首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 922 毫秒
1.
Two complementary methods are described that associate in vitro and in vivo steps to generate sequence diversity by segment directed saturated mutagenesis and family shuffling. A high-throughput DNA chip-based procedure for the characterization and potentially the equalization of combinatorial libraries is also presented. Using these approaches, two combinatorial libraries of cytochrome P450 variants derived from the CYPlA subfamily were constructed and their sequence diversity characterized. The results of functional screening using high-throughput tools for the characterization of membrane P450-catalyzed activities, suggest that the 204-214 sequence segment of human CYPlAl is not critical for polycyclic aromatic hydrocarbon recognition, as was hypothesized from previous data. Moreover, mutations in this segment do not alter the discrimination between alkoxyresorufins, which, for all tested mutants, remained similar to that of wild-type CYP1A1. In contrast, the constructed CYPlAl-CYPlA2 mosaic structures, containing multiple crossovers, exhibit a wide range of substrate preference and regioselectivity. These mosaic structures also discriminate between closely related alkoxyresorufin substrates. These results open the way to global high-throughput analysis of structure-function relationships using combinatorial libraries of enzymes together with libraries of structurally related substrates.  相似文献   

2.
The human liver cytochrome P450 (CYP) 2A6 and the respiratory CYP2A13 enzymes play role in nicotine metabolism and activation of tobacco-specific nitrosamine carcinogens. Inhibition of both enzymes could offer a strategy for smoking abstinence and decreased risks of respiratory diseases and lung cancer. In this study, activity-guided isolation identified four flavonoids 14 (apigenin, luteolin, chrysoeriol, quercetin) from Vernonia cinerea and Pluchea indica, four hirsutinolide-type sesquiterpene lactones 58 from V. cinerea, and acetylenic thiophenes 911 from P. indica that inhibited CYP2A6- and CYP2A13-mediated coumarin 7-hydroxylation. Flavonoids were most effective in inhibition against CYP2A6 and CYP2A13, followed by thiophenes, and hirsutinolides. Hirsutinolides and thiophenes exhibited mechanism-based inhibition and in irreversible mode against both enzymes. The inactivation kinetic KI values of hirsutinolides against CYP2A6 and CYP2A13 were 5.32–15.4 and 0.92–8.67 µM, respectively, while those of thiophenes were 0.11–1.01 and 0.67–0.97 µM, respectively.  相似文献   

3.
Microsomal cytochrome P450 family 1 enzymes has great importance in the bioactivation of mutagens. P450 catalyzed reactions involve a wide range of substrates, and this versatality is reflected in a structural diversity, evident in the active sites of available P450 structures. This structure offers a template to study further structure-function relationships of alternative substrates and other cytochrome P450 family 1 members. In this paper, we document a homology model of CYP P450 1A1 from Homo sapiens, developed on the basis of template crystal structure of human microsomal P450 1a2 in complex with inhibitor (PDB Id: 2HI4). Homology modeling is performed at the programs, both in the commercial and public realms. We tried to explore CYP1A1 as a potential target for anticancer chemotherapy. To gain an insight into the binding of ligands with enzyme, protein-ligand complex was developed by including information about the known ligand as spatial restraints and optimizing the mutual interactions between the ligand and the binding site. Active site characterization and the study for involvement of specific aminoacids in binding with ligand, facilitates structure based inhibitor design. This study should prove useful in the design and development of potential novel anticancer agents. Figure The refined structure of homology model of CYP1A1  相似文献   

4.
This work provides functional data showing that the bacterial CYP102A1 recognises compounds metabolised by human CYP3A4, CYP2E1 and CYP1A2 and is able to catalyse different reactions. Wild-type cytochrome CYP102A1 from Bacillus megaterium is a catalytically self-sufficient enzyme, containing an NADPH-dependent reductase and a P450 haem domain fused in a single polypeptidie chain. An NADPH-dependent method (Tsotsou et al. in Biosens. Bioelectron. 17:119–131, 2002) together with spectroscopic assays were applied to investigate the catalytic activity of CYP102A1 towards 19 xenobiotics, including 17 commercial drugs. These molecules were chosen to represent typical substrates of the five main families of drug-metabolising human cytochromes P450. Liquid chromatography–mass spectrometry analysis showed that CYP102A1 catalyses the hydroxylation of chlorzoxazone, aniline and p-nitrophenol, as well as the N-dealkylation of propranolol and the dehydrogenation of nifedipine. These drugs are typical substrates of human CYP2E1 and CYP3A4. The K M values calculated for these compounds were in the millimolar range: 1.21 ± 0.07 mM for chlorzoxazone, 2.52 ± 0.08 mM for aniline, 0.81 ± 0.04 mM for propranolol. The values of v max for chlorzoxazone and propranolol were 46.0 ± 9.0 and 7.6 ± 3.4 nmol min−1 nmol−1, respectively. These values are higher then those measured for the human enzymes. The v max value for aniline was 9.4 ± 1.3 nmol min−1 nmol−1, comparable to that calculated for human cytochromes P450. The functional data were found to be in line with the sequence alignments, showing that the identity percentage of CYP102A1 with CYP3A4 and CYP2E1 is higher than that found for CYP1A2, CYP2C9 and CYP2D6 families.  相似文献   

5.
The primary objective of this study was to determine specific cytochrome P450 isozyme(s) involved in the metabolism of aldrin to its toxic metabolite dieldrin in flathead mullet (Mugil cephalus) liver microsomes. To identify the cytochrome P450 isozyme responsible for the aldrin metabolism in mullet liver, the effects of mammalian‐specific cytochrome P450 inhibitors and substrates were determined in the epoxidation reaction of aldrin. CYP3A‐related inhibitors, ketoconazole, SKF‐525A, and cimetidine, inhibited the metabolism of aldrin. The contribution of CYP1A to the aldrin metabolism was shown by the inhibition of 7‐ethoxyresorufin‐O‐deethylase activity in the presence of aldrin. The results indicate that CY1A and CYP3A are the cytochrome P450s involved in aldrin epoxidase activity in mullet. In addition, the suitability of aldrin epoxidase activity for monitoring of environmental pollution was also assessed in the fish samples caught from four different locations of the West Black Sea coast of Turkey.  相似文献   

6.
Abstract Several pairs of specific primers according to the obtained cDNA sequence fragment from deltamethrin‐resistant Aedes albopktus were designed to amplify new CYP6 genes from total RNA of Aedes albopictus by rapid amplification of cDNA ends (RACE) technique. The products of RACE were cloned and selected for sequencing. The deduced amino acid sequences were subjected to homologous analysis. The results indicated that the identities of clone GZS331 sequence from 5′‐RACE products and clone GZG033 sequence from 3′‐RACE products to CYP6N3vl ‐ v3 are 83.9% ‐ 84.3% and 98.2% ‐ 99.1% respectively; while the identities of the others from 3′‐RACE products to CYP6N3v1 ‐ v3 are 84.3% ‐ 85.6%. All of these obtained cDNA sequences have a higher homology to CYP3A1 in mouse and CYP9A1 in moth. The dendrogram constructed by PC/GENE software showed similar results to homologous analysis. These obtained sequences were submitted and named by the P450 Nomenclature Committee. The diversity of cytochrome P450 genes in Culicidae species was discussed.  相似文献   

7.
Complementary DNA of cytochrome P-450 CYP1A, in addition to CYP1A1, has been isolated from Japanese eel (Anguilla japonica) liver treated with 3-methylcholanthrene. The cDNA contained a 5′ untranslated region of 66 bp, an open reading frame of 1554 bp coding for 517 amino acids and a stop codon, and a 3′ untranslated region of 1166 bp. The predicted molecular weight of the Japanese eel CYP1A was approximately 58.5 kDa. The nucleotide sequence exhibited identities with the reported CYP1A1 sequences of 77% for Japanese eel, 75% for rainbow trout, 72% for scup, plaice, and butterfly fish, and 71% for toadfish. The deduced amino acid sequence exhibited identities with the reported CYP1A1 sequences of 78% for Japanese eel, 77% for rainbow trout, 75% for scup, 74% for toadfish, 73% for plaice, and 72% for butterfly fish. The novel eel CYP1A obtained had less similarity to the other teleost CYP1A1 proteins (72%–78%) than that of the eel CYP1A1 (74%–80%). When compared with mammalian CYP proteins, the novel eel CYP1A was more similar to the CYP1A1 proteins (54%–56%) than to the CYP1A2 proteins (50%–53%). The phylogenetic tree of the teleost CYP1A genes constructed using the maximum likelihood method suggested that the novel eel CYP1A is ubiquitous among the Anguilliformes. Received August 25, 2000; accepted November 30, 2000  相似文献   

8.
A comparison of all known mammalian CYP1A sequences identifies nineteen sequence regions that are conserved within all 1A1s or within all 1A2s but at the same time systematically differ between any 1A1 and any 1A2. The purpose of this study was to explore links between these specific CYP1A sequence signatures and substrate specificity shift through the kinetic analysis of combinatorial variants of increasing complexity. The less complex variants correspond to multiple mutations within a short segment of their sequence. The more complex variants correspond to mosaic P450s recombining 1A1 and 1A2 sequences (up to 5 crossovers per sequence). Fifty-eight such functional CYP1A variants and parental wild-type enzymes were expressed in yeast and assayed with 7-alkoxyresorufins and ethoxyflurorescein ethyl ester as substrates. Observed kinetic data were analyzed by multivariate statistical analyses and hierarchical clustering in order to highlight correlations and identify potential sequence-activity relationships within the three-dimensional function space investigated. Several variants are outliers in these representations and show a redistribution of their substrate specificity compared to wild-type CYP1As. Some combinations of sequence elements were identified that significantly discriminate between 1A1 and 1A2 for these three substrates. The comparison of this combinatorial approach with previous results of site-directed mutagenesis is discussed.  相似文献   

9.
The design of a family shuffling strategy (CLERY: Combinatorial Libraries Enhanced by Recombination in Yeast) associating PCR-based and in vivo recombination and expression in yeast is described. This strategy was tested using human cytochrome P450 CYP1A1 and CYP1A2 as templates, which share 74% nucleotide sequence identity. Construction of highly shuffled libraries of mosaic structures and reduction of parental gene contamination were two major goals. Library characterization involved multiprobe hybridization on DNA macro-arrays. The statistical analysis of randomly selected clones revealed a high proportion of chimeric genes (86%) and a homogeneous representation of the parental contribution among the sequences (55.8 ± 2.5% for parental sequence 1A2). A microtiter plate screening system was designed to achieve colorimetric detection of polycyclic hydrocarbon hydroxylation by transformed yeast cells. Full sequences of five randomly picked and five functionally selected clones were analyzed. Results confirmed the shuffling efficiency and allowed calculation of the average length of sequence exchange and mutation rates. The efficient and statistically representative generation of mosaic structures by this type of family shuffling in a yeast expression system constitutes a novel and promising tool for structure–function studies and tuning enzymatic activities of multicomponent eucaryote complexes involving non-soluble enzymes.  相似文献   

10.
Cytochrome P450rm was previously isolated from the basidiomycete yeast Rhodotorula minuta as a bifunctional enzyme with isobutene-forming and benzoate 4-hydroxylase activities. We cloned the gene and corresponding cDNA for P450rm in order to characterize the enzyme in the context of fungal phylogeny and physiology. From the cDNA sequence, P450rm was deduced to have 527 amino acids with a calculated molecular weight of 59 136. P450rm shared 48% amino acid sequence identity with CYP53A1 from Aspergillus niger, indicating that the gene belongs to a novel subfamily of CYP53, CYP53B. However, the organization of the P450rm gene, which has eight exons and seven introns, differed completely to that of CYP53A1. Northern analysis demonstrated that the level of P450rm mRNA expression increased when L-phenylalanine was used as sole carbon source. These results suggest that P450rm has been well conserved during the evolution of fungi as a benzoate 4-hydroxylase in the dissimilation pathway starting from L-phenylalanine Received: 18 February 1997 / Accepted: 18 May 1997  相似文献   

11.
Here we describe a computational approach for the high-throughput sequence mapping of combinatorial libraries obtained by DNA shuffling. Original algorithms and their software implementation were developed for the automated and reliable analysis of hybridization data of differentially labeled oligonucleotide probes with PCR products spotted on DNA microarrays. This novel approach allows a context-dependent sequence attribution tolerant to fluctuations in experimental conditions and is well adapted to hybridization signals of variable qualities resulting from high-throughput PCR amplification from colonies. In addition, the analysis permits the calculation of sequence signatures that are characteristic of combinatorial library structure, defects, and diversity. The approach is of interest for the characterization and the equalization (library reduction to nonredundant structures) of combinatorial libraries involved in directed evolution and could be extrapolated to high-throughput polymorphism analysis.  相似文献   

12.
Abstract

Chronic exposure to n-hexane may result in peripheral neuropathy. 2,5-Hexanedione (2,5-HD) has been identified as a toxic metabolite of n-hexane. The CYP2E1, CYP1A1 and GST genes are involved in the formation of 2,5-hexanedione from n-hexane as well as the elimination of 2,5-HD-formed electrophile, and these genes are highly polymorphic in the general population. A nested case-control study in an industrial cohort was conducted to evaluate the associations between polymorphisms in these metabolic genes and n-hexane-induced peripheral nerve damage. The study subjects included 22 cases, who worked in a printing factory with symptoms of peripheral nerve damage, and 163 controls, who came from the same factory of cases. DNA was extracted from blood samples and genotyping was conducted for CYP2E1 Pst, CYP2E1 Dra, CYP2E1 Ins96, CYP1A1 Msp, GSTT1 null, GSTM1 null and GSTP1 105V. Unconditional logistic regression was applied to estimate the odds ratio and 95% confidence intervals. There were no significant differences between the two groups regarding age, sex, smoking and alcohol status. A significant association between Dra polymorphism and peripheral nerve damage was found. The frequency of CYP2E1 Dra homozygous mutation in the case group (18.2%) was higher than that in the control group (3.7%, p=0.015). Individuals with homozygote genotype (CC) of CYP2E1 Dra had a significantly higher risk of peripheral nerve damage compared with those with DD genotype (adjusted OR?=?5.58, 95% CI?=?1.32–23.65) after n-hexane exposure duration, sex, age, smoking and alcohol status were adjusted. No significant association was found that CYP2E1 Pst, CYP2E1 Ins96, CYP1A1 Msp, GSTT1, GSTM1, GSTP gene polymorphisms associated with the susceptibility of peripheral nerve damage. These findings suggested that CYP2E1 gene might increase the susceptibility to n-hexane-induced peripheral damage.  相似文献   

13.
This case–control study was conducted to examine the association between the CYP1A1 and CYP2D6 genotypes and lung cancer risk among North Indians. The estimated relative risk for lung cancer associated with the CYP1A1 Val/Val allele was 2.68, and was four-fold when cases with small cell lung cancer (SCLC) were considered alone. With regard to the metabolism of debrisoquine, no poor metabolizers were found amongst the subjects. The odds ratio of risk with the heterozygous extensive metabolizer (HEM) genotype was 1.5. However, in the presence of at least a single copy of the variant CYP1A1 MspI allele and the CYP2D6 HEM genotype, the risk was two-fold for squamous cell carcinoma (SQCC). When the CYP1A1 Val/Val and CYP2D6 HEM genotypes were taken together, the risk for SCLC was four-fold. Stratified analysis indicated an interaction between bidi smoking and variant CYP1A1 genotypes on the risk for SQCC and SCLC. Heavy smokers (Brinkman index>400) with Val/Val genotypes were at a very high risk of developing lung cancer (odds ratio 29.30, 95% confidence interval 2.42–355, p=0.008). Heavy smokers with CYP1A1 MspI (CYP1A1*1/2A or CYP1A1*2A/*2A) genotype had a seven-fold risk for SCLC compared with non-smokers. This study is the first to be carried out on a North Indian population, and, although small, suggests that CYP1A1 and CYP2D6 polymorphisms might have a role in determining the risk for lung cancer and should be investigated further.  相似文献   

14.
The potential use of human P450-transgenic plants for phytoremediation of pesticide contaminated soils was tested in laboratory and greenhouse experiments. The transgenic P450 CYP1A2 gene Arabidopsis thaliana plants metabolize number of herbicides, insecticides and industrial chemicals. The P450 isozymes CYP1A2 expressed in A. thaliana were examined regarding the herbicide simazine (SIM). Transgenic A. thaliana plants expressing CYP1A2 gene showed significant resistance to SIM supplemented either in plant growth medium or sprayed on foliar parts. The results showed that SIM produces harmful effect on both rosette diameter and primary root length of the wild type (WT) plants. In transgenic A. thaliana lines, the rosette diameter and primary root length were not affected by SIM concentrations used in this experiment. The results indicate that CYP1A2 can be used as a selectable marker for plant transformation, allowing efficient selection of transgenic lines in growth medium and/or in soil-grown plants. The transgenic A. thaliana plants exhibited a healthy growth using doses of up to 250 μmol SIM treatments, while the non-transgenic A. thaliana plants were severely damaged with doses above 50 μmol SIM treatments. The transgenic A. thaliana plants can be used as phytoremediator of environmental SIM contaminants.  相似文献   

15.
CYP1A1 and CYP1A2 enzymes metabolize polycyclic aromatic hydrocarbons (PAHs) to the reactive oxyderivatives. PAHs can induce the activity of both enzymes, which increases its conversion and enhances risk of carcinogenesis. Thus, the inhibition of CYP enzymes is recognized as a cancer chemoprevention strategy. A well‐known group of chemopreventive agents is isothiocyanates, which occur naturally in Brassica vegetables. In this paper, a naturally occurring sulforaphane and its two synthetic analogues isothiocyanate‐2‐oxohexyl and alyssin were investigated. The aim of the study was to determine whether the differences in the isothiocyanate structure change its ability to inhibit CYP1A1 and CYP1A2 activity induced by benzo[a]pyrene in HepG2 and Mcf7 cells. Also a mechanistic study was performed including isothiocyanates' influence on CYP1A1 and CYP1A2 catalytic activity, enzymatic protein level, and AhR translocation. It was shown that both enzymes were significantly induced by benzo[a]pyrene, and isothiocyanates were capable of decreasing the induced activity. The inhibitory properties depend on the types of isothiocyanate and enzyme. In general, CYP1A2 was altered in the more meaningful way than CYP1A1 by isothiocyanates. Sulforaphane exhibited weak inhibitory properties, whereas both analogues were capable of inhibiting BaP‐induced activity with the similar efficacy. The mechanistic study revealed that analogues decreased the CYP1A2 activity via the protein‐level reduction and CYP1A1 directly. The results indicate that isothiocyanates can be considered as potent chemopreventive substances and the change in the sulforaphane structure increases its chemopreventive potency. © 2009 Wiley Periodicals, Inc. J Biochem Mol Toxicol 23:18–28, 2009; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/jbt.20259  相似文献   

16.
17.
Cytochrome P450 1A1 (CYP1A1) is a phase I enzyme that regulates the metabolism of environmental carcinogens and alter the susceptibility to various cancers. Many studies have investigated the association between the CYP1A1 MspI and Ile462Val polymorphisms and digestive tract cancer (DTC) risk in different groups of populations, but their results were inconsistent. The PubMed and Embase Database were searched for case–control studies published up to 30th September, 2015. Data were extracted and pooled odds ratios (ORs) with 95% confidence intervals (CIs) were calculated to assess the relationship. Totally, 39 case–control studies (9094 cases and 12,487 controls) were included. The G allele in Ile/Val polymorphism was significantly associated with elevated DTC risk with per‐allele OR of 1.24 (95% CI = 1.09–1.41, P = 0.001). Similar results were also detected under the other genetic models. Evidence was only found to support an association between MspI polymorphism and DTC in the subgroups of caucasian and mixed individuals, but not in the whole population (the dominant model: OR = 1.19, 95% CI = 0.94–1.91, P = 0.146). In conclusion, our results suggest that the CYP1A1 polymorphisms are potential risk factors for DTC. And large sample size and well‐designed studies with detailed clinical information are needed to more precisely evaluate our founding.  相似文献   

18.
19.
Sibutramine is a serotonin–norepine‐phrine reuptake inhibitor that was used for weight‐loss management in obese patients. Even though it was officially withdrawn from the market in 2010, it is still present in some tainted weight‐loss pills (as reported by US Food and Drug Administration). Thus, it is still reasonable to study the effects of this compound. The aim of this work was to investigate the potential of sibutramine to induce CYP1A1/CY3A4 in human cancer cell lines and CYP1A1/2, CYP2A6, CYP2B6, and CYP3A4 in human hepatocytes, a competent model of metabolically active cells. The levels of mRNA and protein of CYP1A1/1A2/3A4/2A6/2B6 were compared with the typical inducers, 2,3,7,8‐tetrachlorodibenzo‐p‐dioxin (TCDD) and rifampicin (RIF) for CYP1A1/2 and for other CYPs, respectively. The mRNA and protein levels of all genes in either cancer cell lines or human hepatocytes were induced when treated with typical inducers but not with sibutramine.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号