首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Leishmania was found deficient in at least five and most likely seven of the eight enzymes in the heme biosynthesis pathway, accounting for their growth requirement for heme compounds. The xenotransfection of this trypanosomatid protozoan led to their expression of the mammalian genes encoding delta-aminolevulinate (ALA) dehydratase and porphobilinogen deaminase, the second and the third enzymes of the pathway, respectively. These transfectants still require hemin or protoporphyrin IX for growth but produce porphyrin when ALA was supplied exogenously. Leishmania is thus deficient in all first three enzymes of the pathway. Uroporphyrin I was produced as the sole intermediate by these transfectants, further indicating that they are also deficient in at least two porphyrinogen-metabolizing enzymes downstream of porphobilinogen deaminase, i.e. uroporphyrinogen III co-synthase and uroporphyrinogen decarboxylase. Pulsing the transfectants with ALA induced their transition from aporphyria to uroporphyria. Uroporphyrin I emerged in these cells initially as diffused throughout the cytosol, rendering them sensitive to UV irradiation. The porphyrin was subsequently sequestered in cytoplasmic vacuoles followed by its release and accumulation in the extracellular milieu, concomitant with a reduced photosensitivity of the cells. These events may represent cellular mechanisms for disposing soluble toxic waste from the cytosol. Monocytic tumor cells were rendered photosensitive by infection with uroporphyric Leishmania, suggestive of their potential application for photodynamic therapy.  相似文献   

2.
先天性红细胞生成性卟啉症(congenitalery-thropoieticporphyria,CEP)是Gunther于1911年首先提出并加以描述,有时亦称Gunther病.该病是因遗传性缺陷所致卟啉代谢中有关酶的异常造成的卟啉代谢紊乱而发生的一...  相似文献   

3.
1. Porphyrin biosynthesis from delta-aminolevulinic acid (ALA) was investigated using the technique of tissue explant cultures, in both human breast cancer and its original normal tissue. 2. The activity of ALA-dehydratase, porphobilinogenase and uroporphyrinogen decarboxylase was directly determined in both tumor and normal mammary tissues. 3. Porphyrin synthesis capacity of human breast carcinoma was 20-fold enhanced, as compared with normal tissue, at least between the stages of porphobilinogen and coproporphyrinogen formation. 4. The activity of the three enzymes examined was always lower in normal tissue than in tumoral tissue. 5. Present findings show that porphyrin biosynthesis is increased in breast cancer tissue.  相似文献   

4.
Cesium chloride (CsCl) treatment of greening primary leaves of barley for 8 h inhibited chlorophyl] accumulation in a concentration-dependent manner and led to the accumulation of excessive amounts of uroporphyrin(ogen) III (URO[gen]) and to a minor extent of heptacarboxylporphyrin(ogen). When dark-grown leaves were incubated with CsCl, accumulation of URO(gen) was observed only after feeding of the tetrapyrrole precursor 5-aminolevulinic acid. Western blot analysis showed no apparent difference in content of uroporphyrinogen decarboxylase (EC 4.1.1.37, UROD) or selected proteins involved in tetrapyrrole biosynthesis in extracts of CsCl-incubated (15 m M ) versus control leaves. UROD activity was drastically decreased upon CsCl treatment in leaves incubated in the dark or in the light (44 and 86%, respectively). Selected preceding enzymes of the tetrapyrrole biosynthetic pathway, 5-aminolevulinic acid dehydratase (EC 4.2.1.24, ALAD) and porphobilinogen deaminase (EC 4.3.1.8, PBGD), were influenced only to a minor extent under standard incubation conditions (15 m M CsCl). Furthermore, the ALA synthesizing capacity did not differ in leaves incubated with and without Cs cations. UROD activity of crude homogenates from control plants and after partial purification was reduced to 56 and 80%, respectively, upon addition of 10 m M CsCl. Equal concentrations of KCl were not inhibitory. Enzyme assays of the same barley extract in the presence of CsCl yielded no effect on ALAD and a minor loss of PBGD activity. The initial visible cytotoxic effect of CsCl appeared to be a selective inhibition of UROD resulting in accumulation of photosensitizing URO (gen). Consequences of the diminished UROD activity on early steps of the tetrapyrrole biosynthesis and its functional and regulatory significance for the porphyrin synthesis are discussed.  相似文献   

5.
The activity of the following enzymes involved in the biosynthesis of porphyrins was determined in endosymbiote-free and endosymbiote-containing Crithidia deanei grown in a chemically defined medium: succinyl Coenzyme A synthetase (Suc.CoA-S), 5-aminolevulinate synthetase (ALA-S), 4,5-dioxovaleric acid transaminase (DOVA-T), 5-aminolevulinate dehydratase (ALA-D), porphobilinogenase (PBGase), deaminase and heme synthetase (Heme-S). The amount of 5-aminolevulinic acid (ALA) and porphobilinogen, porphyrins and heme was also determined. ALA and PBG were detected in C. deanei. The levels of free porphyrins was low. Heme concentration was nil. The activity of ALA-D, deaminase and PBGase was not detected in C. deanei. The activity of Suc.CoA-S and ALA-S were twice higher in symbiote-containing than in aposymbiotic C. deanei. Aposymbiotic cells had a higher activity of DOVA-T than symbiote-containing cells. The level of Heme-S, measured using protoporphyrin as substrate, was twice as high in symbiote-containing than in symbiote-free cells.  相似文献   

6.
7.
1. Porphobilinogenase was isolated and purified from soya-bean callus tissue; its components, porphobilinogen deaminase and uroporphyrinogen isomerase, were separated and purified. 2. The purified porphobilinogenase was resolved into two bands on starch-gel electrophoresis. The molecular weights of porphobilinogenase, deaminase and isomerase fractions were determined by the gel-filtration method. Porphobilinogenase activity was affected by the presence of air; uroporphyrinogens were only formed under anaerobic conditions, although substrate consumption was the same in the absence of oxygen as in its presence. 3. pH-dependence of both porphobilinogenase and deaminase was the same and a sharp optimum at pH 7.2 was obtained. Isomerase was heat-labile, but the presence of ammonium ions or porphobilinogen afforded some protection against inactivation. The action of several compounds added to the system was studied. Cysteine, thioglycollate, ammonium ions and hydroxylamine inhibited porphobilinogenase; certain concentrations of sodium and magnesium salts enhanced activity; some dicarboxylic acids and 2-methoxy-5-nitrotropone inhibited the deaminase. 4. delta-Aminolaevulate and ethionine in the culture media stimulated porphyrin synthesis and increased porphobilinogenase activity, whereas iron deficiency resulted in porphyrin accumulation. 5. The development of chlorophyll and porphobilinogenase on illumination of dark-grown callus was followed. 6. A hypothetical scheme is suggested for the enzymic synthesis of uroporphyrinogens from porphobilinogen.  相似文献   

8.
Uroporphyrinogen decarboxylase (EC 4.1.1.37) which converts uroporphyrinogen I or III into coproporphyrinogen I or III, respectively, was purified about 5,500-fold from chicken erythrocytes. Purification was accomplished by chromatography on DEAE-cellulose, ammonium sulfate fractionation, chromatography on Sephadex G-100, and chromatofocusing. The most purified preparation was homogeneous on polyacrylamide gel electrophoresis and had a specific activity of 1,420 units/mg of protein, the highest value so far reported. The molecular weight, as determined by Sephadex G-150 gel chromatography, is 79,000. The subunit molecular weight, as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, is 39,700, suggesting that uroporphyrinogen decarboxylase is dimeric in form. The purified enzyme had an isoelectric point of 6.2 and a pH optimum of 6.8. The SH reagents inhibited the enzyme activity, but neither metal ions nor cofactor requirements could be demonstrated. A new and simple method for the separation of free uroporphyrin, hepta-, hexa-, and pentacarboxylic porphyrins and coproporphyrin was developed using a high pressure liquid chromatograph equipped with a spectrofluorometric detector. Kinetic studies of the sequential decarboxylation of uroporphyrinogen with purified enzyme were performed. 3,4,3',4'-Tetrachlorobiphenyl and 3,4,5,3',4'5'-hexachlorobiphenyl which specifically induce delta-aminolevulinic acid synthetase also strongly inhibit uroporphyrinogen decarboxylase directly at two steps, i.e. first in the formation of hexacarboxylic porphyrinogen III from heptacarboxylic porphyrinogen III and second in the formation of heptacarboxylic porphyrinogen III from uroporphyrinogen III.  相似文献   

9.
A protein had been previously described, which was labeled by radioactive 5-aminolevulinic acid in isolated developing chloroplasts. In the present study we have shown that this protein (Mr approximately equal to 43,000) probably exists as a monomer in the chloroplast stroma. The labeling is blocked if known inhibitors of 5-aminolevulinic acid dehydratase are added to the incubation mixture, and is markedly decreased in intensity if nonradioactive 5-aminolevulinate or porphobilinogen are added to the incubation mixture; other intermediates in the porphyrin biosynthetic pathway, uroporphyrinogen III, uroporphyrin III, and protoporphyrin IX, do not decrease the labeling of the 43-kDa protein appreciably. Nondenaturing gels of the proteins isolated from the incubation with radioactive 5-aminolevulinic acid were stained for porphobilinogen deaminase activity. A series of red fluorescent bands was obtained which coincided with the radioactive bands visualized by autoradiography. It is concluded that the soluble chloroplast protein that is labeled in organello by radioactive 5-aminolevulinic acid is porphobilinogen deaminase.  相似文献   

10.
The short- and long-term pro-oxidant effect of protoporphyrin IX (PROTO) administration to mice was studied in liver. A peak of liver porphyrin accumulation was found 2 h after the injection of PROTO (3.5 mg/kg, i.p.); then the amount of porphyrins diminished due to biliar excretion. After several doses of PROTO (1 dose every 24 h up to 5 doses) a sustained enhancement of liver porphyrins was observed. The activity of δ-amino-levulinic acid synthetase was induced 70-90% over the control values 4 h after the first injection of PROTO and stayed at these high levels throughout the period of the assay. Administration of PROTO induced rapid liver damage, involving lipid peroxidation. Hepatic GSH content was increased 2 h after the first injection of PROTO, but then decreased below the control values which were maintained after several doses of porphyrin. After a single dose of PROTO, Cu-Zn superoxide dismutase (SOD) was rapidly induced, suggesting that superoxide radicals had been generated. Increased levels of hydrogen peroxide coming from the reaction catalyzed by SOD and lipid peroxides as a consequence of membrane peroxidation, induced the activity of catalase and glutathione peroxidase (GPx), while decreased GSH levels induced glutathione reductase (GRed) activity. However after 5 doses of PROTO, the activity of SOD was reduced reaching control values. GPx and catalase activities slowly went down, while GRed continued increasing as long as the levels of GSH were kept very low. TBARS values, although lower than those observed after a single dose of PROTO, remained above control values; Glutathione S-transferase activity was instead greatly diminished, indicating sustained liver damage.

Our findings would indicate that accumulation of PROTO in liver induces oxidative stress, leading to rapid increase in the activity of the antioxidant enzymes to avoid or revert liver damage. However, constant accumulation of porphyrins provokes a liver damage so severe that the antioxidant system is compromised.  相似文献   

11.
The short- and long-term pro-oxidant effect of protoporphyrin IX (PROTO) administration to mice was studied in liver. A peak of liver porphyrin accumulation was found 2 h after the injection of PROTO (3.5 mg/kg, i.p.); then the amount of porphyrins diminished due to biliar excretion. After several doses of PROTO (1 dose every 24 h up to 5 doses) a sustained enhancement of liver porphyrins was observed. The activity of δ-amino-levulinic acid synthetase was induced 70–90% over the control values 4 h after the first injection of PROTO and stayed at these high levels throughout the period of the assay. Administration of PROTO induced rapid liver damage, involving lipid peroxidation. Hepatic GSH content was increased 2 h after the first injection of PROTO, but then decreased below the control values which were maintained after several doses of porphyrin. After a single dose of PROTO, Cu-Zn superoxide dismutase (SOD) was rapidly induced, suggesting that superoxide radicals had been generated. Increased levels of hydrogen peroxide coming from the reaction catalyzed by SOD and lipid peroxides as a consequence of membrane peroxidation, induced the activity of catalase and glutathione peroxidase (GPx), while decreased GSH levels induced glutathione reductase (GRed) activity. However after 5 doses of PROTO, the activity of SOD was reduced reaching control values. GPx and catalase activities slowly went down, while GRed continued increasing as long as the levels of GSH were kept very low. TBARS values, although lower than those observed after a single dose of PROTO, remained above control values; Glutathione S-transferase activity was instead greatly diminished, indicating sustained liver damage.

Our findings would indicate that accumulation of PROTO in liver induces oxidative stress, leading to rapid increase in the activity of the antioxidant enzymes to avoid or revert liver damage. However, constant accumulation of porphyrins provokes a liver damage so severe that the antioxidant system is compromised.  相似文献   

12.
Specificity of the heme requirement for growth of Bacteroides ruminicola   总被引:15,自引:6,他引:9  
Caldwell, D. R. (U.S. Department of Agriculture, Beltsville, Md.), D. C. White, M. P. Bryant, and R. N. Doetsch. Specificity of the heme requirement for growth of Bacteroides ruminicola. J. Bacteriol. 90:1645-1654. 1965.-Previous studies suggested that most strains of Bacteroides ruminicola subsp. ruminicola require heme for growth. Present studies with heme-requiring strain 23 showed that protoheme was replaced by various porphyrins, uroporphyrinogen, coproporphyrinogen, certain iron-free metalloporphyrins, hemes, and certain heme-proteins containing readily removable hemes. Strain 23 utilized a wider range of tetrapyrroles than hemin-requiring bacteria previously studied. Inactive compounds included porphyrin biosynthesis intermediates preceding the tetrapyrrole stage and related compounds; uroporphyrin, chlorophyll, pheophytin, phycoerythrin, bilirubin, pyrrole, FeSO(4) with or without chelating agents; and representative ferrichrome compounds. Strain 23, two other strains representing predominant biotypes of B. ruminicola subsp. ruminicola, and one closely related strain grew in media containing heme-free protoporphyrin, mesoporphyrin, hematoporphyrin, or deuteroporphyrin, apparently inserting iron into several nonvinyl porphyrins. Porphobilinogen and porphyrin synthesis, apparently via the commonly known heme synthesis pathway, occurred during growth of heme-independent B. ruminicola subsp. brevis strain GA33 in a tetrapyrrole-free medium containing delta-aminolevulinic acid, but delta-aminolevulinic acid metabolism to porphobilinogen or porphyrins could not be detected in cells of heme-requiring strain 23 grown in the same medium with hemin added. Growth of strain 23 with uroporphyrinogen, coproporphyrinogen, or protoporphyrin IX replacing hemin suggests that part of the commonly known heme-biosynthesis pathway is present in this strain, but nutritional and metabolic evidence indicates that some or all of the enzymes synthesizing the tetrapyrrole nucleus from linear molecules are lacking or inactive.  相似文献   

13.
Mock HP  Grimm B 《Plant physiology》1997,113(4):1101-1112
We introduced a full-length cDNA sequence encoding tobacco (Nicotiana tabacum) uroporphyrinogen III decarboxylase (UROD; EC 4.1.1.37) in reverse orientation under the control of a cauliflower mosaic virus 35S promoter derivative into the tobacco genome to study the effects of deregulated UROD expression on tetrapyrrole biosynthesis. Transformants with reduced UROD activity were characterized by stunted plant growth and necrotic leaf lesions. Antisense RNA expression caused reduced UROD protein levels and reduced activity to 45% of wild type, which was correlated with the accumulation of uroporphyrin(ogen) and with the intensity of necrotic damage. Chlorophyll levels were only slightly reduced (up to 15%), indicating that the plants sustained cellular damage from accumulating photosensitive porphyrins rather than from chlorophyll deficiency. A 16-h light/8-h dark regime at high-light intensity stimulates the formation of leaf necrosis compared with a low-light or a 6-h high-light treatment. Transgenic plants grown at high light also showed inactivation of 5-aminolevulinate dehydratase and porphobilinogen deaminase, whereas the activity of coproporphyrinogen oxidase and the 5-aminolevulinate synthesizing capacity were not altered. We conclude that photooxidation of accumulating uroporphyrin(ogen) leads to the generation of oxygen species, which destabilizes other enzymes in the porphyrin metabolic pathway. This porphyrin-induced necrosis resembles the induction of cell death observed during pathogenesis and air pollution.  相似文献   

14.
High-field NMR spectroscopic methods have been applied to study the reactions catalyzed by porphobilinogen (PBG) deaminase and uroporphyrinogen III (uro'gen III) cosynthase, which are the enzymes responsible for the formation of the porphyrin macrocycle. The action of these enzymes in the conversion of PBG, [2,11-13C]PBG, and [3,5-13C]PBG to uro'gens I and III has been followed by 1H and 13C NMR, and assignments are presented. The principal intermediate that accumulated was the correspondingly labeled (hydroxymethyl)bilane (HMB), the assignments for which are also presented.  相似文献   

15.
In Saccharomyces cerevisiae, as in all eukaryotic organisms, delta-aminolevulinic acid (ALA) is a precursor of porphyrin biosynthesis, a very finely regulated pathway. ALA enters yeast cells through the gamma-aminobutyric acid (GABA) permease Uga4. The incorporation of a metabolite into the cells may be a limiting step for its intracellular metabolization. To determine the relationship between ALA transport and ALA metabolization, ALA incorporation was measured in yeast mutant strains deficient in the delta-aminolevulinic acid-synthase, uroporphyrinogen III decarboxylase, and ferrochelatase, three enzymes involved in porphyrin biosynthesis. Results presented here showed that neither intracellular ALA nor uroporphyrin or protoporphyrin regulates ALA incorporation, indicating that ALA uptake and its subsequent metabolization are not related to each other. Thus a key metabolite as it is, ALA does not have a transport system regulated according to its role.  相似文献   

16.
The hepta-, hexa- and penta-carboxylic porphyrins found in the faeces of rats poisoned with hexachlorobenzene have been separated by high-pressure liquid chromatography and characterized largely by spectroscopie methods. Their structures were confirmed by total synthesis, as part of a programme in which eleven of the fourteen hepta-, hexa- and penta-carboxylic porphyrins derived from uroporphyrin III have now been synthesized as their methyl esters. The four isomeric heptacarboxylic and three of the pentacarboxylic porphyrinogens have been incubated with haemolysates of chicken erythrocytes, and they are all converted into protoporphyrin IX but at different rates. On the basis of this and other evidence we conclude that the decarboxylation of uroporphyrinogen III to coproporphyrinogen III is a stepwise process taking place by a preferred pathway (both in normal and abnormal metabolism); the acetic acid groups are decarboxylated in a sequential clockwise fashion starting with that on the D ring and followed by those on the A, B and C rings. In the poisoned rats the uroporphyrinogen decarboxylase enzyme (or group of enzymes) is probably partially inhibited and the pentacarboxylic porphyrinogen with an acetic acid group on ring C accumulates. The latter is then transformed by a side pathway into dehydroisocoproporphyrinogen and thence into dehydroisocoproporphyrin and its congeners.  相似文献   

17.
Porphyrins are known to be efficient photosensitizer molecules and the combined action of light and porphyrins in Propionibacterium acnes have a lethal action on the cells. Identification and quantification of in situ porphyrins in P. acnes have been done using an integrating sphere connected to an ordinary absorption spectrophotometer, and the amounts of porphyrins in the cells were quantified by measuring scattering free absorption spectra of the cell suspensions. The concentration of porphyrins in P. acnes cells were increased in either of two ways; by the addition of delta-aminolevulinic acid (ALA), which lead to the formation of coproporphyrin III under the incubation conditions used in these experiments, or by the addition of protoporphyrin IX (PPIX) to the cell suspension. In the latter case, PPIX molecules are taken up by the cells in a membrane-mediated uptake mechanism, and accumulate in the cells either on a monomeric or a particular aggregate form. The fraction of porphyrins on aggregate form increased with increasing PPIX additions. In the case of ALA induced porphyrin production, only monomeric porphyrins were stored in the cells. In both cases, the cells have a limited binding capacity of monomeric porphyrins, which is estimated to be 3 x 10(5) molecules/cell, or one porphyrin molecule to every 100st lipid molecule in the cell membrane.  相似文献   

18.
Effects of the prooxidant delta-aminolevulinic acid (ALA) and the antioxidant melatonin (MEL) were investigated in the male Syrian hamster Harderian gland (HG). Rodent Harderian glands are highly porphyrogenic organs, which may be used as model systems for studying damage by delta-aminolevulinic acid and its metabolites, as occurring in porphyrias. Chronic administration of delta-aminolevulinic acid (2 weeks) markedly decreased activities of the porphyrogenic enzymes delta-aminolevulinate synthase (ALA-S) and delta-aminolevulinate dehydratase (ALA-D) and of the antioxidant enzymes superoxide dismutase (SOD), glutathione reductase (GR) and catalase (CAT), whereas porphobilinogen deaminase (PBG-D) remained unaffected. This treatment led to increased lipid peroxidation (LPO) and oxidatively modified protein (protein carbonyl) as well as to morphologically apparent tissue damage. Melatonin also caused decreases in delta-aminolevulinate synthase, delta-aminolevulinate dehydratase, superoxide dismutase, glutathione reductase and catalase. Despite lower activities of antioxidant enzymes, lipid peroxidation and protein carbonyl were markedly diminished. The combination of delta-aminolevulinic acid and melatonin led to approximately normal levels of delta-aminolevulinate dehydratase, glutathione reductase, catalase and protein carbonyl, and to rises in superoxide dismutase and porphobilinogen deaminase activities; lipid peroxidation remained even lower than in controls and the appearance of the tissue revealed a protective influence of melatonin. These results suggest that melatonin may have profound effects on the oxidant status of the Harderian gland.  相似文献   

19.
20.
The action of uroporphyrin I (URO I) on the activity of red cell uroporphyrinogen decarboxylase (URO-D) in the dark and under UV light was studied. Light-dependent-and light-independent inactivation was observed. Both effects increased at increasing concentrations of URO I, the former reached its maximum at 150 microM of sensitizer. At 100 microM of URO I, both light and dark inactivation were temperature dependent amounting to about 50% at 30-37 degrees C. The velocity of dark inactivation increased with increasing temperature in the range of 0 to 45 degrees C. Photoinactivation can be ascribed to primary oxidation of essential amino acids, very likely histidyl residues, followed by secondary inter or intrapeptide cross-linking. Dark inactivation could be the result of both oxidation and cross-linking (although to a less degree than that produced by light) and also direct inhibition of the enzyme by induced conformational changes at its active site through binding of the porphyrin to the protein. When the action of URO I was tested on partially purified URO-D, the enzyme appeared to be more susceptible to the dark than to the light effect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号