首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
CD8(+) T cells are thought to play an important role in protective immunity to tuberculosis. Although several nonprotein ligands have been identified for CD1-restricted CD8(+) CTLs, epitopes for classical MHC class I-restricted CD8(+) T cells, which most likely represent a majority among CD8(+) T cells, have remained ill defined. HLA-A*0201 is one of the most prevalent class I alleles, with a frequency of over 30% in most populations. HLA-A2/K(b) transgenic mice were shown to provide a powerful model for studying induction of HLA-A*0201-restricted immune responses in vivo. The Ag85 complex, a major component of secreted Mycobacterium tuberculosis proteins, induces strong CD4(+) T cell responses in M. tuberculosis-infected individuals, and protection against tuberculosis in Ag85-DNA-immunized animals. In this study, we demonstrate the presence of HLA class I-restricted, CD8(+) T cells against Ag85B of M. tuberculosis in HLA-A2/K(b) transgenic mice and HLA-A*0201(+) humans. Moreover, two immunodominant Ag85 peptide epitopes for HLA-A*0201-restricted, M. tuberculosis-reactive CD8(+) CTLs were identified. These CD8(+) T cells produced IFN-gamma and TNF-alpha and recognized Ag-pulsed or bacillus Calmette-Guérin-infected, HLA-A*0201-positive, but not HLA-A*0201-negative or uninfected human macrophages. This CTL-mediated killing was blocked by anti-CD8 or anti-HLA class I mAb. Using fluorescent peptide/HLA-A*0201 tetramers, Ag85-specific CD8(+) T cells could be visualized in bacillus Calmette-Guérin-responsive, HLA-A*0201(+) individuals. Collectively, our results demonstrate the presence of HLA class I-restricted CD8(+) CTL against a major Ag of M. tuberculosis and identify Ag85B epitopes that are strongly recognized by HLA-A*0201-restricted CD8(+) T cells in humans and mice. These epitopes thus represent potential subunit components for the design of vaccines against tuberculosis.  相似文献   

2.
The recent West Nile virus (WNV) outbreak in the United States underscores the importance of understanding human immune responses to this pathogen. Via the presentation of viral peptide ligands at the cell surface, class I HLA mediate the T cell recognition and killing of WNV infected cells. At this time, there are two key unknowns in regards to understanding protective T cell immunity: 1) the number of viral ligands presented by the HLA of infected cells, and 2) the distribution of T cell responses to these available HLA/viral complexes. Here, comparative mass spectroscopy was applied to determine the number of WNV peptides presented by the HLA-A*11:01 of infected cells after which T cell responses to these HLA/WNV complexes were assessed. Six viral peptides derived from capsid, NS3, NS4b, and NS5 were presented. When T cells from infected individuals were tested for reactivity to these six viral ligands, polyfunctional T cells were focused on the GTL9 WNV capsid peptide, ligands from NS3, NS4b, and NS5 were less immunogenic, and two ligands were largely inert, demonstrating that class I HLA reduce the WNV polyprotein to a handful of immune targets and that polyfunctional T cells recognize infections by zeroing in on particular HLA/WNV epitopes. Such dominant HLA/peptide epitopes are poised to drive the development of WNV vaccines that elicit protective T cells as well as providing key antigens for immunoassays that establish correlates of viral immunity.  相似文献   

3.
Although CD8(+) T cells help control Mycobacterium tuberculosis infection, their M. tuberculosis Ag repertoire, in vivo frequency, and functionality in human tuberculosis (TB) remains largely undefined. We have performed genome-based bioinformatics searches to identify new M. tuberculosis epitopes presented by major HLA class I supertypes A2, A3, and B7 (covering 80% of the human population). A total of 432 M. tuberculosis peptides predicted to bind to HLA-A*0201, HLA-A*0301, and HLA-B*0702 (representing the above supertypes) were synthesized and HLA-binding affinities determined. Peptide-specific CD8(+) T cell proliferation assays (CFSE dilution) in 41 M. tuberculosis-responsive donors identified 70 new M. tuberculosis epitopes. Using HLA/peptide tetramers for the 18 most prominently recognized HLA-A*0201-binding M. tuberculosis peptides, recognition by cured TB patients' CD8(+) T cells was validated for all 18 epitopes. Intracellular cytokine staining for IFN-γ, IL-2, and TNF-α revealed mono-, dual-, as well as triple-positive CD8(+) T cells, indicating these M. tuberculosis peptide-specific CD8(+) T cells were (poly)functional. Moreover, these T cells were primed during natural infection, because they were absent from M. tuberculosis-noninfected individuals. Control CMV peptide/HLA-A*0201 tetramers stained CD8(+) T cells in M. tuberculosis-infected and noninfected individuals equally, whereas Ebola peptide/HLA-A*0201 tetramers were negative. In conclusion, the M. tuberculosis-epitope/Ag repertoire for human CD8(+) T cells is much broader than hitherto suspected, and the newly identified M. tuberculosis Ags are recognized by (poly)functional CD8(+) T cells during control of infection. These results impact on TB-vaccine design and biomarker identification.  相似文献   

4.
Many components contribute to immunodominance in the response to a complex virus, but their relative importance is unclear. This was addressed using vaccinia virus and HLA-A*0201 as the model system. A comprehensive analysis of 18 viral proteins recognized by CD8(+) T cell responses demonstrated that approximately one-fortieth of all possible 9- to 10-mer peptides were high-affinity HLA-A*0201 binders. Peptide immunization and T cell recognition data generated from 90 peptides indicated that about one-half of the binders were capable of eliciting T cell responses, and that one-seventh of immunogenic peptides are generated by natural processing. Based on these results, we estimate that vaccinia virus encodes approximately 150 dominant and subdominant epitopes restricted in by HLA-A*0201. However, of all these potential epitopes, only 15 are immunodominant and actually recognized in vivo during vaccinia virus infection of HLA-A*0201 transgenic mice. Neither peptide-binding affinity, nor complex stability, nor TCR avidity, nor amount of processed epitope appeared to strictly correlate with immunodominance status. Additional experiments suggested that vaccinia infection impairs the development of responses directed against subdominant epitopes. This suggested that additional factors, including immunoregulatory mechanisms, restrict the repertoire of T cell specificities after vaccinia infection by a factor of at least 10.  相似文献   

5.
Multiple sclerosis (MS) is a demyelinating inflammatory disease of the CNS. Though originally believed to be CD4-mediated, additional immune effector mechanisms, including myelin-specific CD8(+) T cells, are now proposed to participate in the pathophysiology of MS. To study the immunologic and encephalitogenic behavior of HLA-A*0201-binding myelin-derived epitopes in vivo, we used a humanized HLA-A*0201-transgenic mouse model. Eight HLA-A*0201-binding peptides derived from myelin oligodendrocyte glycoprotein (MOG), an immunodominant myelin self-Ag, were identified in silico. After establishing their relative affinity for HLA-A*0201 and their capacity to form stable complexes with HLA-A*0201 in vitro, their immunological characteristics were studied in HLA-A*0201-transgenic mice. Five MOG peptides, which bound stably to HLA-A*0201 exhibited strong immunogenicity by inducing a sizeable MOG-specific HLA-A*0201-restricted CD8(+) T cell response in vivo. Of these five candidate epitopes, four were processed by MOG-transfected RMA target cells and two peptides proved immunodominant in vivo in response to a plasmid-encoding native full-length MOG. One of the immunodominant MOG peptides (MOG(181)) generated a cytotoxic CD8(+) T cell response able to aggravate CD4(+)-mediated EAE. Therefore, this detailed in vivo characterization provides a hierarchy of candidate epitopes for MOG-specific CD8(+) T cell responses in HLA-A*0201 MS patients identifying the encephalitogenic MOG(181) epitope as a primary candidate.  相似文献   

6.
Evidence obtained from both animal models and humans suggests that T cells specific for HSV-1 and HSV-2 glycoprotein D (gD) contribute to protective immunity against herpes infection. However, knowledge of gD-specific human T cell responses is limited to CD4+ T cell epitopes, with no CD8+ T cell epitopes identified to date. In this study, we screened the HSV-1 gD amino acid sequence for HLA-A*0201-restricted epitopes using several predictive computational algorithms and identified 10 high probability CD8+ T cell epitopes. Synthetic peptides corresponding to four of these epitopes, each nine to 10 amino acids in length, exhibited high-affinity binding in vitro to purified human HLA-A*0201 molecules. Three of these four peptide epitopes, gD53-61, gD70-78, and gD278-286, significantly stabilized HLA-A*0201 molecules on T2 cell lines and are highly conserved among and between HSV-1 and HSV-2 strains. Consistent with this, in 33 sequentially studied HLA-A*0201-positive, HSV-1-seropositive, and/or HSV-2-seropositive healthy individuals, the most frequent and robust CD8+ T cell responses, assessed by IFN-gamma ELISPOT, CD107a/b cytotoxic degranulation, and tetramer assays, were directed mainly against gD53-61, gD70-78, and gD278-286 epitopes. In addition, CD8+ T cell lines generated by gD53-61, gD70-78, and gD278-286 peptides recognized infected target cells expressing native gD. Lastly, CD8+ T cell responses specific to gD53-61, gD70-78, and gD278-286 epitopes were induced in HLA-A*0201 transgenic mice following ocular or genital infection with either HSV-1 or HSV-2. The functional gD CD8+ T cell epitopes described herein are potentially important components of clinical immunotherapeutic and immunoprophylactic herpes vaccines.  相似文献   

7.
Type 1 diabetes is an autoimmune disease characterized by T cell responses to β cell Ags, including insulin. Investigations employing the NOD mouse model of the disease have revealed an essential role for β cell-specific CD8(+) T cells in the pathogenic process. As CD8(+) T cells specific for β cell Ags are also present in patients, these reactivities have the potential to serve as therapeutic targets or markers for autoimmune activity. NOD mice transgenic for human class I MHC molecules have previously been employed to identify T cell epitopes having important relevance to the human disease. However, most studies have focused exclusively on HLA-A*0201. To broaden the reach of epitope-based monitoring and therapeutic strategies, we have looked beyond this allele and developed NOD mice expressing human β(2)-microglobulin and HLA-A*1101 or HLA-B*0702, which are representative members of the A3 and B7 HLA supertypes, respectively. We have used islet-infiltrating T cells spontaneously arising in these strains to identify β cell peptides recognized in the context of the transgenic HLA molecules. This work has identified the insulin C-peptide as an abundant source of CD8(+) T cell epitopes. Responses to these epitopes should be of considerable utility for immune monitoring, as they cannot reflect an immune reaction to exogenously administered insulin, which lacks the C-peptide. Because the peptides bound by one supertype member were found to bind certain other members also, the epitopes identified in this study have the potential to result in therapeutic and monitoring tools applicable to large numbers of patients and at-risk individuals.  相似文献   

8.
The consequences of human lymphocytic choriomeningitis virus (LCMV) infection can be severe, including aseptic meningitis in immunocompetent individuals, hydrocephalus or chorioretinitis in fetal infection, or a highly lethal outcome in immunosuppressed individuals. In murine models of LCMV infection, CD8(+) T cells play a primary role in providing protective immunity, and there is evidence that cellular immunity may also be important in related arenavirus infections in humans. For this reason, we sought to identify HLA-A2 supertype-restricted epitopes from the LCMV proteome and evaluate them as vaccine determinants in HLA transgenic mice. We identified four HLA-A*0201-restricted peptides-nucleoprotein NP(69-77), glycoprotein precursor GPC(10-18), GPC(447-455), and zinc-binding protein Z(49-58)-that displayed high-affinity binding (< or =275 nM) to HLA-A*0201, induced CD8(+) T-cell responses of high functional avidity in HLA-A*0201 transgenic mice, and were naturally processed from native LCMV antigens in HLA-restricted human antigen presenting cells. One of the epitopes (GPC(447-455)), after peptide immunization of HLA-A*0201 mice, induced CD8(+) T cells capable of killing peptide-pulsed HLA-A*0201-restricted target cells in vivo and protected mice against lethal intracranial challenge with LCMV.  相似文献   

9.
CD4+ T cells contribute importantly to the antitumor T cell response, and thus, long peptides comprising CD4 and CD8 epitopes may be efficient cancer vaccines. We have previously identified an overexpressed antigen in melanoma, MELOE-1, presenting a CD8+ T cell epitope, MELOE-136–44, in the HLA-A*0201 context. A T cell repertoire against this epitope is present in HLA-A*0201+ healthy subjects and melanoma patients and the adjuvant injection of TIL containing MELOE-1 specific CD8+ T cells to melanoma patients was shown to be beneficial. In this study, we looked for CD4+ T cell epitopes in the vicinity of the HLA-A*0201 epitope. Stimulation of PBMC from healthy subjects with MELOE-126–46 revealed CD4 responses in multiple HLA contexts and by cloning responsive CD4+ T cells, we identified one HLA-DRβ1*1101-restricted and one HLA-DQβ1*0603-restricted epitope. We showed that the two epitopes could be efficiently presented to CD4+ T cells by MELOE-1-loaded dendritic cells but not by MELOE-1+ melanoma cell-lines. Finally, we showed that the long peptide MELOE-122–46, containing the two optimal class II epitopes and the HLA-A*0201 epitope, was efficiently processed by DC to stimulate CD4+ and CD8+ T cell responses in vitro, making it a potential candidate for melanoma vaccination.  相似文献   

10.
We recently identified HLA class I-presented epitopes in the major outer membrane protein (MOMP) of Chlamydia trachomatis that elicit CTL responses in human genital tract infections. T cells possessing cytolytic activities specific for these epitopes could be detected following in vitro stimulation of peripheral blood CD8(+) T cells with peptides. In the present study we used HLA-A2 tetramers for detailed characterization of MOMP-specific CTL responses. Ex vivo tetramer analysis detected MOMP-specific T cells in the peripheral blood of infected individuals at significant frequencies (0.01-0.20% of CD8(+) T cells). After in vitro stimulation with peptides, the frequencies of MOMP peptide-specific T cells increased up to 2.34% of CD8(+) T cells in bulk cultures. In contrast, HLA-A2/MOMP tetramer-binding T cells were virtually undetectable in the peripheral blood from uninfected individuals, either ex vivo or after 3 wk of in vitro peptide stimulation of their T cells. Magnetically sorted, tetramer-bound T cells specifically lysed peptide-pulsed targets as well as C. trachomatis-infected epithelial cells with nearly 50-fold greater per cell efficiency than that of unsorted populations. This study provides conclusive evidence of in vivo induction of HLA class I-restricted CD8(+) CTL responses to C. trachomatis MOMP. Direct detection of these cells with tetramers will allow their further characterization without prior manipulation and facilitate monitoring of CTL responses during infections and in immunization trials with MOMP-based vaccines.  相似文献   

11.
Recovery from Lassa virus (LASV) infection usually precedes the appearance of neutralizing antibodies, indicating that cellular immunity plays a primary role in viral clearance. To date, the role of LASV-specific CD8(+) T cells has not been evaluated in humans. To facilitate such studies, we utilized a predictive algorithm to identify candidate HLA-A2 supertype epitopes from the LASV nucleoprotein and glycoprotein precursor (GPC) genes. We identified three peptides (GPC(42-50), GLVGLVTFL; GPC(60-68), SLYKGVYEL; and GPC(441-449), YLISIFLHL) that displayed high-affinity binding (< or =98 nM) to HLA-A*0201, induced CD8(+) T-cell responses of high functional avidity in HLA-A*0201 transgenic mice, and were naturally processed from native LASV GPC in human HLA-A*0201-positive target cells. HLA-A*0201 mice immunized with either GPC(42-50) or GPC(60-68) were protected against challenge with a recombinant vaccinia virus that expressed LASV GPC. The epitopes identified in this study represent potential diagnostic reagents and candidates for inclusion in epitope-based vaccine constructs. Our approach is applicable to any pathogen with existing sequence data, does not require manipulation of the actual pathogen or access to immune human donors, and should therefore be generally applicable to category A through C agents and other emerging pathogens.  相似文献   

12.
Epitopes from all available full-length sequences of yellow fever virus (YFV) and dengue fever virus (DENV) restricted by Human Leukocyte Antigen class I (HLA-I) alleles covering 12 HLA-I supertypes were predicted using the NetCTL algorithm. A subset of 179 predicted YFV and 158 predicted DENV epitopes were selected using the EpiSelect algorithm to allow for optimal coverage of viral strains. The selected predicted epitopes were synthesized and approximately 75% were found to bind the predicted restricting HLA molecule with an affinity, K(D), stronger than 500 nM. The immunogenicity of 25 HLA-A*02:01, 28 HLA-A*24:02 and 28 HLA-B*07:02 binding peptides was tested in three HLA-transgenic mice models and led to the identification of 17 HLA-A*02:01, 4 HLA-A*2402 and 4 HLA-B*07:02 immunogenic peptides. The immunogenic peptides bound HLA significantly stronger than the non-immunogenic peptides. All except one of the immunogenic peptides had K(D) below 100 nM and the peptides with K(D) below 5 nM were more likely to be immunogenic. In addition, all the immunogenic peptides that were identified as having a high functional avidity had K(D) below 20 nM. A*02:01 transgenic mice were also inoculated twice with the 17DD YFV vaccine strain. Three of the YFV A*02:01 restricted peptides activated T-cells from the infected mice in vitro. All three peptides that elicited responses had an HLA binding affinity of 2 nM or less. The results indicate the importance of the strength of HLA binding in shaping the immune response.  相似文献   

13.
The Ag specificity of the CTL response against CMV is directed almost entirely to a single CMV tegument protein, the phosphoprotein pp65. We report the identification of three peptides derived from the protein pp65 that displayed a high or intermediate binding to HLA-A*0201 molecules, which were also able to induce an in vitro CTL response in peripheral blood lymphocytes from CMV seropositive individuals. The peptide-specific CTLs generated were capable of recognizing the naturally processed pp65 either presented by CMV-infected cells or by cells infected with an adenovirus construct expressing pp65 in an HLA-A*0201-restricted manner. Thus, we were able to demonstrate responses to subdominant CTL epitopes in CMV-pp65 that were not detected in polyclonal cultures obtained by conventional stimulations. We also found that the amino acid sequences of the three peptides identified as HLA-A*0201-restricted CTL epitopes were conserved among different wild-type strains of CMV obtained from renal transplant patients, an AIDS patient, and a congenitally infected infant, as well as three laboratory strains of the virus (AD169, Towne and Davis). These observations suggest that these pp65 CTL peptide epitopes could potentially be used as synthetic peptide vaccines or for other therapeutic strategies aimed at HLA-A*0201-positive individuals, who represent approximately 40% of the European Caucasoid population. However, strain variation must be taken in consideration when the search for CTL epitopes is extended to other HLA class I alleles, because these mutations may span potential CTL epitopes for other HLA molecules, as it is described in this study.  相似文献   

14.
15.
HLA-A2 is the most frequent HLA molecule in Caucasians with HLA-A*0201 representing the most frequent allele; it was also the first human HLA allele for which peptide binding prediction was developed. The Bioinformatics and Molecular Analysis Section of the National Institutes of Health (BIMAS) and the University of Tübingen (Syfpeithi) provide the most popular prediction algorithms of peptide/MHC interaction on the World Wide Web. To test these predictions, HLA-A*0201-binding nine-amino acid peptides were searched by both algorithms in 19 structural CMV proteins. According to Syfpeithi, the top 2% of predicted peptides should contain the naturally presented epitopes in 80% of predictions (www.syfpeithi.de). Because of the high number of predicted peptides, the analysis was limited to 10 randomly chosen proteins. The top 2% of peptides predicted by both algorithms were synthesized corresponding to 261 peptides in total. PBMC from 10 HLA-A*0201-positive and CMV-seropositive healthy blood donors were tested by ex vivo stimulation with all 261 peptides using crossover peptide pools. IFN-gamma production in T cells measured by CFC was used as readout. However, only one peptide was found to be stimulating in one single donor. As a result of this work, we report a potential new T cell target protein, one previously unknown CD8-T cell-stimulating peptide, and an extensive list of CMV-derived potentially strong HLA-A*0201-binding peptides that are not recognized by T cells of HLA-A*0201-positive CMV-seropositive donors. We conclude that MHC/peptide binding predictions are helpful for locating epitopes in known target proteins but not necessarily for screening epitopes in proteins not known to be T cell targets.  相似文献   

16.
alpha fetoprotein (AFP)-derived peptide epitopes can be recognized by human T cells in the context of MHC class I. We determined the identity of AFP-derived peptides, presented in the context of HLA-A*0201, that could be recognized by the human (h) T cell repertoire. We screened 74 peptides and identified 3 new AFP epitopes, hAFP(137-145), hAFP(158-166), and hAFP(325-334), in addition to the previously reported hAFP(542-550.) Each possesses two anchor residues and stabilized HLA-A*0201 on T2 cells in a concentration-dependent class I binding assay. The peptides were stable for 2-4 h in an off-kinetics assay. Each peptide induced peptide-specific T cells in vitro from several normal HLA-A*0201 donors. Importantly, these hAFP peptide-specific T cells also were capable of recognizing HLA-A*0201(+)/AFP(+) tumor cells in both cytotoxicity assays and IFN-gamma enzyme-linked immunospot assays. The immunogenicity of each peptide was tested in vivo with HLA-A*0201/K(b)-transgenic mice. After immunization with each peptide emulsified in CFA, draining lymph node cells produced IFN-gamma on recognition of cells stably transfected with hAFP. Furthermore, AFP peptide-specific T cells could be identified in the spleens of mice immunized with dendritic cells transduced with an AFP-expressing adenovirus (AdVhAFP). Three of four AFP peptides could be identified by mass spectrometric analysis of surface peptides from an HLA-A*0201 human hepatocellular carcinoma (HCC) cell line. Thus, compelling immunological and physiochemical evidence is presented that at least four hAFP-derived epitopes are naturally processed and presented in the context of class I, are immunogenic, and represent potential targets for hepatocellular carcinoma immunotherapy.  相似文献   

17.
Multiple HLA class I alleles can bind peptides with common sequence motifs due to structural similarities in the peptide binding cleft, and these groups of alleles have been classified into supertypes. Nine major HLA supertypes have been proposed, including an A24 supertype that includes A*2301, A*2402, and A*3001. Evidence for this A24 supertype is limited to HLA sequence homology and/or similarity in peptide binding motifs for the alleles. To investigate the immunological relevance of this proposed supertype, we have examined two viral epitopes (from EBV and CMV) initially defined as HLA-A*2301-binding peptides. The data clearly demonstrate that each peptide could be recognized by CTL clones in the context of A*2301 or A*2402; thus validating the inclusion of these three alleles within an A24 supertype. Furthermore, CTL responses to the EBV epitope were detectable in both A*2301(+) and A*2402(+) individuals who had been previously exposed to this virus. These data substantiate the biological relevance of the A24 supertype, and the identification of viral epitopes with the capacity to bind promiscuously across this supertype could aid efforts to develop CTL-based vaccines or immunotherapy. The degeneracy in HLA restriction displayed by some T cells in this study also suggests that the dogma of self-MHC restriction needs some refinement to accommodate foreign peptide recognition in the context of multiple supertype alleles.  相似文献   

18.
A polyepitopic CD8(+)-T-cell response is thought to be critical for control of hepatitis C virus (HCV) infection. Using transgenic mice, we analyzed the immunogenicity and dominance of most known HLA-A2.1 epitopes presented during infection by using vaccines that carry the potential to enter clinical trials: peptides, DNA, and recombinant adenoviruses. The vaccines capacity to induce specific cytotoxic T lymphocytes and interferon gamma-producing cells revealed that immunogenic epitopes are clustered in specific antigens. For two key antigens, flanking regions were shown to greatly enhance the scope of epitope recognition, whereas a DNA-adenovirus prime-boost vaccination strategy augmented epitope immunogenicity, even that of subdominant ones. The present study reveals a clustered organization of HCV immunogenic HLA.A2.1 epitopes and strategies to modulate their dominance.  相似文献   

19.
Preferential HLA usage in the influenza virus-specific CTL response   总被引:5,自引:0,他引:5  
To study whether individual HLA class I alleles are used preferentially or equally in human virus-specific CTL responses, the contribution of individual HLA-A and -B alleles to the human influenza virus-specific CTL response was investigated. To this end, PBMC were obtained from three groups of HLA-A and -B identical blood donors and stimulated with influenza virus. In the virus-specific CD8(+) T cell population, the proportion of IFN-gamma- and TNF-alpha-producing cells, restricted by individual HLA-A and -B alleles, was determined using virus-infected C1R cells expressing a single HLA-A or -B allele for restimulation of these cells. In HLA-B*2705- and HLA-B*3501-positive individuals, these alleles were preferentially used in the influenza A virus-specific CTL response, while the contribution of HLA-B*0801 and HLA-A*0101 was minor in these donors. The magnitude of the HLA-B*0801-restricted response was even lower in the presence of HLA-B*2705. C1R cells expressing HLA-B*2705, HLA-A*0101, or HLA-A*0201 were preferentially lysed by virus-specific CD8(+) T cells. In contrast, the CTL response to influenza B virus was mainly directed toward HLA-B*0801-restricted epitopes. Thus, the preferential use of HLA alleles depended on the virus studied.  相似文献   

20.
Several gene-based vaccine approaches are being tested to drive multivalent cellular immune responses to control HIV-1 viral variants. To compare the utility of these approaches, HLA-A*0201 transgenic mice were genetically immunized with plasmids encoding wild-type (wt) gag-pol, codon-optimized (CO) gag-pol, and an expression library immunization (ELI) vaccine genetically re-engineered to express non-CO fragments of gag and pol fused to ubiquitin for proteasome targeting. Equimolar delivery of each vaccine into HLA-A*0201 transgenic mice generated CD8 T cell responses, with the ELI vaccine producing up to 10-fold higher responses than the wt or CO gag-pol plasmids against cognate and mutant epitopes. All three vaccines generated multivalent CD8 responses against varying numbers of epitopes after priming. However, when the animals were immunized again, the wt and CO gag-pol vaccines boosted only the responses against a subset of epitopes and attenuated the responses against all other Ags including epitopes from clade and drug-resistant viral variants. In contrast, the ELI vaccine boosted CD8 responses against all of the gag-pol Ags and against mutant epitopes from clade and drug-resistant variants. These data suggest that HIV-1 vaccines expressing structurally intact gag and pol proteins drive immunofocused CD8 responses that reduce the repertoire of T cell responses. In contrast, the genetically re-engineered ELI vaccine appears to better maintain the multivalent CD8 responses that may be required to control HIV-1 viral variants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号