首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Stimulation of nucleus of the solitary tract (NTS) A(2a)-adenosine receptors elicits cardiovascular responses quite similar to those observed with rapid, severe hemorrhage, including bradycardia, hypotension, and inhibition of renal but activation of preganglionic adrenal sympathetic nerve activity (RSNA and pre-ASNA, respectively). Because adenosine levels in the central nervous system increase during severe hemorrhage, we investigated to what extent these responses to hemorrhage may be due to activation of NTS adenosine receptors. In urethane- and alpha-chloralose-anesthetized male Sprague-Dawley rats, rapid hemorrhage was performed before and after bilateral nonselective or selective blockade of NTS adenosine-receptor subtypes [A(1)- and A(2a)-adenosine-receptor antagonist 8-(p-sulfophenyl)theophylline (1 nmol/100 nl) and A(2a)-receptor antagonist ZM-241385 (40 pmol/100 nl)]. The nonselective blockade reversed the response in RSNA (-21.0 +/- 9.6 Delta% vs. +7.3 +/- 5.7 Delta%) (where Delta% is averaged percent change from baseline) and attenuated the average heart rate response (change of -14.8 +/- 4.8 vs. -4.4 +/- 3.4 beats/min). The selective blockade attenuated the RSNA response (-30.4 +/- 5.2 Delta% vs. -11.1 +/- 7.7 Delta%) and tended to attenuate heart rate response (change of -27.5 +/- 5.3 vs. -15.8 +/- 8.2 beats/min). Microinjection of vehicle (100 nl) had no significant effect on the responses. The hemorrhage-induced increases in pre-ASNA remained unchanged with either adenosine-receptor antagonist. We conclude that adenosine operating in the NTS via A(2a) and possibly A(1) receptors may contribute to posthemorrhagic sympathoinhibition of RSNA but not to the sympathoactivation of pre-ASNA. The differential effects of NTS adenosine receptors on RSNA vs. pre-ASNA responses to hemorrhage supports the hypothesis that these receptors are differentially located/expressed on NTS neurons/synaptic terminals controlling different sympathetic outputs.  相似文献   

2.
Previously, we have shown that activation of adenosine A(2a) receptors in the subpostremal nucleus tractus solitarii (NTS) via microinjection of the selective A(2a) receptor agonist CGS-21680 elicits potent, dose-dependent decreases in mean arterial pressure and preferential, marked hindlimb vasodilation. Although A(2a) receptor activation does not change lumbar sympathetic nerve activity, it does markedly enhance the preganglionic adrenal sympathetic nerve activity, which will increase epinephrine release and could subsequently elicit hindlimb vasodilation via activation of beta(2)-adrenergic receptors. Therefore we investigated whether this hindlimb vasodilation was due to neural or humoral mechanisms. In chloralose-urethan-anesthetized male Sprague-Dawley rats, we monitored cardiovascular responses to stimulation of NTS adenosine A(2a) receptors (CGS-21680, 20 pmol/50 nl) in the intact control animals; after pretreatment with propranolol (2 mg/kg iv), a beta-adrenergic antagonist; after bilateral lumbar sympathectomy; after bilateral adrenalectomy; and after combined bilateral lumbar sympathectomy and adrenalectomy. After beta-adrenergic blockade, stimulation of NTS adenosine A(2a) receptors produced a pressor response and a hindlimb vasoconstriction. Lumbar sympathectomy reduced the vasodilation seen in the intact animals by approximately 40%, and adrenalectomy reduced it by approximately 80%. The combined sympathectomy and adrenalectomy virtually abolished the hindlimb vasodilation evoked by NTS A(2a) receptor activation. We conclude that the preferential, marked hindlimb vasodilation produced by stimulation of NTS adenosine A(2a) receptors is mediated by both the efferent sympathetic nerves directed to the hindlimb and the adrenal glands via primarily a beta-adrenergic mechanism.  相似文献   

3.
We investigated the relationship between autonomic activity to the pancreas and insulin secretion in chronically catheterized dogs when food was shown, during eating, and during the early absorptive period. Pancreatic polypeptide (PP) output, pancreatic norepinephrine spillover (PNESO), and arterial epinephrine (Epi) were measured as indexes for parasympathetic and sympathetic nervous activity to the pancreas and for adrenal medullary activity, respectively. The relation between autonomic activity and insulin secretion was confirmed by autonomic blockade. Showing food to dogs initiated a transient increase in insulin secretion without changing PP output or PNESO. Epi did increase, suggesting beta(2)-adrenergic mediation, which was confirmed by beta-adrenoceptor blockade. Eating initiated a second transient insulin response, which was only totally abolished by combined muscarinic and beta-adrenoceptor blockade. During absorption, insulin increased to a plateau. PP output showed the same pattern, suggesting parasympathetic mediation. PNESO decreased by 50%, suggesting withdrawal of inhibitory sympathetic neural tone. We conclude that 1) the insulin response to showing food is mediated by the beta(2)-adrenergic effect of Epi, 2) the insulin response to eating is mediated both by parasympathetic muscarinic stimulation and by the beta(2)-adrenergic effect of Epi, and 3) the insulin response during early absorption is mediated by parasympathetic activation, with possible contribution of withdrawal of sympathetic neural tone.  相似文献   

4.
We have previously shown that P2x purinoceptor activation in the subpostremal nucleus tractus solitarius (NTS) produces dose-dependent decreases in mean arterial pressure (MAP), heart rate, efferent sympathetic nerve activity, and significant peripheral vasodilation. However, the relative roles of cardiac output (CO) and total peripheral resistance (TPR) in mediating this depressor response are unknown. Bradycardia does not necessarily result in decreased CO, because, with the greater filling time, stroke volume may increase such that CO may be unchanged. We measured changes in CO (via a chronically implanted flow probe on the ascending aorta) and MAP in alpha-chloralose- and urethane-anesthetized male Sprague-Dawley rats in response to microinjection of the selective P2x purinoceptor agonist alpha,beta-methylene ATP (25 and 100 pmol/50 nl) into the subpostremal NTS. TPR was calculated as MAP/CO. At the low dose of NTS P2x purinoceptor agonist, the reduction in MAP was primarily mediated by reductions in TPR (-31.3 +/- 3.3%), not CO (-8.7 +/- 1.7%). At the high dose, both CO (-34.4 +/- 6.6%) and TPR (-40.2 +/- 2.5%) contribute to the reduction in MAP. We conclude that the relative contribution of CO and TPR to the reduction in MAP evoked by NTS P2x purinoceptor activation is dependent on the extent of P2x purinoceptor activation.  相似文献   

5.
A reliable basal heart rate (HR) measurement in freely moving newborn mice was accomplished for the first time by using a novel noninvasive piezoelectric transducer (PZT) sensor. The basal HR was approximately 320 beats/min at postnatal day (P)0 and increased with age to approximately 690 beats/min at P14. Contribution of autonomic control to HR was then assessed. Sympathetic blockade with metoprolol significantly reduced basal HR at both P6 (-236 +/- 23 beats/min; mean +/- SE) and P12 (-105 +/- 8 beats/min), but atropine was without effect, indicating the predominant tonic adrenergic stimulation and absence of vagal control for basal HR in newborn mice. In contrast to stable basal HR during 5-min recording, HR measured by ECG (ECG-HR) was markedly decreased because of the restraint stress of attaching ECG electrodes, with accompanying freezing behavior. ECG-HR lowered and further decreased gradually during 5 min (slow cardiodeceleration) at P0-P3 and rapidly decreased and gradually recovered within 5 min (transient bradycardia) at P9-P14. The response was not uniform in P4-P8 mice: they showed either of these two patterns or sustained bradycardia (9-29%), and the number of mice that showed transient bradycardia increased with age (30-100%) during the period. Studies with autonomic blockade suggest that the slow cardiodeceleration and transient bradycardia are mediated mainly by withdrawal of adrenergic stimulation and phasic vagal activation, respectively, and the autonomic control of HR response to restraint stress is likely to change from the withdrawal of adrenergic stimulation to the phasic vagal activation at different stages during P4-P8 in individual mice. The PZT sensor may offer excellent opportunities to monitor basal HR of small animals noninvasively.  相似文献   

6.
Activation of adenosine A2a receptors in the nucleus of the solitary tract (NTS) decreases mean arterial pressure (MAP), heart rate (HR), and renal sympathetic nerve activity (RSNA), whereas increases in preganglionic adrenal sympathetic nerve activity (pre-ASNA) occur, a pattern similar to that observed during hypotensive hemorrhage. Central vasopressin V1 receptors may contribute to posthemorrhagic hypotension and bradycardia. Both V1 and A2a receptors are densely expressed in the NTS, and both of these receptors are involved in cardiovascular control; thus they may interact. The responses elicited by NTS A2a receptors are mediated mostly via nonglutamatergic mechanisms, possibly via release of vasopressin. Therefore, we investigated whether blockade of NTS V1 receptors alters the autonomic response patterns evoked by stimulation of NTS A2a receptors (CGS-21680, 20 pmol/50 nl) in alpha-chloralose-urethane anesthetized male Sprague-Dawley rats. In addition, we compared the regional sympathetic responses to microinjections of vasopressin (0.1-100 ng/50 nl) into the NTS. Blockade of V1 receptors reversed the normal decreases in MAP into increases (-95.6 +/- 28.3 vs. 51.4 +/- 15.7 integralDelta%), virtually abolished the decreases in HR (-258.3 +/- 54.0 vs. 18.9 +/- 57.8 integralDeltabeats/min) and RSNA (-239.3 +/- 47.4 vs. 15.9 +/- 36.1 integralDelta%), and did not affect the increases in pre-ASNA (279.7 +/- 48.3 vs. 233.1 +/- 54.1 integralDelta%) evoked by A2a receptor stimulation. The responses partially returned toward normal values approximately 90 min after the blockade. Microinjections of vasopressin into the NTS evoked dose-dependent decreases in HR and RSNA and variable MAP and pre-ASNA responses with a tendency toward increases. We conclude that the decreases in MAP, HR, and RSNA in response to NTS A2a receptor stimulation may be mediated via release of vasopressin from neural terminals in the NTS. The differential effects of NTS V1 and A2a receptors on RSNA versus pre-ASNA support the hypothesis that these receptor subtypes are differentially located/expressed on NTS neurons/neural terminals controlling different sympathetic outputs.  相似文献   

7.
Microinjection of S-alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) in the nucleus of the solitary tract (NTS) of conscious rats causes hypertension, bradycardia, and vasoconstriction in the renal, mesenteric, and hindquarter vascular beds. In the hindquarter, the initial vasoconstriction is followed by vasodilation with AMPA doses >5 pmol/100 nl. To test the hypothesis that this vasodilation is caused by activation of a nitroxidergic pathway in the NTS, we examined the effect of pretreatment with the nitric oxide synthase inhibitor N(G)-nitro-L-arginine methyl ester (L-NAME, 10 nmol/100 nl, microinjected into the NTS) on changes in mean arterial pressure, heart rate, and regional vascular conductance (VC) induced by microinjection of AMPA (10 pmol/100 nl in the NTS) in conscious rats. AMPA increased hindquarter VC by 18 +/- 4%, but after pretreatment with L-NAME, AMPA reduced hindquarter VC by 16 +/- 7% and 17 +/- 9% (5 and 15 min after pretreatment, P < 0.05 compared with before pretreatment). Pretreatment with L-NAME reduced AMPA-induced bradycardia from 122 +/- 40 to 92 +/- 32 beats/min but did not alter the hypertension induced by AMPA (35 +/- 5 mmHg before pretreatment, 43 +/- 6 mmHg after pretreatment). Control injections with D-NAME did not affect resting values or the response to AMPA. The present study shows that stimulation of AMPA receptors in the NTS activates both vasodilatatory and vasoconstrictor mechanisms and that the vasodilatatory mechanism depends on production of nitric oxide in the NTS.  相似文献   

8.
The parasubthalamic nucleus (PSTN) projects extensively to the nucleus of the solitary tract (NTS); however, the function of PSTN in cardiovascular regulation is unknown. Experiments were done in alpha-chloralose anesthetized, paralyzed, and artificially ventilated rats to investigate the effect of glutamate (10 nl, 0.25 M) activation of PSTN neurons on mean arterial pressure (MAP), heart rate (HR), and renal sympathetic nerve activity (RSNA). Glutamate stimulation of PSTN elicited depressor (-20.4 +/- 0.7 mmHg) and bradycardia (-26.0 +/- 1.0 beats/min) responses and decreases in RSNA (67 +/- 17%). Administration (intravenous) of atropine methyl bromide attenuated the bradycardia response (46%), but had no effect on the MAP response. Subsequent intravenous administration of hexamethonium bromide blocked both the remaining bradycardia and depressor responses. Bilateral microinjection of the synaptic blocker CoCl(2) into the caudal NTS region attenuated the PSTN depressor and bradycardia responses by 92% and 94%, respectively. Additionally, prior glutamate activation of neurons in the ipsilateral NTS did not alter the magnitude of the MAP response to stimulation of PSTN, but potentiated HR response by 35%. Finally, PSTN stimulation increased the magnitude of the reflex bradycardia to activation of arterial baroreceptors. These data indicate that activation of neurons in the PSTN elicits a decrease in MAP due to sympathoinhibition and a cardiac slowing that involves both vagal excitation and sympathoinhibition. In addition, these data suggest that the PSTN depressor effects on circulation are mediated in part through activation of NTS neurons involved in baroreflex function.  相似文献   

9.
Substance P (SP) evokes bradycardia that is mediated by cholinergic neurons in experiments with isolated guinea pig hearts. This project investigates the negative chronotropic action of SP in vivo. Guinea pigs were anesthetized with urethane, vagotomized and artificially respired. Using this model, IV injection of SP (32 nmol/kg/50 microl saline) caused a brief decrease in heart rate (-30+/-3 beats/min from a baseline of 256+/-4 beats/min, n = 27) and a long-lasting decrease in blood pressure (-28+/-2 mmHg from baseline of 51+/-5 mmHg, n = 27). The negative chronotropic response to SP was attenuated by muscarinic receptor blockade with atropine (-29 +/- 9 beats/min before vs -8 +/- 2 beats/min after treatment, P = 0.0204, n = 5) and augmented by inhibition of cholinesterases with physostigmine (-23 +/- 6 beats/min before versus -74 +/- 20 beats/min after treatment, P = 0.0250, n = 5). Ganglion blockade with chlorisondamine did not diminish the negative chronotropic response to SP. In another series of experiments, animals were anesthetized with sodium pentobarbital or urethane and studied with or without vagotomy. Neither anesthetic nor vagotomy had a significant effect on the negative chronotropic response to SP (F3,24 = 1.97, P = 0.2198). Comparison of responses to 640 nmol/kg nitroprusside and 32 nmol/kg SP demonstrated that the bradycardic effect of SP occurs independent of vasodilation. These results suggest that SP can evoke bradycardia in vivo through stimulation of postganglionic cholinergic neurons.  相似文献   

10.
Both enhanced sympathetic drive and altered autonomic control are involved in the pathogenesis of heart failure. The goal of the present study was to determine the extent to which chronically enhanced sympathetic drive, in the absence of heart failure, alters reflex autonomic control in conscious, transgenic (TG) rabbits with overexpressed cardiac Gsalpha. Nine TG rabbits and seven wild-type (WT) littermates were instrumented with a left ventricular (LV) pressure micromanometer and arterial catheters and studied in the conscious state. Compared with WT rabbits, LV function was enhanced in TG rabbits, as reflected by increased levels of LV dP/dt (5,600 +/- 413 vs. 3,933 +/- 161 mmHg/s). Baseline heart rate was also higher (P < 0.05) in conscious TG (247 +/- 10 beats/min) than in WT (207 +/- 10 beats/min) rabbits and was higher in TG after muscarinic blockade (281 +/- 9 vs. 259 +/- 8 beats/min) or combined beta-adrenergic receptor and muscarinic blockade (251 +/- 6 vs. 225 +/- 9 beats/min). Bradycardia was blunted (P < 0.05), whether induced by intravenous phenylephrine (arterial baroreflex), by cigarette smoke inhalation (nasopharyngeal reflex), or by veratrine administration (Bezold-Jarisch reflex). With veratrine administration, the bradycardia was enhanced in TG for any given decrease in arterial pressure. Thus the chronically enhanced sympathetic drive in TG rabbits with overexpressed cardiac Gsalpha resulted in enhanced LV function and heart rate and impaired reflex autonomic control. The impaired reflex control was generalized, not only affecting the high-pressure arterial baroreflex but also the low-pressure Bezold-Jarisch reflex and the nasopharyngeal reflex.  相似文献   

11.
Baroreflex responses to changes in arterial pressure are impaired in spontaneously hypertensive rats (SHR). Mean arterial pressure (MAP), heart rate (HR), and regional vascular resistances were measured before and during electrical stimulation (5-90 Hz) of the left aortic depressor nerve (ADN) in conscious SHR and normotensive control rats (NCR). The protocol was repeated after beta-adrenergic-receptor blockade with atenolol. SHR exhibited higher basal MAP (150 +/- 5 vs. 103 +/- 2 mmHg) and HR (393 +/- 9 vs. 360 +/- 5 beats/min). The frequency-dependent hypotensive response to ADN stimulation was preserved or enhanced in SHR. The greater absolute fall in MAP at higher frequencies (-68 +/- 5 vs. -38 +/- 3 mmHg at 90-Hz stimulation) in SHR was associated with a preferential decrease in hindquarter (-43 +/- 5%) vs. mesenteric (-27 +/- 3%) resistance. In contrast, ADN stimulation decreased hindquarter and mesenteric resistances equivalently in NCR (-33 +/- 7% and -30 +/- 7%). Reflex bradycardia was also preserved in SHR, although its mechanism differed. Atenolol attenuated the bradycardia in SHR (-88 +/- 14 vs. -129 +/- 18 beats/min at 90-Hz stimulation) but did not alter the bradycardia in NCR (-116 +/- 16 vs. -133 +/- 13 beats/min). The residual bradycardia under atenolol (parasympathetic component) was reduced in SHR. MAP and HR responses to ADN stimulation were also preserved or enhanced in SHR vs. NCR after deafferentation of carotid sinuses and contralateral right ADN. The results demonstrate distinct differences in central baroreflex control in conscious SHR vs. NCR. Inhibition of cardiac sympathetic tone maintains reflex bradycardia during ADN stimulation in SHR despite impaired parasympathetic activation, and depressor responses to ADN stimulation are equivalent or even greater in SHR due to augmented hindquarter vasodilation.  相似文献   

12.
Selective activation of adenosine A(1) and A(2a) receptors in the subpostremal nucleus tractus solitarius (NTS) increases and decreases mean arterial pressure (MAP), respectively, and decreases heart rate (HR). We have previously shown that the decreases in MAP evoked by NTS A(2a) receptor stimulation were accompanied with differential sympathetic responses in renal (RSNA), lumbar (LSNA), and preganglionic adrenal sympathetic nerve activity (pre-ASNA). Therefore, now we investigated whether stimulation of NTS A(1) receptors via unilateral microinjection of N(6)-cyclopentyladenosine (CPA) elicits differential activation of the same sympathetic outputs in alpha-chloralose-urethane-anesthetized male Sprague-Dawley rats. CPA (0.33-330.0 pmol in 50 nl) evoked dose-dependent increases in MAP, variable decreases in HR, and differential increases in all recorded sympathetic outputs: upward arrow pre-ASNA > upward arrow RSNA > or = upward arrow LSNA. Sinoaortic denervation + vagotomy abolished the MAP and LSNA responses, reversed the normal increases in RSNA into decreases, and significantly attenuated increases in pre-ASNA. NTS ionotropic glutamatergic receptor blockade with kynurenate sodium (4.4 nmol/100 nl) reversed the responses in MAP, LSNA, and RSNA and attenuated the responses in pre-ASNA. We conclude that afferent inputs and intact glutamatergic transmission in the NTS are necessary to mediate the pressor and differential sympathoactivatory responses to stimulation of NTS A(1) receptors.  相似文献   

13.
Microinjection of acetylcholine chloride (ACh) in the nucleus of the solitary tract (NTS) of awake rats caused a transient and dose-dependent hypotension and bradycardia. Because it is known that cardiovascular reflexes are affected by nitric oxide (NO) produced in the NTS, we investigated whether these ACh-induced responses depend on NO in the NTS. Responses to ACh (500 pmol in 100 nl) were strongly reduced by ipsilateral microinjection of the NOS inhibitor NG-nitro-L-arginine methyl ester (L-NAME; 10 nmol in 100 nl) in the NTS: mean arterial pressure (MAP) fell by 50 +/- 5 mmHg before L-NAME to 9 +/- 4 mmHg, 10 min after L-NAME, and HR fell by 100 +/- 26 bpm before L-NAME to 20 +/- 10 bpm, 10 min after L-NAME (both P < 0.05). Microinjection of the selective inhibitor of neuronal nitric oxide synthase (nNOS), 1-(2-trifluoromethylphenyl) imidazole (TRIM; 13.3 nmol in 100 nl), in the NTS also reduced responses to ACh: MAP fell from 42 +/- 3 mmHg before TRIM to 27 +/- 6 mmHg, 10 min after TRIM (P < 0.05). TRIM also tended to reduce ACh-induced bradycardia, but this effect was not statistically significant. ACh-induced hypotension and bradycardia returned to control levels 30-45 min after NOS inhibition. Control injections with D-NAME and saline did not affect resting values or the response to ACh. In conclusion, injection of ACh into the NTS of conscious rats induces hypotension and bradycardia, and these effects may be mediated at least partly by NO produced in NTS neurons.  相似文献   

14.
Activation of ATP P(2x) receptors in the subpostremal nucleus tractus solitarii (NTS) via microinjection of alpha,beta-methylene ATP (alpha,beta-MeATP) elicits fast initial depressor and sympathoinhibitory responses that are followed by slow, long-lasting inhibitory effects. Activation of NTS adenosine A(2a) receptors via microinjection of CGS-21680 elicits slow, long-lasting decreases in arterial pressure and renal sympathetic nerve activity (RSNA) and an increase in preganglionic adrenal sympathetic nerve activity (pre-ASNA). Both P(2x) and A(2a) receptors may operate via modulation of glutamate release from central neurons. We investigated whether intact glutamatergic transmission is necessary to mediate the responses to NTS P(2x) and A(2a) receptor stimulation. The hemodynamic and neural (RSNA and pre-ASNA) responses to microinjections of alpha,beta-MeATP (25 pmol/50 nl) and CGS-21680 (20 pmol/50 nl) were compared before and after pretreatment with kynurenate sodium (KYN; 4.4 nmol/100 nl) in chloralose-urethan-anesthetized male Sprague-Dawley rats. KYN virtually abolished the fast responses to alpha,beta-MeATP and tended to enhance the slow component of the neural responses. The depressor responses to CGS-21680 were mostly preserved after pretreatment with KYN, although the increase in pre-ASNA was reduced by one-half following the glutamatergic blockade. We conclude that the fast responses to stimulation of NTS P(2x) receptors are mediated via glutamatergic ionotropic mechanisms, whereas the slow responses to stimulation of NTS P(2x) and A(2a) receptors are mediated mostly via other neuromodulatory mechanisms.  相似文献   

15.
To better understand the central mechanisms that mediate increases in heart rate (HR) during psychological stress, we examined the effects of systemic and intramedullary (raphe region) administration of the serotonin-1A (5-HT(1A)) receptor agonist 8-hydroxy-2-(di-n-propylamino)tetraline (8-OH-DPAT) on cardiac changes elicited by restraint in hooded Wistar rats with preimplanted ECG telemetric transmitters. 8-OH-DPAT reduced basal HR from 356 +/- 12 to 284 +/- 12 beats/min, predominantly via a nonadrenergic, noncholinergic mechanism. Restraint stress caused tachycardia (an initial transient increase from 318 +/- 3 to 492 +/- 21 beats/min with a sustained component of 379 +/- 12 beats/min). beta-Adrenoreceptor blockade with atenolol suppressed the sustained component, whereas muscarinic blockade with methylscopolamine (50 microg/kg) abolished the initial transient increase, indicating that sympathetic activation and vagal withdrawal were responsible for the tachycardia. Systemic administration of 8-OH-DPAT (10, 30, and 100 microg/kg) attenuated stress-induced tachycardia in a dose-dependent manner, and this effect was suppressed by the 5-HT(1A) antagonist WAY-100635 (100 microg/kg). Given alone, the antagonist had no effect. Systemically injected 8-OH-DPAT (100 microg/kg) attenuated the sympathetically mediated sustained component (from +85 +/- 19 to +32 +/- 9 beats/min) and the vagally mediated transient (from +62 +/- 5 to +25 +/- 3 beats/min). Activation of 5-HT(1A) receptors in the medullary raphe by microinjection of 8-OH-DPAT mimicked the antitachycardic effect of the systemically administered drug but did not affect basal HR. We conclude that tachycardia induced by restraint stress is due to a sustained increase in cardiac sympathetic activity associated with a transient vagal withdrawal. Activation of central 5-HT(1A) receptors attenuates this tachycardia by suppressing autonomic effects. At least some of the relevant receptors are located in the medullary raphe-parapyramidal area.  相似文献   

16.
We tested the hypothesis that glucocorticoids attenuate changes in arterial pressure and renal sympathetic nerve activity (RSNA) in response to activation and blockade of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors within the nucleus of the solitary tract (NTS). Experiments were performed in Inactin-anesthetized male Sprague-Dawley rats treated for 7 +/- 1 days with a subcutaneous corticosterone (Cort) pellet or in control rats. Baseline mean arterial pressure (MAP) was significantly higher in Cort-treated rats (109 +/- 2 mmHg, n = 39) than in control rats (101 +/- 1 mmHg, n = 48, P < 0.05). In control rats, microinjection of AMPA (0.03, 0.1, and 0.3 pmol/100 nl) into the NTS significantly decreased MAP at all doses and decreased RSNA at 0.1 and 0.3 pmol/100 nl. Responses to AMPA in Cort-treated rats were attenuated at all doses of AMPA (P < 0.05). Responses to the AMPA-kainate receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) were also significantly reduced in Cort-treated rats relative to control rats. Blockade of glucocorticoid type II receptors with mifepristone significantly enhanced responses to CNQX in both control and Cort rats. We conclude that glucocorticoids attenuate MAP and RSNA responses to activation and blockade of AMPA receptors in the NTS.  相似文献   

17.
Our previous studies showed that stimulation of adenosine A(1) receptors located in the nucleus of the solitary tract (NTS) exerts counteracting effects on the iliac vascular bed: activation of the adrenal medulla and β-adrenergic vasodilation vs. sympathetic and vasopressinergic vasoconstriction. Because NTS A(1) adenosine receptors inhibit baroreflex transmission in the NTS and contribute to the pressor component of the HDR, we hypothesized that these receptors also contribute to the redistribution of blood from the visceral to the muscle vasculature via prevailing sympathetic and vasopressinergic vasoconstriction in the visceral (renal and mesenteric) vascular beds and prevailing β-adrenergic vasodilation in the somatic (iliac) vasculature. To test this hypothesis, we compared the A(1) adenosine-receptor-mediated effects of each vasoactive factor triggered by NTS A(1) adenosine receptor stimulation [N(6)-cyclopentyladenosine (CPA), 330 pmol in 50 nl] on the regional vascular responses in urethane/chloralose-anesthetized rats. The single-factor effects were separated using adrenalectomy, β-adrenergic blockade, V(1) vasopressin receptor blockade, and sinoaortic denervation. In intact animals, initial vasodilation was followed by large, sustained vasoconstriction with smaller responses observed in renal vs. mesenteric and iliac vascular beds. The initial β-adrenergic vasodilation prevailed in the iliac vs. mesenteric and renal vasculature. The large and sustained vasopressinergic vasoconstriction was similar in all vascular beds. Small sympathetic vasoconstriction was observed only in the iliac vasculature in this setting. We conclude that, although A(1) adenosine-receptor-mediated β-adrenergic vasodilation may contribute to the redistribution of blood from the visceral to the muscle vasculature, this effect is overridden by sympathetic and vasopressinergic vasoconstriction.  相似文献   

18.
The present study tested the hypothesis that activation of the parasympathetic nervous system could attenuate sympathetic activation to the pancreas. To test this hypothesis, we measured pancreatic norepinephrine (NE) spillover (PNESO) in anesthetized dogs during bilateral thoracic sympathetic nerve stimulation (SNS; 8 Hz, 1 ms, 10 mA, 10 min) with and without (randomized design) simultaneous bilateral cervical vagal nerve stimulation (VNS; 8 Hz, 1 ms, 10 mA, 10 min). During SNS alone, PNESO increased from the baseline of 431 +/- 88 pg/min to an average of 5,137 +/- 1,075 pg/min (P < 0.05) over the stimulation period. Simultaneous SNS and VNS resulted in a significantly (P < 0.01) decreased PNESO response [from 411 +/- 61 to an average of 2,760 +/- 1,005 pg/min (P < 0.05) over the stimulation period], compared with SNS alone. Arterial NE levels increased during SNS alone from 130 +/- 11 to approximately 600 pg/ml (P < 0.05); simultaneous SNS and VNS produced a significantly (P < 0.05) smaller response (142 +/- 17 to 330 pg/ml). Muscarinic blockade could not prevent the effect of VNS from reducing the increase in PNESO or arterial NE in response to SNS. It is concluded that parasympathetic neural activity opposes sympathetic neural activity not only at the level of the islet but also at the level of the nerves. This neural inhibition is not mediated via muscarinic mechanisms.  相似文献   

19.
We investigated the effect of muscle metaboreflex activation on left circumflex coronary blood flow (CBF) and vascular conductance (CVC) in conscious, chronically instrumented dogs during treadmill exercise ranging from mild to severe workloads. Metaboreflex responses were also observed during mild exercise with constant heart rate (HR) of 225 beats/min and beta(1)-adrenergic receptor blockade to attenuate the substantial reflex increases in cardiac work. The muscle metaboreflex was activated via graded partial occlusion of hindlimb blood flow. During mild exercise, with muscle metaboreflex activation, hindlimb ischemia elicited significant reflex increases in mean arterial pressure (MAP), HR, and cardiac output (CO) (+39.0 +/- 5.2 mmHg, +29.9 +/- 7.7 beats/min, and +2.0 +/- 0.4 l/min, respectively; all changes, P < 0.05). CBF increased from 51.9 +/- 4.3 to 88.5 +/- 6.6 ml/min, (P < 0.05), whereas no significant change in CVC occurred (0.56 +/- 0.06 vs. 0.59 +/- 0.05 ml. min(-1). mmHg(-1); P > 0.05). Similar responses were observed during moderate exercise. In contrast, with metaboreflex activation during severe exercise, no further increases in CO or HR occurred, the increases in MAP and CBF were attenuated, and a significant reduction in CVC was observed (1.00 +/- 0.12 vs. 0.90 +/- 0.13 ml. min(-1). mmHg(-1); P < 0.05). Similarly, when the metaboreflex was activated during mild exercise with the rise in cardiac work lessened (via constant HR and beta(1)-blockade), no increase in CO occurred, the MAP and CBF responses were attenuated (+15.6 +/- 4.5 mmHg, +8.3 +/- 2 ml/min), and CVC significantly decreased from 0.63 +/- 0.11 to 0.53 +/- 0.10 ml. min(-1). mmHg(-1). We conclude that the muscle metaboreflex induced increases in sympathetic nerve activity to the heart functionally vasoconstricts the coronary vasculature.  相似文献   

20.
Cyclosporine A (CyA), an immunosuppressant drug, has been shown to attenuate the baroreflex control of heart rate (HR). This study investigated whether or not the CyA-induced baroreflex dysfunction is due to alterations in the autonomic (sympathetic and parasympathetic) control of the heart. We evaluated the effect of muscarinic or beta-adrenergic blockade by atropine and propranolol, respectively, on reflex HR responses in conscious rats treated with CyA (20 mg x kg(-1) x day(-1) dissolved in sesame oil) for 11-13 days or the vehicle. Baroreflex curves relating changes in HR to increases or decreases in blood pressure (BP) evoked by phenylephrine (PE) and sodium nitroprusside (NP), respectively, were constructed and the slopes of the curves were taken as a measure of baroreflex sensitivity (BRS(PE) and BRS(NP)). Intravenous administration of PE and NP produced dose-related increases and decreases in BP, respectively, that were associated with reciprocal changes in HR. CyA caused significant (P < 0.05) reductions in reflex HR responses as indicated by the smaller BRS(PE) (-0.97 +/- 0.07 versus -1.47 +/- 0.10 beats x min(-1) x mmHg(-1) (1 mmHg = 133.322 Pa)) and BRS(NP) (-2.49 +/- 0.29 versus -5.23 +/- 0.42 beats x min(-1) x mmHg(-1)) in CyA-treated versus control rats. Vagal withdrawal evoked by muscarinic blockade elicited significantly lesser attenuation of BRS(PE) in CyA compared with control rats (40.2 +/- 8.0 versus 57.7 +/- 4.4%) and abolished the BRS(PE) difference between the two groups, suggesting that CyA reduces vagal activity. CyA also appears to impair cardiac sympathetic control because blockade of beta-adrenergic receptors by propranolol was less effective in reducing reflex tachycardic responses in CyA compared with control rats (41.6 +/- 4.2 versus 59.5 +/- 4.5%). These findings confirm earlier reports that CyA attenuates the baroreceptor control of HR. More importantly, the study provides the first pharmacological evidence that CyA attenuates reflex chronotropic responses via impairment of the autonomic modulation of the baroreceptor neural pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号