to rats, echitamine was absorbed rapidly from the tissues and was detected in circulation within 30 min. The drug level reached a maximum value by 2 h and then decreased steadily. The drug had completely disappeared from the blood in 6 h. The presence of echitamine was observed within 2 h in urine and the maximum amount of drug was excreted between 2 and 4 h. About 90% of the drug was excreted in urine in 24 h and the drug could not be detected in urine after 48 h. Along with echitamine, its metabolites were also detected in the urine. Plumbagin was not detected in blood upto 24 h when administered into rats. The drug was detected in urine within 4 h after administration; a major portion of the drug was excreted in urine by 24 h and traces of the drug were observed in the urine even after 48 h.  相似文献   

15.
Previous studies have shown that rat intestinal immunoglobulin A (IgA) concentration and lymphocyte composition of the intestinal immune system were influenced by a highly enriched cocoa diet. The aim of this study was to dissect the mechanisms by which a long-term high cocoa intake was capable of modifying gut secretory IgA in Wistar rats. After 7 weeks of nutritional intervention, Peyer's patches, mesenteric lymph nodes and the small intestine were excised for gene expression assessment of IgA, transforming growth factor β, C-C chemokine receptor-9 (CCR9), interleukin (IL)-6, CD40, retinoic acid receptors (RARα and RARβ), C-C chemokine ligand (CCL)-25 and CCL28 chemokines, polymeric immunoglobulin receptor and toll-like receptors (TLR) expression by real-time polymerase chain reaction. As in previous studies, secretory IgA concentration decreased in intestinal wash and fecal samples after cocoa intake. Results from the gene expression showed that cocoa intake reduced IgA and IL?6 in Peyer's patches and mesenteric lymph nodes, whereas in small intestine, cocoa decreased IgA, CCR9, CCL28, RARα and RARβ. Moreover, cocoa-fed animals presented an altered TLR expression pattern in the three compartments studied. In conclusion, a high-cocoa diet down-regulated cytokines such as IL-6, which is required for the activation of B cells to become IgA-secreting cells, chemokines and chemokine receptors, such as CCL28 and CCR9 together with RARα and RARβ, which are involved in the gut homing of IgA-secreting cells. Moreover, cocoa modified the cross-talk between microbiota and intestinal cells as was detected by an altered TLR pattern. These overall effects in the intestine may explain the intestinal IgA down-regulatory effect after the consumption of a long-term cocoa-enriched diet.  相似文献   

16.
1. (+/-)-2-Amino-1-phenyl[1-(14)C]propan-1-ol ([(14)C]norephedrine) was administered orally to man, rat and rabbit and the metabolites excreted in the urine were identified and measured. Pronounced species differences in the metabolism of the drug were found. 2. Three male human subjects, receiving 25mg each of [(14)C]norephedrine hydrochloride, excreted over 90% of the (14)C in the first day. The main metabolite was the unchanged drug (86% of the dose) and minor metabolites were hippuric acid and 4-hydroxynorephedrine. 3. In rats given 12mg of the drug/kg almost 80% of the (14)C administered was excreted in the first day. The major metabolites in the urine were the unchanged drug (48% of the dose), 4-hydroxynorephedrine (28%) and trace amounts of side-chain degradation products. 4. Rabbits given 12mg of the drug/kg excreted 85-95% of the dose of (14)C in the urine in the first 24h after dosing. The major metabolites in the urine were conjugates of 1,2-dihydroxy-1-phenylpropane (31% of the dose) and of 1-hydroxy-1-phenylpropan-2-one (27%) and hippuric acid (20%). The unchanged drug was excreted in relatively small amounts (8%).  相似文献   

17.
After single-dose administration of 40 or 60 mg of dihydrocodeine (DHC, in a slow-release tablet) to four healthy individuals known to be extensive metabolizers of debrisoquine, the urinary excretion of DHC and its four major metabolites, dihydrocodeine-6-glucuronide, nordihydrocodeine, dihydromorphine and nordihydromorphine, was assessed using micellar electrokinetic capillary chromatography (MECC). DHC and two of its metabolites (dihydrocodeine-6-glucuronide and nordihydrocodeine) could be analyzed by direct urine injection, whereas the metabolic pattern was obtained by copolymeric bonded-phase extraction of the solutes from both plain and hydrolyzed urine specimens prior to analysis. The total DHC equivalents exceted within 8 and 24 h were determined to be 30.4 ± 7.7% (n = 5) and 63.8 ± 6.1% (n = 2), respectively, and only about 4% of the excreted DHC equivalents were identified as morphinoids. Furthermore, almost no morphinoid metabolites of DHC could be found after administration of quinidine (200 mg of quinidine sulfate) 2 h prior to DHC intake.  相似文献   

18.
In this study, we measured the excretion rate of nicotine and its two major metabolites, cotinine and trans-3′-hydroxycotinine (THOC), in the urine of 25 healthy smokers and 15 smokers who underwent a coronary artery bypass surgery or coronary angioplasty. After 1 day of smoking cessation, urine samples were collected in the morning, before smoking two cigarettes, and then three times after smoking, approximately 4 h apart. The results show that (i) in healthy smokers, nicotine and its two major metabolites were present at high concentration in the first urine sample after smoking, (ii) in smokers with cardiovascular disease nicotine and cotinine were less excreted whereas THOC was more excreted, mainly in the second urine sample. We conclude that this shift in nicotine metabolism may contribute to smoking-induced cardiovascular disease. (Mol Cell Biochem xxx: 241–244, 2005)  相似文献   

19.

Background

To unravel true links between diet and health, it is important that dietary exposure is accurately measured. Currently, mainly self-reporting methods (e.g. food frequency questionnaires and 24-h recalls) are used to assess food intake in epidemiological studies. However, these traditional instruments are subjective measures and contain well-known biases. Especially, estimating the intake of the group of confectionary products, such as products containing cocoa and liquorice, remains a challenge. The use biomarkers of food intake (BFIs) may provide a more objective measurement. However, an overview of current candidate biomarkers and their validity is missing for both cocoa- and liquorice-containing foods.

Objective

The purpose of the current study was to (1) identify currently described candidate BFIs for cocoa (products) and liquorice, (2) to evaluate the validity of these identified candidate BFIs and (3) to address further validation and/or identification work to be done.

Methods

This systematic review was based on a comprehensive literature search of three databases (PubMed, Scopus and ISI web of Science), to identify candidate BFIs. Via a second search step in the Human Metabolome Database (HMDB), the Food Database (FooDB) and Phenol-Explorer, the specificity of the candidate BFIs was evaluated, followed by an evaluation of the validity of the specific candidate BFIs, via pre-defined criteria.

Results

In total, 37 papers were included for cocoa and 8 papers for liquorice. For cocoa, 164 unique candidate BFIs were obtained, and for liquorice, four were identified in total. Despite the high number of identified BFIs for cocoa, none of the metabolites was specific. Therefore, the validity of these compounds was not further examined. For liquorice intake, 18-glycyrrhetinic acid (18-GA) was found to have the highest assumed validity.

Conclusions

For cocoa, specific BFIs were missing, mainly because the individual BFIs were also found in foods having a similar composition, such as tea (polyphenols) or coffee (caffeine). However, a combination of individual BFIs might lead to discriminating profiles between cocoa (products) and foods with a similar composition. Therefore, studies directly comparing the consumption of cocoa to these similar products are needed, enabling efforts to find a unique profile per product. For liquorice, we identified 18-GA as a promising BFI; however, important information on its validity is missing; thus, more research is necessary. Our findings indicate a need for more studies to determine acceptable BFIs for both cocoa and liquorice.
  相似文献   

20.
Abstract

The urinary excretion time courses of pyrene-1,6-dione (P16D), pyrene-1,8-dione (P18D) and 1-hydroxypyrene (1-OHP) were compared in Sprague–Dawley and Wistar rats. Groups of five male rats, of about 200 g of body weight, were injected intravenously with 0.05, 0.5, 5 and 50 µmol pyrene kg?1 of body weight. Urine was collected at 2, 4, 6, 8, 10, 12, 18, 24, 30, 42 and 48 h post-dosing. Pyrene metabolites were measured by high-performance liquid chromatography (HPLC)/fluorescence after enzymatic hydrolysis of the glucurono- and sulfo-conjugates, extraction on Sep-Pak C18 cartridges and, for the analysis of dione metabolites, derivatization to stable diacetoxypyrene molecules. Over the 48-h sampling period, on average 17.4–25.6% of the injected pyrene was excreted overall as P16D, 6.4–8.8% as P18D and 0.6–0.8% as 1-OHP in the urine of Sprague–Dawley rats. By comparison, on average 10.3–14.7% of the intravenous pyrene dose was recovered as P16D, 4.8–6.4% as P18D and 0.3–0.4% as 1-OHP in the urine of Wistar rats. In both strains of rats there was no clear effect of the dose on the 0–48-h cumulative urinary excretion of P18D and 1-OHP over the entire dose range, while the percentage of dose recovered overall as P16D in urine at the highest dose (50 µmol kg?1) was statistically lower than at the other doses. The 0–48-h cumulative percentage of pyrene dose excreted as metabolites in the urine of Sprague–Dawley rats was also significantly higher than in Wistar rats (p<0.01) exposed under identical conditions. As for the urinary excretion-time courses of the different metabolites, for a given dose and strain of rats, excretion curves of P16D, P18D and 1-OHP generally evolved in parallel. There was also no clear effect of the dose on the excretion rate, thus half-life, of pyrene metabolites, except for P16D in Sprague–Dawley rats at the highest dose where elimination tended to be slower compared with the other doses (p<0.01). The average first-order elimination half-life of P16D, P18D and 1-OHP was 4.0, 5.7 and 4.1 h, respectively, in Sprague–Dawley rats, and 5.1, 6.1 and 5.1 h, respectively, in Wistar rats (all doses combined but excluding the highest dose for P16D). This study showed the relative importance of metabolic pathways leading to diones compared with 1-OHP. These dioxygenated metabolites appear to be interesting biomarkers of pyrene exposure at environmentally and occupationally relevant doses. Their adequacy as biomarkers of human exposure has yet to be confirmed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号