首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

Two complementary methods are described that associate in vitro and in vivo steps to generate sequence diversity by segment directed saturated mutagenesis and family shuffling. A high-throughput DNA chip-based procedure for the characterization and potentially the equalization of combinatorial libraries is also presented. Using these approaches, two combinatorial libraries of cytochrome P450 variants derived from the CYP1A subfamily were constructed and their sequence diversity characterized. The results of functional screening using high-throughput tools for the characterization of membrane P450-catalyzed activities, suggest that the 204–214 sequence segment of human CYP1A1 is not critical for polycyclic aromatic hydrocarbon recognition, as was hypothesized from previous data. Moreover, mutations in this segment do not alter the discrimination between alkoxyresorufins, which, for all tested mutants, remained similar to that of wild-type CYP1A1. In contrast, the constructed CYP1A1–CYP1A2 mosaic structures, containing multiple crossovers, exhibit a wide range of substrate preference and regioselectivity. These mosaic structures also discriminate between closely related alkoxyresorufin substrates. These results open the way to global high-throughput analysis of structure–function relationships using combinatorial libraries of enzymes together with libraries of structurally related substrates.  相似文献   

2.
Two complementary methods are described that associate in vitro and in vivo steps to generate sequence diversity by segment directed saturated mutagenesis and family shuffling. A high-throughput DNA chip-based procedure for the characterization and potentially the equalization of combinatorial libraries is also presented. Using these approaches, two combinatorial libraries of cytochrome P450 variants derived from the CYPlA subfamily were constructed and their sequence diversity characterized. The results of functional screening using high-throughput tools for the characterization of membrane P450-catalyzed activities, suggest that the 204-214 sequence segment of human CYPlAl is not critical for polycyclic aromatic hydrocarbon recognition, as was hypothesized from previous data. Moreover, mutations in this segment do not alter the discrimination between alkoxyresorufins, which, for all tested mutants, remained similar to that of wild-type CYP1A1. In contrast, the constructed CYPlAl-CYPlA2 mosaic structures, containing multiple crossovers, exhibit a wide range of substrate preference and regioselectivity. These mosaic structures also discriminate between closely related alkoxyresorufin substrates. These results open the way to global high-throughput analysis of structure-function relationships using combinatorial libraries of enzymes together with libraries of structurally related substrates.  相似文献   

3.
A multifamily sequence alignment of the rabbit CYP4A members with the known structure of CYP102 indicates amino acid differences falling within the so-called substrate recognition site(s) (SRS). Chimeric proteins constructed between CYP4A4 and CYP4A7 indicate that laurate activity is affected by the residues within SRS1 and prostaglandin activity is influenced by SRS2-3. Site-directed mutant proteins of CYP4A7 found laurate and arachidonate activity markedly diminished in the R90W mutant (SRS1) and somewhat decreased in W93S. While PGE(1) activity was only slightly increased, the mutant proteins H206Y and S255F (SRS2-3), on the other hand, exhibited remarkable increases in laurate and arachidonate metabolism (3-fold) above wild-type substrate metabolism. Mutant proteins H206Y, S255F, and H206Y/S255F but not R90W/W93S, wild-type CYP4A4, or CYP4A7 metabolized arachidonic acid in the absence of cytochrome b(5). Stopped-flow kinetic experiments were performed in a CO-saturated environment performed to estimate interaction rates of the monooxygenase reaction components. The mutant protein H206Y, which exhibits 3-fold higher than wild-type substrate activity, interacts with CPR at a rate at least 10 times faster than that of wild-type CYP4A7. These experimental results provide insight regarding the residues responsible for modulation of substrate specificity, affinity, and kinetics, as well as possible localization within the enzyme structure based on comparisons with homologous, known cytochrome P450 structures.  相似文献   

4.
Recent trends in new drug discovery of anticancer drugs have made oncologists more aware of the fact that the new drug discovery must target the developing mechanism of tumorigenesis to improve the therapeutic efficacy of antineoplastic drugs. The drugs designed are expected to have high affinity towards the novel targets selectively. Current research highlights overexpression of CYP450s, particularly cytochrome P450 1A1 (CYP1A1), in tumour cells, representing a novel target for anticancer therapy. However, the CYP1 family is identified as posing significant problems in selectivity of anticancer molecules towards CYP1A1. Three members have been identified in the human CYP1 family: CYP1A1, CYP1A2 and CYP1B1. Although sequences of the three isoform have high sequence identity, they have distinct substrate specificities. The understanding of macromolecular features that govern substrate specificity is required to understand the interplay between the protein function and dynamics, design novel antitumour compounds that could be specifically metabolized by only CYP1A1 to mediate their antitumour activity and elucidate the reasons for differences in substrate specificity profile among the three proteins. In the present study, we employed a combination of computational methodologies: molecular docking and molecular dynamics simulations. We utilized eight substrates for elucidating the difference in substrate specificity of the three isoforms. Lastly, we conclude that the substrate specificity of a particular substrate depends upon the type of the active site residues, the dynamic motions in the protein structure upon ligand binding and the physico‐chemical characteristics of a particular ligand. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

5.
Construction of chimeras and site directed mutagenesis were used to study the regioselectivity and kinetics of testosterone hydroxylation by the cytochrome P450s CYP2A1 and CYP2A2. Although these enzymes exhibit 88% sequence similarity, they catalyze very different regioselective hydroxylations of testosterone. Active chimeras inwhich the first 355 amino acids do not correspond to a single enzyme show broad radioselectivity, whereas the specificity of the parent enzyme is obtained if the first 355 amino acids are unchanged. Therefore, the region between amino acids 275 and 355 is important in maintaining regioselectivity. Single point mutants were constructed for the 13 amino acid differences in this region. For 26 single point and 2 double mutants all active mutants have the same regioselectivity as the parent enzymes. However, kinetic analysis of the CYP2A1 mutants showed that 4 single point mutants and 1 double mutant had kinetic parameters very different from the parent enzyme. All of these substitutions are associated with the conserved dioxygen binding region of the putative I helix predicted from the crystal structure of P450cam. Deuterium isotope effects were used to determine any changes in the rate of reduction and to estimate the relative amount of excess water formation. Changes in reduction rates are not sufficient to account for the differences in Vmax values. Therefore, it is likely that the amount of hydrogen peroxide formed is a primary determinant of Vmax.  相似文献   

6.
The CYP4A fatty acid monooxygenases oxidize endogenous arachidonic acid to 20-hydroxyeicosatetraenoic acid that acts as a regulator of blood pressure. Among the isoforms of the CYP4A subfamily, the human CYP4A22 was recently identified. In this study, we report the comprehensive investigation of polymorphisms in the CYP4A22 gene. To investigate genetic variation in CYP4A22 in 191 Japanese subjects, we used denaturing HPLC (DHPLC) and direct sequencing. Our investigation has enabled the identification of 13 sequence variations in the CYP4A22 coding region, thereby demonstrating for the first time that this gene is subject to polymorphism. Two of these sequence variations correspond to silent mutations located in exons 8 (His323His) and 9 (Gly390Gly). Nine of these sequence variations correspond to missense mutations located in exons 1 (Arg11Cys), 3 (Arg126Trp), 4 (Gly130Ser and Asn152Tyr), 5 (Val185Phe), 6 (Cys231Arg), 7 (Lys276Thr), 10 (Leu428Pro), and 12 (Leu509Phe). One of these sequence variations corresponds to nonsense mutations located in exon 9 (Gln368stop). The 13th mutation corresponds to a nucleotide deletion (G7067del) that causes a frameshift and consequently results in a stop codon 80 nucleotides downstream. In addition to the wild-type CYP4A22*1 allele, 20 variants, namely CYP4A22*2-15, were characterized by haplotype analysis. Based on these data, we concluded that allelic variants of the human CYP4A22 gene exist and speculated that some of these variants may be functionally relevant.  相似文献   

7.
Hui D  Ling V 《Biochemistry》2002,41(17):5333-5339
Secretion of hemolysin is directed by a signal sequence located within its C-terminal 60 amino acids. Deletion analyses have indicated that the extreme end of this C-terminus is critical for transport; however, it is not known if this region contains structural features necessary for function. In this study, we have used a combinatorial approach to generate two contiguous 8-residue random libraries (Cterm1 and Cterm2) in the signal sequence to investigate the functional specificity of the last 16 residues. The large number of variants generated had provided us with a rich data set to determine if a restricted subset of sequences was actually required for function in the extreme C-terminus. We observed that over 90% of the random sequences in the Cterm1 region were secreted at close to wild-type level, while the Cterm2 region was more restricted with only 50% of the random sequences supporting wild-type-like transport. It appeared that, in the Cterm2 region, the relative lack of positive charge is favored for function. These findings, along with previous results, allow us to propose a model for recognition and transport of hemolysin that emphasizes secondary structure and general biophysical properties over primary sequence. This model may have implications for understanding the broad substrate specificity common among ATP-binding cassette transporters.  相似文献   

8.
BackgroundStructural studies on CYP2B enzymes identified some of the features that are related to their high plasticity. The aim of this work was to understand further the possible relationships between combinations of structural elements and functions by linking shift in substrate specificity with sequence element swaps between CYP2B6 and CYP2B11.MethodsA series of 15 chimeras in which a small CYP2B6 sequence segment was swapped with its equivalent in CYP2B11 were constructed. All chimeras produced were thus mostly of CYP2B11 sequence. Time course studies were carried out with two typical CYP2B substrates, cyclophosphamide and 7-ethoxy-4-trifluoromethylcoumarin. Steady-state kinetic parameters were determined for all chimeras expressed in yeast.ResultsMost of the chimeras exhibit a high affinity for cyclophosphamide, as CYP2B11 does. A few exhibit an affinity similar to that of CYP2B6 without altered behavior toward the other substrate assayed. The swapped elements that control this specificity shift are discussed in terms of F′/G′ cassette role and substrate access channels.ConclusionsSome sequence segments control precisely the shift in affinity for cyclophosphamide between CYP2B6, which has a typical low affinity, and CYP2B11 which has a typical high affinity.General significanceThe result provides a new basis for determining the structural elements that control functions in complex enzymes.  相似文献   

9.
Resistance to human immunodeficiency virus type 1 protease (HIV PR) inhibitors results primarily from the selection of multiple mutations in the protease region. Because many of these mutations are selected for the ability to decrease inhibitor binding in the active site, they also affect substrate binding and potentially substrate specificity. This work investigates the substrate specificity of a panel of clinically derived protease inhibitor-resistant HIV PR variants. To compare protease specificity, we have used positional-scanning, synthetic combinatorial peptide libraries as well as a select number of individual substrates. The subsite preferences of wild-type HIV PR determined by using the substrate libraries are consistent with prior reports, validating the use of these libraries to compare specificity among a panel of HIV PR variants. Five out of seven protease variants demonstrated subtle differences in specificity that may have significant impacts on their abilities to function in viral maturation. Of these, four variants demonstrated up to fourfold changes in the preference for valine relative to alanine at position P2 when tested on individual peptide substrates. This change correlated with a common mutation in the viral NC/p1 cleavage site. These mutations may represent a mechanism by which severely compromised, drug-resistant viral strains can increase fitness levels. Understanding the altered substrate specificity of drug-resistant HIV PR should be valuable in the design of future generations of protease inhibitors as well as in elucidating the molecular basis of regulation of proteolysis in HIV.  相似文献   

10.
A potential drug target for treatment of Chagas disease, sterol 14alpha-demethylase from Trypanosoma cruzi (TCCYP51), was found to be catalytically closely related to animal/fungi-like CYP51. Contrary to the ortholog from Trypanosoma brucei (TB), which like plant CYP51 requires C4-monomethylated sterol substrates, TCCYP51 prefers C4-dimethylsterols. Sixty-six CYP51 sequences are known from bacteria to human, their sequence homology ranging from approximately 25% between phyla to approximately 80% within a phylum. TC versus TB is the first example of two organisms from the same phylum, in which CYP51s (83% amino acid identity) have such profound differences in substrate specificity. Substitution of animal/fungi-like Ile105 in the B' helix to Phe, the residue found in this position in all plant and the other six CYP51 sequences from Trypanosomatidae, dramatically alters substrate preferences of TCCYP51, converting it into a more plant-like enzyme. The rates of 14alpha-demethylation of obtusifoliol and its 24-demethyl analog 4alpha-,4alpha-dimethylcholesta-8,24-dien-3beta-ol(norlanosterol) increase 60- and 150-fold, respectively. Turnover of the three 4,4-dimethylated sterol substrates is reduced approximately 3.5-fold. These catalytic properties correlate with the sterol binding parameters, suggesting that Phe in this position provides necessary interactions with C4-monomethylated substrates, which Ile cannot. The CYP51 substrate preferences imply differences in the post-squalene portion of sterol biosynthesis in TC and TB. The phyla-specific residue can be used to predict preferred substrates of new CYP51 sequences and subsequently for the development of new artificial substrate analogs, which might serve as highly specific inhibitors able to kill human parasites.  相似文献   

11.
Substrate sequence requirements of the hairpin ribozyme have been partially defined by both mutational and in vitro selection experiments. It was considered that the best targets were those that included the N downward arrowGUC sequence surrounding the cleavage site. In contrast to previous studies that failed to evaluate all possible combinations of these nucleotides, we have performed an exhaustive analysis of the cleavage of 64 substrate variants. They represent all possible sequence combinations of the J2/1 nucleotides except the well established G(+1). No cleavage was observed with 24 sequences. C(+2) variants showed little or no cleavage, whereas U(+2) substrates were all cleavable. The maximal cleavage rate was obtained with the AGUC substrate. Cleavage rates of sequences HGUC (H = A, C, or U), GGUN, GGGR (R = A or G), AGUU, and UGUA were up to 5 times lower than the AGUC one. This shows that other sequences besides NGUC could also be considered as good targets. A second group of sequences WGGG (W = A or U), UGUK (K = G or U), MGAG (M = A or C), AGUA, and UGGA were cleaved between 6 and 10 times less efficiently. Furthermore, the UGCU sequence of a noncleavable viral target was mutated to AGUC resulting in a proficiently cleavable substrate by its cognate hairpin ribozyme. This indicates that our conclusions may be extrapolated to other hairpin ribozymes with different specificity.  相似文献   

12.
The wild-type p53-induced phosphatase Wip1 (PP2Cdelta or PPM1D) is a member of the protein phosphatase 2C (PP2C) family and controls cell cycle checkpoints in response to DNA damage. p38 MAPK and ATM were identified as physiological substrates of Wip1, and we previously reported a substrate motif that was defined using variants of the p38(180pT 182pY) diphosphorylated peptide, TDDEMpTGpYVAT. However, the substrate recognition motifs for Wip1 have not been fully defined as the sequences surrounding the targeted residues in ATM and p38 MAPK appear to be unrelated. Using a recombinant human Wip1 catalytic domain (rWip1), in this study we measured the kinetic parameters for variants of the ATM(1981pS) phosphopeptide, AFEEGpSQSTTI. We found that rWip1 dephosphorylates phosphoserine and phosphothreonine in the p(S/T)Q motif, which is an essential requirement for substrate recognition. In addition, acidic, hydrophobic, or aromatic amino acids surrounding the p(S/T)Q sequence have a positive influence, while basic amino acids have a negative influence on substrate dephosphorylation. The kinetic constants allow discrimination between true substrates and nonsubstrates of Wip1, and we identified several new putative substrates that include HDM2, SMC1A, ATR, and Wip1 itself. A three-dimensional molecular model of Wip1 with a bound substrate peptide and site-directed mutagenesis analyses suggested that the important residues for ATM(1981pS) substrate recognition are similar but not identical to those for the p38(180pT 182pY) substrate. Results from this study should be useful for predicting new physiological substrates that may be regulated by Wip1 and for developing selective anticancer drugs.  相似文献   

13.
The correlation between sequence diversity and enzymatic function was studied in a library of Theta class glutathione transferases (GSTs) obtained by stochastic recombination of fragments of cDNA encoding human GST T1-1 and rat GST T2-2. In all, 94 randomly picked clones were characterized with respect to sequence, expression level, and catalytic activity in the conjugation reactions between glutathione and six alternative electrophilic substrates. Out of these six different compounds, dichloromethane is a selective substrate for human GST T1-1, whereas 1-menaphthyl sulfate and 1-chloro-2,4-dinitrobenzene are substrates for rat GST T2-2. The other three substances serve as substrates for both enzymes. Through this broad characterization, we have identified enzyme variants that have acquired novel activity profiles that differ substantially from those of the original GSTs. In addition, the expression levels of many clones were improved in comparison to the parental enzyme. A library of mutants can thus display a distribution of properties from which highly divergent evolutionary pathways may emerge, resembling natural evolutionary processes. From the GST library, a clone was identified that, by the point mutation N49D in the rat GST T2-2 sequence, has a 1700% increased activity with 1-menaphthyl sulfate and a 60% decreased activity with 4-nitrophenethyl bromide. Through the N49D mutation, the ratio of these activities has thus been altered 40-fold. An extensive characterization of a population of stochastically mutated enzymes can accordingly be used to find variants with novel substrate-activity profiles and altered catalytic properties. Recursive recombination of selected sequences displaying optimized properties is a strategy for the engineering of proteins for medical and biochemical applications. Such sequential design is combinatorial protein chemistry based on remodeling of existing structural scaffolds and has similarities to evolutionary processes in nature.  相似文献   

14.
Members of cytochrome P450 subfamily 1A (CYP1As) are involved in detoxification and bioactivation of common environmental pollutants. Understanding the functional evolution of these genes is essential to predicting and interpreting species differences in sensitivity to toxicity caused by such chemicals. The CYP1A gene subfamily comprises a single ancestral representative in most fish species and two paralogs in higher vertebrates, including birds and mammals. Phylogenetic analysis of complete coding sequences suggests that mammalian and bird paralog pairs (CYP1A1/2 and CYP1A4/5, respectively) are the result of independent gene duplication events. However, comparison of vertebrate genome sequences revealed that CYP1A genes lie within an extended region of conserved fine-scale synteny, suggesting that avian and mammalian CYP1A paralogs share a common genomic history. Algorithms designed to detect recombination between nucleotide sequences indicate that gene conversion has homogenized most of the length of the chicken CYP1A genes, as well as the 5′ end of mammalian CYP1As. Together, these data indicate that avian and mammalian CYP1A paralog pairs resulted from a single gene duplication event and that extensive gene conversion is responsible for the exceptionally high degree of sequence similarity between CYP1A4 and CYP1A5. Elevated nonsynonymous/synonymous substitution ratios within a putatively unconverted stretch of ∼250 bp suggests that positive selection may have reduced the effective rate of gene conversion in this region, which contains two substrate recognition sites. This work significantly alters our understanding of functional evolution in the CYP1A subfamily, suggesting that gene conversion and positive selection have been the dominant processes of sequence evolution. Electronic Supplementary Material Electronic Supplementary material is available for this article at and accessible for authorised users. [Reviewing Editor: Dr. Yves Van de Peer]  相似文献   

15.
Mammalian cytochrome P450 1 (CYP1) genes are well characterized, but in other vertebrates only the functions of CYP1A genes have been well studied. We determined the catalytic activity of zebrafish CYP1A, CYP1B1, CYP1C1, CYP1C2, and CYP1D1 proteins using 11 fluorometric substrates and benzo[a]pyrene (BaP). The resorufin-based substrates, 7-ethoxyresorufin, 7-methoxyresorufin, and 7-benzyloxyresorufin, were well metabolized by all CYP1s except CYP1D1. CYP1A metabolized nearly all substrates tested, although rates for non-resorufin substrates were typically lower than resorufin-based substrates. Zebrafish CYP1s did not metabolize 7-benzyloxyquinoline, 3-[2-(N,N-diethyl-N-methylamino)ethyl]-7-methoxy-4-methylcoumarin or 7-methoxy-4-(aminomethyl)-coumarin. CYP1B1 and CYP1C2 had the highest rates of BaP metabolism. 3-Hydroxy-BaP was a prominent metabolite for all but CYP1D1. CYP1A showed broad specificity and had the highest metabolic rates for nearly all substrates. CYP1C1 and CYP1C2 had similar substrate specificity. CYP1D1 had very low activities for all substrates except BaP, and a different regioselectivity for BaP, suggesting that CYP1D1 function may be different from other CYP1s.  相似文献   

16.
Within the Bacillus subtilis genome sequencing project, two monooxygenases (CYP102A2 and CYP102A3) were discovered which revealed a similarity of 76% to the well-known cytochrome P450 BM-3 (CYP102A1) of Bacillus megaterium. All enzymes are natural fusion proteins consisting of a heme domain and a reductase domain. We here report the cloning, expression and characterization of B. subtilis enzyme CYP102A3. The substrate specificity of this enzyme is similar to that of B. megaterium CYP102A1, which hydroxylates medium-chain fatty acids in subterminal positions. A double mutant was prepared that hydroxylates a number of other substrates, which do not bear any resemblance to the natural substrate of this enzyme family.  相似文献   

17.
CYP2C9 polymorphisms result in reduced enzyme catalytic activity and greater activation by effector molecules as compared to wild-type protein, with the mechanism(s) for these changes in activity not fully elucidated. Through T1 NMR and spectral binding analyses, mechanism(s) for these differences in behavior of the variant proteins (CYP2C9.2, CYP2C9.3, and CYP2C9.5) as compared to CYP2C9.1 were assessed. Neither altered binding affinity nor substrate (flurbiprofen) proton to heme-iron distances differed substantially among the four enzymes. Co-incubation with dapsone resulted in reduced substrate proton to heme-iron distances for all enzymes, providing at least a partial mechanism for the activation of CYP2C9 variants by dapsone. In summary, neither altered binding affinity nor substrate orientation appear to be major factors in the reduced catalytic activity noted in the CYP2C9 variants, but dapsone co-incubation caused similar changes in substrate proton to heme-iron distances suggesting at least partial common mechanisms in the activation of the CYP2C9 forms.  相似文献   

18.
We determined the substrate specificities of the protein tyrosine phosphatases (PTPs) PTP1B, RPTPα, SHP-1, and SHP-2 by on-bead screening of combinatorial peptide libraries and solution-phase kinetic analysis of individually synthesized phosphotyrosyl (pY) peptides. These PTPs exhibit different levels of sequence specificity and catalytic efficiency. The catalytic domain of RPTPα has very weak sequence specificity and is approximately 2 orders of magnitude less active than the other three PTPs. The PTP1B catalytic domain has modest preference for acidic residues on both sides of pY, is highly active toward multiply phosphorylated peptides, but disfavors basic residues at any position, a Gly at the pY-1 position, or a Pro at the pY+1 position. By contrast, SHP-1 and SHP-2 share similar but much narrower substrate specificities, with a strong preference for acidic and aromatic hydrophobic amino acids on both sides of the pY residue. An efficient SHP-1/2 substrate generally contains two or more acidic residues on the N-terminal side and one or more acidic residues on the C-terminal side of pY but no basic residues. Subtle differences exist between SHP-1 and SHP-2 in that SHP-1 has a stronger preference for acidic residues at the pY-1 and pY+1 positions and the two SHPs prefer acidic residues at different positions N-terminal to pY. A survey of the known protein substrates of PTP1B, SHP-1, and SHP-2 shows an excellent agreement between the in vivo dephosphorylation pattern and the in vitro specificity profiles derived from library screening. These results suggest that different PTPs have distinct sequence specificity profiles and the intrinsic activity/specificity of the PTP domain is an important determinant of the enzyme's in vivo substrate specificity.  相似文献   

19.
Human strains of Staphylococcus aureus secrete two papain-like proteases, staphopain A and B. Avian strains produce another homologous enzyme, staphopain C. Animal studies suggest that staphopains B and C contribute to bacterial virulence, in contrast to staphopain A, which seems to have a virulence unrelated function. Here we present a detailed study of substrate preferences of all three proteases. The specificity of staphopain A, B and C substrate-binding subsites was mapped using different synthetic substrate libraries, inhibitor libraries and a protein substrate combinatorial library. The analysis demonstrated that the most efficiently hydrolyzed sites, using Schechter and Berger nomenclature, comprise a P2–Gly↓Ala(Ser) sequence motif, where P2 distinguishes the specificity of staphopain A (Leu) from that of both staphopains B and C (Phe/Tyr). However, we show that at the same time the overall specificity of staphopains is relaxed, insofar as multiple substrates that diverge from the sequences described above are also efficiently hydrolyzed.  相似文献   

20.
The cyp102A2 and cyp102A3 genes encoding the two Bacillus subtilis homologues (CYP102A2 and CYP102A3) of flavocytochrome P450 BM3 (CYP102A1) from Bacillus megaterium have been cloned, expressed in Escherichia coli, purified, and characterized spectroscopically and enzymologically. Both enzymes contain heme, flavin adenine dinucleotide (FAD) and flavin mononucleotide (FMN) cofactors and bind a variety of fatty acid molecules, as demonstrated by conversion of the low-spin resting form of the heme iron to the high-spin form induced by substrate-binding. CYP102A2 and CYP102A3 catalyze the fatty acid-dependent oxidation of reduced nicotinamide adenine dinucleotide phosphate (NADPH) and reduction of artificial electron acceptors at high rates. Binding of carbon monoxide to the reduced forms of both enzymes results in the shift of the heme Soret band to 450 nm, confirming the P450 nature of the enzymes. Reverse-phase high-performance liquid chromatography (HPLC) of products from the reaction of the enzymes with myristic acid demonstrates that both catalyze the subterminal hydroxylation of this substrate, though with different regioselectivity and catalytic rate. Both P450s 102A2 and 102A3 show kinetic and binding preferences for long-chain unsaturated and branched-chain fatty acids over saturated fatty acids, indicating that the former two molecule types may be the true substrates. P450s 102A2 and 102A3 exhibit differing substrate selectivity profiles from each other and from P450 BM3, indicating that they may fulfill subtly different cellular roles. Titration curves for binding and turnover kinetics of several fatty acid substrates with P450s 102A2 and 102A3 are better described by sigmoidal (rather than hyperbolic) functions, suggesting binding of more than one molecule of substrate to the P450s, or possibly cooperativity in substrate binding. Comparison of the amino acid sequences of the three flavocytochromes shows that several important amino acids in P450 BM3 are not conserved in the B. subtilis homologues, pointing to differences in the binding modes for the substrates that may explain the unusual sigmoidal kinetic and titration properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号