首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
通过比较天祝白牦牛(Bos grunniens)与黄牛(Bos taurus)NGB蛋白三级结构,分析天祝白牦牛NGB蛋白氨基酸位点突变对其三级结构的影响.利用生物信息学在线分析网站及软件对天祝白牦牛和黄牛NGB蛋白的同源性、系统发育进化、三级结构进行比较分析.结果显示,天祝白牦牛NGB蛋白进化趋于保守,83号位点为未...  相似文献   

2.
Side chain optimization is an integral component of many protein modeling applications. In these applications, the conformational freedom of the side chains is often explored using libraries of discrete, frequently occurring conformations. Because side chain optimization can pose a computationally intensive combinatorial problem, the nature of these conformer libraries is important for ensuring efficiency and accuracy in side chain prediction. We have previously developed an innovative method to create a conformer library with enhanced performance. The Energy‐based Library (EBL) was obtained by analyzing the energetic interactions between conformers and a large number of natural protein environments from crystal structures. This process guided the selection of conformers with the highest propensity to fit into spaces that should accommodate a side chain. Because the method requires a large crystallographic data‐set, the EBL was created in a backbone‐independent fashion. However, it is well established that side chain conformation is strongly dependent on the local backbone geometry, and that backbone‐dependent libraries are more efficient in side chain optimization. Here we present the backbone‐dependent EBL (bEBL), whose conformers are independently sorted for each populated region of Ramachandran space. The resulting library closely mirrors the local backbone‐dependent distribution of side chain conformation. Compared to the EBL, we demonstrate that the bEBL uses fewer conformers to produce similar side chain prediction outcomes, thus further improving performance with respect to the already efficient backbone‐independent version of the library. Proteins 2014; 82:3177–3187. © 2014 Wiley Periodicals, Inc.  相似文献   

3.
Computational prediction of side‐chain conformation is an important component of protein structure prediction. Accurate side‐chain prediction is crucial for practical applications of protein structure models that need atomic‐detailed resolution such as protein and ligand design. We evaluated the accuracy of eight side‐chain prediction methods in reproducing the side‐chain conformations of experimentally solved structures deposited to the Protein Data Bank. Prediction accuracy was evaluated for a total of four different structural environments (buried, surface, interface, and membrane‐spanning) in three different protein types (monomeric, multimeric, and membrane). Overall, the highest accuracy was observed for buried residues in monomeric and multimeric proteins. Notably, side‐chains at protein interfaces and membrane‐spanning regions were better predicted than surface residues even though the methods did not all use multimeric and membrane proteins for training. Thus, we conclude that the current methods are as practically useful for modeling protein docking interfaces and membrane‐spanning regions as for modeling monomers. Proteins 2014; 82:1971–1984. © 2014 Wiley Periodicals, Inc.  相似文献   

4.
Protein folding problem remains a formidable challenge as main chain, side chain and solvent interactions remain entangled and have been difficult to resolve. Alanine‐based short peptides are promising models to dissect protein folding initiation and propagation structurally as well as energetically. The effect of N‐terminal diproline and charged side chains is assessed on the stabilization of helical conformation in alanine‐based short peptides using circular dichroism (CD) with water and methanol as solvent. A1 (Ac–Pro–Pro–Ala–Lys–Ala–Lys–Ala–Lys–Ala–NH2) is designed to assess the effect of N‐terminal homochiral diproline and lysine side chains to induce helical conformation. A2 (Ac–Pro–Pro–Glu–Glu–Ala–Ala–Lys–Lys–Ala–NH2) and A3 (Ac–d Pro–Pro–Glu–Glu–Ala–Ala–Lys–Lys–Ala–NH2) with N‐terminal homochiral and heterochiral diproline, respectively, are designed to assess the effect of Glu...Lys (i , i  + 4) salt bridge interactions on the stabilization of helical conformation. The CD spectra of A1 , A2 and A3 in water manifest different amplitudes of the observed polyproline II (PPII) signals, which indicate different conformational distributions of the polypeptide structure. The strong effect of solvent substitution from water to methanol is observed for the peptides, and CD spectra in methanol evidence A2 and A3 as helical folds. Temperature‐dependent CD spectra of A1 and A2 in water depict an isodichroic point reflecting coexistence of two conformations, PPII and β‐strand conformation, which is consistent with the previous studies. The results illuminate the effect of N‐terminal diproline and charged side chains in dictating the preferences for extended‐β, semi‐extended PPII and helical conformation in alanine‐based short peptides. The results of the present study will enhance our understanding on stabilization of helical conformation in short peptides and hence aid in the design of novel peptides with helical structures. Copyright © 2017 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

5.
《Proteins》2018,86(5):536-547
Additivity in binding affinity of protein‐protein complexes refers to the change in free energy of binding (ΔΔGbind) for double (or multiple) mutations which is approximately equal to the sum of their corresponding single mutation ΔΔGbind values. In this study, we have explored the additivity effect of double mutants, which shows a linear relationship between the binding affinity of double and sum of single mutants with a correlation of 0.90. However, the comparison of ΔΔGbind values showed a mean absolute deviation of 0.86 kcal/mol, and 25.6% of the double mutants show a deviation of more than 1 kcal/mol, which are identified as non‐additive. The additivity effects have been analyzed based on the influence of structural features such as accessible surface area, long range order, binding propensity change, surrounding hydrophobicity, flexibility, atomic contacts between the mutations and distance between the 2 mutations. We found that non‐additive mutations tend to be closer to each other and have more contacts. We have also used machine learning methods to discriminate additive and non‐additive mutations using structure‐based features, which showed the accuracies in the range of 0.77–0.92 for protein‐protein complexes belonging to different functions. Further, we have compared the additivity effects of protein stability along with binding affinity and explored the similarities and differences between them. The results obtained in this study provide insights into the effects of various structural features on binding affinity of double mutants, and will aid the development of accurate methods to predict the binding affinity of double mutants.  相似文献   

6.
The crystal structure of the triple‐helical peptide (Pro‐Hyp‐Gly)3‐Pro‐Arg‐Gly‐(Pro‐Hyp‐Gly)4 (POG3‐PRG‐POG4) was determined at 1.45 Å resolution. POG3‐PRG‐POG4 was designed to permit investigation of the side‐chain conformation of the Arg residues in a triple‐helical structure. Because of the alternative structure of one of three Arg residues, four side‐chain conformations were observed in an asymmetric unit. Among them, three adopt a ttg?t conformation and the other adopts a tg?g?t conformation. A statistical analysis of 80 Arg residues in various triple‐helical peptides showed that, unlike those in globular proteins, they preferentially adopt a tt conformation for χ1 and χ2, as observed in POG3‐PRG‐POG4. This conformation permits van der Waals contacts between the side‐chain atoms of Arg and the main‐chain atoms of the adjacent strand in the same molecule. Unlike many other host–guest peptides, in which there is a significant difference between the helical twists in the guest and the host peptides, POG3‐PRG‐POG4 shows a marked difference between the helical twists in the N‐terminal peptide and those in the C‐terminal peptide, separated near the Arg residue. This suggested that the unique side‐chain conformation of the Arg residue affects not only the conformation of the guest peptide, but also the conformation of the peptide away from the Arg residue. © 2014 Wiley Periodicals, Inc. Biopolymers 101: 1000–1009, 2014.  相似文献   

7.
The goal of this article is to reduce the complexity of the side chain search within docking problems. We apply six methods of generating side chain conformers to unbound protein structures and determine their ability of obtaining the bound conformation in small ensembles of conformers. Methods are evaluated in terms of the positions of side chain end groups. Results for 68 protein complexes yield two important observations. First, the end‐group positions change less than 1 Å on association for over 60% of interface side chains. Thus, the unbound protein structure carries substantial information about the side chains in the bound state, and the inclusion of the unbound conformation into the ensemble of conformers is very beneficial. Second, considering each surface side chain separately in its protein environment, small ensembles of low‐energy states include the bound conformation for a large fraction of side chains. In particular, the ensemble consisting of the unbound conformation and the two highest probability predicted conformers includes the bound conformer with an accuracy of 1 Å for 78% of interface side chains. As more than 60% of the interface side chains have only one conformer and many others only a few, these ensembles of low‐energy states substantially reduce the complexity of side chain search in docking problems. This approach was already used for finding pockets in protein–protein interfaces that can bind small molecules to potentially disrupt protein–protein interactions. Side‐chain search with the reduced search space will also be incorporated into protein docking algorithms. Proteins 2012. © 2011 Wiley Periodicals, Inc.  相似文献   

8.
To adopt a particular fold, a protein requires several interactions between its amino acid residues. The energetic contribution of these residue–residue interactions can be approximated by extracting statistical potentials from known high resolution structures. Several methods based on statistical potentials extracted from unrelated proteins are found to make a better prediction of probability of point mutations. We postulate that the statistical potentials extracted from known structures of similar folds with varying sequence identity can be a powerful tool to examine probability of point mutation. By keeping this in mind, we have derived pairwise residue and atomic contact energy potentials for the different functional families that adopt the (α/β)8 TIM‐Barrel fold. We carried out computational point mutations at various conserved residue positions in yeast Triose phosphate isomerase enzyme for which experimental results are already reported. We have also performed molecular dynamics simulations on a subset of point mutants to make a comparative study. The difference in pairwise residue and atomic contact energy of wildtype and various point mutations reveals probability of mutations at a particular position. Interestingly, we found that our computational prediction agrees with the experimental studies of Silverman et al. (Proc Natl Acad Sci 2001;98:3092–3097) and perform better prediction than iMutant and Cologne University Protein Stability Analysis Tool. The present work thus suggests deriving pairwise contact energy potentials and molecular dynamics simulations of functionally important folds could help us to predict probability of point mutations which may ultimately reduce the time and cost of mutation experiments. Proteins 2016; 85:54–64. © 2016 Wiley Periodicals, Inc.  相似文献   

9.
A new graph–theoretical approach called thermodynamic sampling of amino acid residues (TSAR) has been elaborated to explicitly account for the protein side chain flexibility in modeling conformation‐dependent protein properties. In TSAR, a protein is viewed as a graph whose nodes correspond to structurally independent groups and whose edges connect the interacting groups. Each node has its set of states describing conformation and ionization of the group, and each edge is assigned an array of pairwise interaction potentials between the adjacent groups. By treating the obtained graph as a belief‐network—a well‐established mathematical abstraction—the partition function of each node is found. In the current work we used TSAR to calculate partition functions of the ionized forms of protein residues. A simplified version of a semi‐empirical molecular mechanical scoring function, borrowed from our Lead Finder docking software, was used for energy calculations. The accuracy of the resulting model was validated on a set of 486 experimentally determined pKa values of protein residues. The average correlation coefficient (R) between calculated and experimental pKa values was 0.80, ranging from 0.95 (for Tyr) to 0.61 (for Lys). It appeared that the hydrogen bond interactions and the exhaustiveness of side chain sampling made the most significant contribution to the accuracy of pKa calculations. Proteins 2011; © 2011 Wiley‐Liss, Inc.  相似文献   

10.
We have investigated the effect of rigorous optimization of the MODELLER energy function for possible improvement in protein all‐atom chain‐building. For this we applied the global optimization method called conformational space annealing (CSA) to the standard MODELLER procedure to achieve better energy optimization than what MODELLER provides. The method, which we call MODELLERCSA , is tested on two benchmark sets. The first is the 298 proteins taken from the HOMSTRAD multiple alignment set. By simply optimizing the MODELLER energy function, we observe significant improvement in side‐chain modeling, where MODELLERCSA provides about 10.7% (14.5%) improvement for χ11 + χ2) accuracy compared to the standard MODELLER modeling. The improvement of backbone accuracy by MODELLERCSA is shown to be less prominent, and a similar improvement can be achieved by simply generating many standard MODELLER models and selecting lowest energy models. However, the level of side‐chain modeling accuracy by MODELLERCSA could not be matched either by extensive MODELLER strategies, side‐chain remodeling by SCWRL3, or copying unmutated rotamers. The identical procedure was successfully applied to 100 CASP7 template base modeling domains during the prediction season in a blind fashion, and the results are included here for comparison. From this study, we observe a good correlation between the MODELLER energy and the side‐chain accuracy. Our findings indicate that, when a good alignment between a target protein and its templates is provided, thorough optimization of the MODELLER energy function leads to accurate all‐atom models. Proteins 2009. © 2008 Wiley‐Liss, Inc.  相似文献   

11.
12.
Protein molecules can accommodate a large number of mutations without noticeable effects on their stability and folding kinetics. On the other hand, some mutations can have quite strong effects on protein conformational properties. Such mutations either destabilize secondary structures, e.g., alpha-helices, are incompatible with close packing of protein hydrophobic cores, or lead to disruption of some specific interactions such as disulfide cross links, salt bridges, hydrogen bonds, or aromatic-aromatic contacts. The Met8 --> Leu mutation in CMTI-I results in significant destabilization of the protein structure. This effect could hardly be expected since the mutation is highly conservative, and the side chain of residue 8 is situated on the protein surface. We show that the protein destabilization is caused by rearrangement of a hydrophobic cluster formed by side chains of residues 8, Ile6, and Leu17 that leads to partial breaking of a hydrogen bond formed by the amide group of Leu17 with water and to a reduction of a hydrophobic surface buried within the cluster. The mutation perturbs also the protein folding. In aerobic conditions the reduced wild-type protein folds effectively into its native structure, whereas more then 75% of the mutant molecules are trapped in various misfolded species. The main conclusion of this work is that conservative mutations of hydrophobic residues can destabilize a protein structure even if these residues are situated on the protein surface and partially accessible to water. Structural rearrangement of small hydrophobic clusters formed by such residues can lead to local changes in protein hydration, and consequently, can affect considerably protein stability and folding process.  相似文献   

13.
14.
《Proteins》2018,86(5):581-591
We compare side chain prediction and packing of core and non‐core regions of soluble proteins, protein‐protein interfaces, and transmembrane proteins. We first identified or created comparable databases of high‐resolution crystal structures of these 3 protein classes. We show that the solvent‐inaccessible cores of the 3 classes of proteins are equally densely packed. As a result, the side chains of core residues at protein‐protein interfaces and in the membrane‐exposed regions of transmembrane proteins can be predicted by the hard‐sphere plus stereochemical constraint model with the same high prediction accuracies (>90%) as core residues in soluble proteins. We also find that for all 3 classes of proteins, as one moves away from the solvent‐inaccessible core, the packing fraction decreases as the solvent accessibility increases. However, the side chain predictability remains high (80% within ) up to a relative solvent accessibility, , for all 3 protein classes. Our results show that % of the interface regions in protein complexes are “core”, that is, densely packed with side chain conformations that can be accurately predicted using the hard‐sphere model. We propose packing fraction as a metric that can be used to distinguish real protein‐protein interactions from designed, non‐binding, decoys. Our results also show that cores of membrane proteins are the same as cores of soluble proteins. Thus, the computational methods we are developing for the analysis of the effect of hydrophobic core mutations in soluble proteins will be equally applicable to analyses of mutations in membrane proteins.  相似文献   

15.
The prediction of protein side chain conformations from backbone coordinates is an important task in structural biology, with applications in structure prediction and protein design. It is a difficult problem due to its combinatorial nature. We study the performance of an “MMGBSA” energy function, implemented in our protein design program Proteus, which combines molecular mechanics terms, a Generalized Born and Surface Area (GBSA) solvent model, with approximations that make the model pairwise additive. Proteus is not a competitor to specialized side chain prediction programs due to its cost, but it allows protein design applications, where side chain prediction is an important step and MMGBSA an effective energy model. We predict the side chain conformations for 18 proteins. The side chains are first predicted individually, with the rest of the protein in its crystallographic conformation. Next, all side chains are predicted together. The contributions of individual energy terms are evaluated and various parameterizations are compared. We find that the GB and SA terms, with an appropriate choice of the dielectric constant and surface energy coefficients, are beneficial for single side chain predictions. For the prediction of all side chains, however, errors due to the pairwise additive approximation overcome the improvement brought by these terms. We also show the crucial contribution of side chain minimization to alleviate the rigid rotamer approximation. Even without GB and SA terms, we obtain accuracies comparable to SCWRL4, a specialized side chain prediction program. In particular, we obtain a better RMSD than SCWRL4 for core residues (at a higher cost), despite our simpler rotamer library. Proteins 2016; 84:803–819. © 2016 Wiley Periodicals, Inc.  相似文献   

16.
Despite years of effort, the problem of predicting the conformations of protein side chains remains a subject of inquiry. This problem has three major issues, namely defining the conformations that a side chain may adopt within a protein, developing a sampling procedure for generating possible side‐chain packings, and defining a scoring function that can rank these possible packings. To solve the former of these issues, most procedures rely on a rotamer library derived from databases of known protein structures. We introduce an alternative method that is free of statistics. We begin with a rotamer library that is based only on stereochemical considerations; this rotamer library is then optimized independently for each protein under study. We show that this optimization step restores the diversity of conformations observed in native proteins. We combine this protein‐dependent rotamer library (PDRL) method with the self‐consistent mean field (SCMF) sampling approach and a physics‐based scoring function into a new side‐chain prediction method, SCMF–PDRL. Using two large test sets of 831 and 378 proteins, respectively, we show that this new method compares favorably with competing methods such as SCAP, OPUS‐Rota, and SCWRL4 for energy‐minimized structures. Proteins 2014; 82:2000–2017. © 2014 Wiley Periodicals, Inc.  相似文献   

17.
18.
A minimal model of protein–protein binding affinity that takes into account only two structural features of the complex, the size of its interface, and the amplitude of the conformation change between the free and bound subunits, is tested on the 144 complexes of a structure‐affinity benchmark. It yields Kd values that are within two orders of magnitude of the experiment for 67% of the complexes, within three orders for 88%, and fails on 12%, which display either large conformation changes, or a very high or a low affinity. The minimal model lacks the specificity and accuracy needed to make useful affinity predictions, but it should help in assessing the added value of parameters used by more elaborate models, and set a baseline for evaluating their performances.  相似文献   

19.
The importance of a protein–protein interaction to a signaling pathway can be established by showing that amino acid mutations that weaken the interaction disrupt signaling, and that additional mutations that rescue the interaction recover signaling. Identifying rescue mutations, often referred to as second‐site suppressor mutations, controls against scenarios in which the initial deleterious mutation inactivates the protein or disrupts alternative protein–protein interactions. Here, we test a structure‐based protocol for identifying second‐site suppressor mutations that is based on a strategy previously described by Kortemme and Baker. The molecular modeling software Rosetta is used to scan an interface for point mutations that are predicted to weaken binding but can be rescued by mutations on the partner protein. The protocol typically identifies three types of specificity switches: knob‐in‐to‐hole redesigns, switching hydrophobic interactions to hydrogen bond interactions, and replacing polar interactions with nonpolar interactions. Computational predictions were tested with two separate protein complexes; the G‐protein Gαi1 bound to the RGS14 GoLoco motif, and UbcH7 bound to the ubiquitin ligase E6AP. Eight designs were experimentally tested. Swapping a buried hydrophobic residue with a polar residue dramatically weakened binding affinities. In none of these cases were we able to identify compensating mutations that returned binding to wild‐type affinity, highlighting the challenges inherent in designing buried hydrogen bond networks. The strongest specificity switches were a knob‐in‐to‐hole design (20‐fold) and the replacement of a charge–charge interaction with nonpolar interactions (55‐fold). In two cases, specificity was further tuned by including mutations distant from the initial design. Proteins 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

20.
Mutations in Valosin-containing protein (VCP) have been implicated in the pathology linked to inclusion body myopathy, paget disease of bone and frontotemporal dementia (IBMPFD). VCP is an essential component of AAA-ATPase superfamily involved in various cellular functions. Advanced In-silico analysis was performed using prediction based servers to determine the most deleterious mutation. Molecular dynamics simulation was used to study the protein dynamics at atomic level. Molecular docking was used to study the effect of mutation on ATP/ADP transition in the kinase domain. This ATPase of 806 amino acids has four domains: N-terminal domain, C-terminal domain and two ATPase domains D1 and D2 and each of these domains have a distinct role in its functioning. The mutations in VCP protein are distributed among regions known as hotspots, one such hotspot is codon 155. Three missense mutations reported in this hotspot are R155C, R155H and R155P. Potentiality of the deleteriousness calculated using server based prediction models reveal R155C mutation to be the most deleterious. The atomic insight into the effect of mutation by molecular dynamics simulation revealed major conformational changes in R155C variants ATP binding site in D1 domain. The nucleotide-binding mode at the catalytic pocket of VCP and its three variants at codon 155 showed change in the structure, which affects the ATP–ADP transition kinetics in all the three variants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号