首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Arabidopsis thaliana, axr4 , was restored by the addition of 30–300 nM 1-naphthaleneacetic acid (NAA) to the growth medium. Neither indole-3-acetic acid (IAA) nor 2,4-dichlorophenoxyacetic acid (2,4-D) showed such an effect. Growth of axr4 roots was resistant to IAA and 2,4-D, but not at all to NAA. The differential effects of the three auxins suggest that the defects of axr4 result from a lower auxin influx into its cells. The partially agravitropic growth habit of axr1 roots, which was less severe than that of axr4 roots, was only slightly affected by the three auxins in the growth medium at concentrations up to 300 nM; growth of axr1 roots was resistant to all three of the auxins. These results suggest that the lesion of axr1 mutants is different from that of axr4. Received 9 June 1999/ Accepted in revised form 16 August 1999  相似文献   

2.
In comparison to wild type Arabidopsis thaliana, the auxin resistant mutants axr1 and axr2 exhibit reduced inhibition of root elongation in response to auxins. Several auxin-regulated physiological processes are also altered in the mutant plants. When wild-type, axr1 and axr2 seedlings were grown in darkness on media containing indoleacetic acid (IAA), promotion of root growth was observed at low concentrations of IAA (10?11 to 10?7M) in 5-day-old axr2 seedlings, but not in axr1 or wild-type seedlings. In axr1 there was little or no measurable root growth response over the same concentration range. In wild type, root growth was inhibited at concentrations greater than 10?10M and no detectable root growth response was observed at lower concentrations. In addition, production of lateral roots in response to IAA increased in axr2 seedlings and decreased in axr1 seedlings relative to wild type. Promotion of root elongation and initiation of lateral roots in axr2 seedlings in response to auxin indicate that axr2 seedlings are able to perceive and respond to IAA.  相似文献   

3.
The chemically induced barley (Hordeum vulgare L.) mutation, agr, was found to be a simple recessive trait resulting in agravitropic roots and normal gravitropic shoots. The total seedling root growth was similar for mutant and wild-type roots, although the mutant had fewer roots per seed and greater elongation per root. Although the concentration of exogenous indole-3-acetic acid (IAA) required to reduce root growth by 50% (GR50) was 12 times greater for the agravitropic mutant, agravitropic and gravitropic roots were equally sensitive to exogenous applications of 2,4-dichlorophenoxyacetic acid (2,4-D) and naphthalene acetic acid (NAA). Root IAA contents, determined by high-pressure liquid chromatography (HPLC), were not different for gravitropes and agravitropes. The greater root elongation rates, lack of sensitivity to exogenous IAA, and normal endogenous IAA levels indicate that auxin-controlled growth regulation may be altered in the mutant.  相似文献   

4.
The effects of the auxins 2,4-D, NAA and IAA either alone or in combination with kinetin or BA were investigated to assess the morphogenetic potential of leaf, root and hypocotyl explants of Digitalis thapsi. Calluses were obtained from the three explants in basal medium without the addition of growth regulators and in leaves, the calluses formed roots. Application of 2,4-D, NAA or BA increased callus formation. The presence of NAA induced root formation and that of BA induced shoot formation via callus interphase. Indole-3-acetic acid alone only induced the generation of roots in the hypocotyl callus. Kinetin was ineffective in all the explants tested. Combinations of NAA with kinetin or BA were more effective in inducing organogenesis in leaf explants. Optimum responses were obtained in hypocotyl and root explants by using IAA in combination with BA, the highest rate of shoot regeneration being observed in hypocotyl explants.Rooting of the differentiated shoots was readily achieved in media without growth regulators. Regenerated plantlets were transferred to soil and grew with a survival rate of 70%.Abbreviations BA benzyladenine - 2,4-D 2,4-dichlorophenoxyacetic acid - IAA indoleacetic acid, Kin-kinetin - NAA naphthaleneacetic acid  相似文献   

5.
Cell suspension cultures of Anchusa officinalis required exogenous phytohormones for their normal growth. Cell lysis was observed at the third passage in a hormone-free medium. Using hormone — depleted cells, the effects of auxins (2,4-D, NAA, IAA and CFP) and cytokinins (BA, kinetin, and zeatin) on cell growth and RA production were investigated. All auxins tested could maintain growth and integrity of the cells whereas cytokinins alone could not, suggesting that this culture is auxindependent. Among the auxins tested, NAA had a pronounced effect on RA production. The total RA content obtained at optimum NAA concentration (0.25 mg/l) reached 1.7 g/l (12% of dry weight). The kinetics of growth and RA production suggested that the increase in final RA content was due to both an increase in the rate of RA synthesis and initiation of the period of synthesis in the exponential rather than the linear growth phase.Abbreviations 2,4-D 2,4-dichlorophenoxyacetic acid - NAA 1-naphthaleneacetic acid - IAA indoleacetic acid - CFP 2-chloro-4-fluorophenoxyacetic acid - BA 6-benzyladenine - RA rosmarinic acid  相似文献   

6.
Cell suspension culture of critically endangered Coscinium fenestratum was established from young leaf segments on WPM supplemented with auxins. Effect of 2,4-D, IAA, IBA and NAA was examined on cell growth and berberine production. Berberine was synthesized and released continuously into the liquid medium. Presence of 2,4-D stimulated cell growth, but was not inhibitory on berberine synthesis. On the contrary, NAA stimulated berberine biosynthesis, but was not favourable for cell growth. Among the auxins tested, highest yield of berberine (5.79 mg/30 ml; 4.14 times to that of control) was obtained with 4 mg/l of NAA, while the best cell growth (214.43 mg dry wt., 1.96 times to that of control) was observed in the presence of 2 mg/l of 2,4-D. IAA and IBA were not favourable for cell growth and berberine synthesis.  相似文献   

7.
Two auxin-resistant mutants of Arabidopsis thaliana L. have been characterized physiologically: aux-2 is a recessive mutation and is unlinked to a dominant mutation, Dwf, which is apparently lethal when homozygous. The progeny of selfed Dwf plants segregate into Dwf (agravitropic) and dwf + (normal) phenotypes. aux-2 phenotype was indistinguishable from the wild-type on criteria other than resistance to exogenous auxins: 3-fold to 2,4-D and 2-fold to IAA. On the other hand, Dwf plants had a typical dwarf phenotype with single unbranched roots which lacked hairs. Compared to the wild-type, Dwf seedling roots were highly resistant to exogenous auxins: 2000-fold to 2,4-D and 360-fold to IAA. Both aux-2 and Dwf were normal in their response to exogenous ABA. The dwarf phenotype was insensitive to gibberellins but root hair formation was restored by application of auxins.The results indicate that altered auxin phsysiology can lead to agravitropism and dwarfism.Abbrevations ABA Abscisic acid - GA3 Gibberellic acid - IAA indole-3-acetic acid - 2,4-D 2,4-dichlorophenoxyacetic acid  相似文献   

8.
Effect of different auxins, namely, 2,4-dichlorophenoxyacetic acid (2,4-D), naphthalene acetic acid (NAA) and indole acetic acid (IAA) and Azospirillum brasilense bioinoculation on the enhancement of polygalacturonase (PG) activity in rice roots during para nodulation and endorhizosphere colonization of Azospirillum was studied under in vitro condition. It was observed that Azospirillum bioinoculation could augment PG activity of rice roots to a lesser extent without any root morphogenesis whereas auxin application together with Azospirillum bioinoculation enhanced PG activity of rice roots to a higher level which resulted in better root morphogenesis (para nodule) and endorhizosphere colonisation of A. brasilense. Among the three auxins tested, 2,4-D, even at lower concentration (0.5 ppm) enhanced the rice root PG activity, root morphogenesis and endorhizosphere colonization of Azospirillum while it was 2.0 ppm with NAA and variable with IAA. It is concluded that there is a positive correlation existing among PG activity, degree of root morphogenesis and endorhizosphere colonization of Azospirillum brasilense in rice roots and the degree of correlation is determined by the chemical composition, concentration and mode of action of the auxin utilised.  相似文献   

9.
The indole alkaloids brucine and yohimbine, just like hypaphorine, counteract indole-3-acetic acid (IAA) activity in seedling roots, root hairs and shoots, but do not appear to alter auxin transport in roots or in cultured cells. In roots, the interactions between IAA and these three alkaloids appear competitive and specific since these molecules interact with IAA but with neither 1-naphthaleneacetic acid (NAA) or 2,4-dichlorophenoxyacetic acid (2,4-D), two synthetic auxins. The data reported further support the hypothesis that hypaphorine brucine and yohimbine compete with IAA on some auxin-binding proteins likely to be auxin receptors and that 2,4-D and NAA are not always perceived by the same receptor as IAA or the same component of that receptor. At certain steps of plant development and in certain cells, endogenous indole alkaloids could be involved in IAA activity regulation together with other well-described mechanisms such as conjugation or degradation. Hypaphorine with other active indole alkaloids remaining to be identified, might be regarded as a new class of IAA antagonists.  相似文献   

10.
Summary A study was made of the time courses of growth promotion and the reversal of growth promotion upon the addition and withdrawal of various auxins. Growth promotion by 1-naphthaleneacetic acid (NAA) and 2,4-dichlorophenoxyacetic acid (2,4-D) occurs more slowly and is less vigorous than growth promotion by the same concentration of indoleacetic acid (IAA).The time required for the reversal of the stimulation of elongation by auxin is many times greater for 2,4-D-stimulated growth than for IAA- or NAA-stimulated growth (80 min vs. about 10 min). This difference appears to be due to the sluggish exit of 2,4-D since (1) experiments with labeled auxins show that 2,4-D moves out of the tissue more slowly than IAA, and (2) it is possible to shorten the time required for a decline in elongation rate after the removal of 2,4-D to 13 min by adding an auxin antagonist (p-chlorophenoxyisobutyric acid).The rapid reversal of the hormonal stimulation of growth is discussed in relation to possible mechanisms of action of auxin.  相似文献   

11.
We have found that chromosaponin I (CSI), a gamma-pyronyl-triterpenoid saponin isolated from pea (Pisum sativum L. cv Alaska), specifically interacts with AUX1 protein in regulating the gravitropic response of Arabidopsis roots. Application of 60 microM CSI disrupts the vertically oriented elongation of wild-type roots grown on agar plates but orients the elongation of agravitropic mutant aux1-7 roots toward the gravity. The CSI-induced restoration of gravitropic response in aux1-7 roots was not observed in other agravitropic mutants, axr2 and eir1-1. Because the aux1-7 mutant is reduced in sensitivity to auxin and ethylene, we examined the effects of CSI on another auxin-resistant mutant, axr1-3, and ethylene-insensitive mutant ein2-1. In aux1-7 roots, CSI stimulated the uptake of [(3)H]indole-3-acetic acid (IAA) and induced gravitropic bending. In contrast, in wild-type, axr1-3, and ein2-1 roots, CSI slowed down the rates of gravitropic bending and inhibited IAA uptake. In the null allele of aux1, aux1-22, the agravitropic nature of the roots and IAA uptake were not affected by CSI. This close correlation between auxin uptake and gravitropic bending suggests that CSI may regulate gravitropic response by inhibiting or stimulating the uptake of endogenous auxin in root cells. CSI exhibits selective influence toward IAA versus 1-naphthaleneacetic acid as to auxin-induced inhibition in root growth and auxin uptake. The selective action of CSI toward IAA along with the complete insensitivity of the null mutant aux1-22 toward CSI strongly suggest that CSI specifically interacts with AUX1 protein.  相似文献   

12.
The hairy root culture of Lippia dulcis Trev., Verbenaceae, was established by transformation with Agrobacterium rhizogenes A4. The transformed roots grew well in Murashige and Skoog medium containing 2% sucrose. The roots turned light green when they were cultured under 16 h/day light. The green hairy roots produced the sweet sesquiterpene hernandulcin (ca. 0.25 mg/g dry wt) together with 20 other mono- and sesquiterpenes, while no terpenes were detected in the nontransformed root cultures. The growth and hernandulcin production in the hairy root cultures were influenced by the addition of auxins to the medium. The addition of a low concentration of chitosan (0.2 – 10.0 mg / l) enhanced the production of hernandulcin 5-fold.Abbreviations Cht chitosan - IAA indole-3-acetic acid - NAA 1-naphthaleneacetic acid - 2,4-D 2,4-dichlorophenoxyacetic acid - MS Murashige and Skoog(1962)  相似文献   

13.
Shoot tips from seedlings of Digitalis thapsi L. were cultured on Murashige and Skoog's medium and the effect of various auxins (2,4-D, NAA and IAA) were analyzed alone or in combination with cytokinis (BA and kinetin). Shoot multiplication and direct rooting of the new shoots were obtained after four weeks of culture in MS medium without hormones, but callus formation and the appearance of abnormal phenotypes were frequent. The addition of auxins to the cultures prevented the formation of callus but not the appearance of variant phenotypes. Both drawbacks could be avoided by combination of NAA or IAA with BA or kinetin. The best results for shoot multiplication and direct rooting were obtained with 0.5 mg l-1 NAA and 0.1 or 0.5 mg l-1 kinetin.Abbreviations BA 6-benciladenine - 2,4-D 2,4-dichlorophenoxyacetic acid - IAA indole-3-acetic acid - Kin kinetin - NAA naphtalene acetic acid - MS Murashige and Skoog  相似文献   

14.
Various tissues of seeds and seedlings of melon were cultured in vitro to study the effects of auxin concentration on organogenesis and embryogenesis. Adventitious shoots and somatic embryos were formed from explants of cotyledons of mature seeds, hypocotyls of seedlings, and leaves and petioles of young plantlets. Expanded cotyledons of seedlings formed only adventitious shoots. All tissues responded similarly to the 2,4-D concentration in the media, that is, adventitious shoots were formed at low concentration, callus proliferated without differentiation at intermediate concentration and somatic embryos were induced at high concentration. Cotyledons of mature seeds formed both adventitious shoots and somatic embryos more efficiently than any other tissues cultured.Effects of three auxins, 2,4-D, NAA and IAA, on organogenesis and embryogenesis were compared using cotyledons of mature seeds. Adventitious shoots were formed at low level of auxins (0 to 0.01 mg/l 2,4-D; 0 to 0.1 mg/l NAA; 0 to 1.0 mg/l IAA), and embryos were formed at high level of auxins (1.0 to 2.0 mg/l 2,4-D; 3.0 to 10.0 mg/l NAA; 20.0 to 100.0 mg/l IAA). IAA gave more efficient shoot formation and embryogenesis than the other auxins.Abbreviations 2,4-D 2,4-dichlorophenoxyacetic acid - NAA -naphthaleneacetic acid - IAA 3indoleacetic acid - BA 6-benzylaminopurine - MS Murashige and Skoog  相似文献   

15.
Effects of three different auxins and kinetin in various combinations on greening and redifferentiation of the callus ofHaworthia setata were investigated. All auxins at the concentration of 50 mg/l inhibited callus greening. NAA in combination with kinetin promoted both callus greening and production of redifferentiated shoots. Low concentrations of IAA without kinetin promoted redifferentiation of shoots, but not callus greening. Addition of 2,4-D completely inhibited both greening and redifferentiation regardless of the level of kinetin except for the effects on shoot formation in the medium with 0.1 mg/l 2,4-D added. The calluses with the highest chlorophyll content were observed in the medium containing 2.0 mg/l kinetin without any auxins or with 0.1 mg/l NAA added. Most frequent shoot redifferentiation was observed in the medium containing 0.1 mg/l IAA without kinetin (redifferentiation rate; 67%), followed by the medium containing 10 mg/l NAA with 2.0 mg/l kinetin (44%), and 0.1 mg/l 2,4-D with 0.2 mg/l kinetin (33%). Generally, higher degrees of greening were associated with better growth. However, the auxins (IAA, NAA and 2,4-D) given at concentrations optimal for growth did not exhibit the highest degree of callus greening. Differences of the three auxins in their actions and interaction with kinetin were disclosed. Contribution from the Laboratory of Genetics, Faculty of Agriculture, Kyoto University, Japan, No. 423  相似文献   

16.
A tobacco (Nicotiana tabacum L.) variant selected as a cellline resistant to 2,4-D was found to possess cross-resistanceto auxins including IAA, naphthalene-1-acetic acid (NAA), and4-amino-3,5,6-trichloropicolinic acid (picloram). The uptakeof 2,4-D by the variant and two wild-type cell lines was essentiallylinear in relation to 2,4-D concentration, and the variant tookup 2,4-D more rapidly than the wild types. Analysis of the 2,4-Dmetabolism revealed some diversity in the metabolic patternamong the cell lines but no significant differences which couldexplain the resistance of the variant. Although the variantpossesses a much higher capacity to metabolize 2,4-D than thewild types, this is most likely a result rather than a causeof the resistance. We conclude that neither the uptake nor themetabolism is responsible for the resistance. The variant, onthe other hand, exhibited a significantly lower rate of effluxout of the cells, particularly that of free 2,4-D, than thewild types upon washing with and transfer to 2,4-D-free medium.We suggest that immobilization of 2,4-D or auxins within cellsby compart mentation may be related to but not solely responsiblefor the resistance of this tobacco cell culture variant. (Received June 18, 1984; Accepted November 21, 1984)  相似文献   

17.
Germinated seedlings of Artemisia pallens gave three types of cultures on MS medium supplemented with different plant growth hormones. Medium containing BA+2,4-D stimulated unorganized callus; BA+IAA medium, semi-organized tissues interspersed with shoot buds; and BA+NAA+IAA medium, multiple shoot cultures. The in vitro shoots developed roots in medium devoid of growth hormones. TLC and GLC analysis of the tissue extracts showed that linalool was present in the cultured tissues, with maximum concentration in the unorganized tissue. Although the TLC profiles of the three culture extracts were similar, the extracts did not contain the major polar compounds of the plant. The plant extracts contained more polar compounds and gave the characteristic fragrance of davana.Abbreviations MS Murashige & Skoog's basal medium - BA benzyladenine - Kn kinetin - NAA naphthaleneacetic acid - IAA indoleacetic acid - 2,4-D 2,4-dichlorophenoxyacetic acid - PCV packed cell volume  相似文献   

18.
The effects of plant growth regulators on somatic embryogenesis were studied in leaf cultures of Coffea canephora. The maximum number of somatic embryos were obtained on media that contained only cytokinin as a plant growth regulator. All of the auxins tested (NAA, IBA, IAA and 2, 4-D) inhibited the formation of embryos. The optimal concentration of each cytokinin (2-iP, BA and kinetin) for somatic embryogenesis was 5 M. Under optimal conditions, each explant formed more than 100 embryoids with little callus and few adventitious roots. Embryoids were formed only at the cut edges of the leaf discs. Cytokinins were absorbed only at the cut edges of leaf discs that were in contact with the medium, and were not transported to other parts of the explant.Abbreviations 2-iP iso-pentenyladenine - BA benzyladenine - NAA 1-naphthaleneacetic acid - IBA indole-3-butyric acid - IAA indole-3-acetic acid - 2,4-D 2,4-dichlorophenoxyacetic acid  相似文献   

19.
The effect of auxin application on auxin metabolism was investigated in excised hypocotyl cultures of carrot (Daucus carota). Concentrations of both free and conjugated indole-3-acetic acid (IAA), [2H4]IAA, 2,4-dichlorophenoxyacetic acid, and naphthaleneacetic acid (NAA) were measured by mass spectroscopy using stable-isotope-labeled internal standards. [13C1]NAA was synthesized for this purpose, thus extending the range of auxins that can be assayed by stable-isotope techniques. 2,4-Dichlorophenoxyacetic acid promoted callus proliferation of the excised hypocotyls, accumulated as the free form in large quantities, and had minor effects on endogenous IAA concentrations. NAA promoted callus proliferation and the resulting callus became organogenic, producing both roots and shoots. NAA was found mostly in the conjugated form and had minor effects on endogenous IAA concentrations. [2H4]IAA had no visible effect on the growth pattern of cultured hypocotyls, possibly because it was rapidly metabolized to form inactive conjugates or possibly because it mediated a decrease in endogenous IAA concentrations by an apparent feedback mechanism. The presence of exogenous auxins did not affect tryptophan labeling of either the endogenous tryptophan or IAA pools. This suggested that exogenous auxins did not alter the IAA biosynthetic pathway, but that synthetic auxins did appear to be necessary to induce callus proliferation, which was essential for excised hypocotyls to gain the competence to form somatic embryos.  相似文献   

20.
The agravitropic nature of root growth of an auxin-resistantmutant of Arabidopsis, auxl, was restored when the syntheticauxin 1-naphthaleneacetic acid (NAA) was added to the growthmedium; auxl roots were not resistant to NAA. Neither indole-3-aceticacid nor 2,4-dichlorophenox-yacetic acid had the same effectsas NAA. These differential effects of the three auxins on auxldefects suggest that AUX1 may encode the auxin influx carrieraccording to the model proposed by Oelbarre et al. [(1996) Planta198: 532]. 1To whom correspondence should be addressed. Fax: + 81-11-706-2253.e-mail: kty{at}ees.hokudai.ac.jp  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号