首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 29 毫秒
1.
A method is described for the preparation of novel cephalexin-derived furanyl-, thiophenyl-, pyrrolyl-, salicylyl- and pyridyl-containing compounds showing potent antibacterial activity. The binding of these newly synthesized antibacterial agents with metal ions such as cobalt(II), copper(II), nickel(II) and zinc(II) has been studied and their inhibitory properties against various bacterial species such as Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, and Klebsiella pneumoniae are also reported. These results suggest that metal ions to possess an important role in the designing of metal-based antibacterials and that such complexes are more effective against infectious diseases compared to the uncomplexed drugs.  相似文献   

2.
Organometallic-based, 1,1'-diacetylferrocene-derived antibacterial and antifungal thiocarbohydrazone, carbohydrazone, thiosemicarbazone and semicarbazone have been prepared by condensing equimolar amount of 1,1'-diacetylferrocene with thiocarbohydrazide, carbohydrazide thiosemicarbazide and semicarbazide, respectively. These were used as ligands for the preparation of their cobalt (II), copper (II), nickel (II) and zinc (II) metal complexes. All the synthesized ligands and their complexes were characterized by IR, NMR, elemental analyses, molar conductances, magnetic moments and electronic spectral data. These synthesized compounds were screened for their antibacterial activity against Escherichia coli, Bacillus subtillis, Staphylococcus aureus, Pseudomonas aeruginosa and Salmonella typhi, and for antifungal activity against Trichophyton longifusus, Candida albicans, Aspergillus flavus, Microsporum canis, Fusarium solani and Candida glaberata using the agar-well diffusion method. All the compounds showed good antibacterial and antifungal activity which increased on coordination with the metal ions thus, introducing a novel class of organometallic-based antibacterial and antifungal agents.  相似文献   

3.
The Schiff base ligand, oxalic bis[(2-hydroxybenzylidene)hydrazide], H(2)L, and its Cu(II), Ni(II), Co(II), UO(2)(VI) and Fe(III) complexes were prepared and tested as antibacterial agents. The Schiff base acts as a dibasic tetra- or hexadentate ligand with metal cations in molar ratio 1:1 or 2:1 (M:L) to yield either mono- or binuclear complexes, respectively. The ligand and its metal complexes were characterized by elemental analyses, IR, (1)H NMR, Mass, and UV-Visible spectra and the magnetic moments and electrical conductance of the complexes were also determined. For binuclear complexes, the magnetic moments are quite low compared to the calculated value for two metal ions complexes and this shows antiferromagnetic interactions between the two adjacent metal ions. The ligand and its metal complexes were tested against a Gram + ve bacteria (Staphylococcus aureus), a Gram -ve bacteria (Escherichia coli), and a fungi (Candida albicans). The tested compounds exhibited high antibacterial activities.  相似文献   

4.
Nicotinic acid derived Schiff bases and their transition metal [cobalt(II), nickel(II) and zinc(II)] complexes have been prepared and characterized by physical, spectral and analytical data. The Schiff bases act as deprotonated tridentate ligands for the complexation of the above mentioned metal ions. These complexes, possessing the general formula [M(L)2] [where M = Co(II), Ni(II) and Zn(II) and L = HL1-HL4] showed an octahedral geometry of the metal ions. For determining the effect of metal ions upon chelation, the Schiff bases and their complexes have been screened for antibacterial activity against several pathogenic strains of Escherichia coli, Staphylococcus aureus and Pseudomonas aeruginosa. The new metal derivatives reported here were more bactericidal against one or more bacterial species as compared to the uncomplexed Schiff bases.  相似文献   

5.
A new series of antibacterial and antifungal triazine-derived mono- and di-substituted (symmetrical and unsymmetrical) Schiff-bases and their cobalt(II), copper(II), nickel(II) and zinc(II) metal complexes have been synthesized and characterized by their elemental analyses, molar conductances, magnetic moments and IR and electronic spectral measurements. IR spectra indicated the ligands to act as tridentate towards divalent metal ions via a trazine-N, the azomethine-N and, indole-NH and deprotonated-O of salicylaldehyde. The magnetic moments and electronic spectral data suggest octahedral geometry for the Co(II), Ni(II) and Zn(II)complexes and square-pyramid for Cu(II) complexes. NMR spectral data of the ligands and their diamagnetic zinc(II) complexes well-define their proposed structures/geometries. Elemental analyses data of the ligands and metal complexes agree with their proposed structures/geometries. The synthesized ligands, along with their metal complexes were screened for their antibacterial activity against Escherichia coli, Bacillus subtillis, Shigella flexneri, Staphylococcus aureus, Pseudomonas aeruginosa and Salmonella typhi and for antifungal activity against Trichophyton longifusus, Candida albicans, Aspergillus flavus, Microsporum canis, Fusarium solani and Candida glaberata. The results of these studies show the metal complexes to be more antibacterial/ antifungal against two or more species as compared to the uncomplexed Schiff-base ligands.  相似文献   

6.
The Schiff base ligand, oxalic bis[(2-hydroxybenzylidene)hydrazide], H2L, and its Cu(II), Ni(II), Co(II), UO2(VI) and Fe(III) complexes were prepared and tested as antibacterial agents. The Schiff base acts as a dibasic tetra- or hexadentate ligand with metal cations in molar ratio 1:1 or 2:1 (M:L) to yield either mono- or binuclear complexes, respectively. The ligand and its metal complexes were characterized by elemental analyses, IR, 1H NMR, Mass, and UV-Visible spectra and the magnetic moments and electrical conductance of the complexes were also determined. For binuclear complexes, the magnetic moments are quite low compared to the calculated value for two metal ions complexes and this shows antiferromagnetic interactions between the two adjacent metal ions. The ligand and its metal complexes were tested against a Gram + ve bacteria (Staphylococcus aureus), a Gram -ve bacteria (Escherichia coli), and a fungi (Candida albicans). The tested compounds exhibited high antibacterial activities.  相似文献   

7.
Azo-Schiff base ligand (N′-((E)-2-hydroxy-5-((E)-(2-hydroxyphenyl)diazenyl)benzylidene)nicotinohydrazide) and its Mn(II), Co(II), Ni(II), Cu(II), Zn(II) and Pd(II) chelates were prepared and elucidated. The geometrical structures of the prepared chelates were characterized by several spectroanalytical techniques and thermogravimetric analysis. The obtained data revealed that the chelates have (1M:1L), (1M:2L), (1M:3L), and (1M:4L) molar ratios. The infrared spectra displayed that the H2L ligand behaves in a pentacoordinate fashion in chelates of Mn(II), Ni(II), and Cu(II) ions. However, in Zn(II) and Pd(II) chelates, the ligand is coordinated as a tetradentate species (NONO) through nitrogen atoms of azomethine and azo groups as well as oxygen atoms of phenolic hydroxy, and carbonyl groups. Besides, it was concluded that the oxygen atoms of carbonyl and hydroxy groups along with the azomethine nitrogen atom of the ligand are bounded with Co(II) ion in metal chelate ( 2 ). According to the measured molar conductance values, the chelates of Cu(II), Zn(II), and Pd(II) are weak electrolytes, but Mn(II), Co(II), and Ni(II) chelates are ionic. The azo-Schiff base ligand and its prepared metal chelates were tested for their antioxidant and antibacterial properties. The Ni(II) chelate was found to be considered an effective antioxidant agent. In addition, the available antibacterial data suggest that the Ni(II) and Co(II) chelates may be employed as inhibitor agents against Proteus vulgaris, Escherichia coli, and Bacillus subtilis bacteria. Furthermore, the data showed that, in comparison to the ligand and other metal chelates, copper(II) chelate (4) exhibited higher action against Bacillus subtilis bacteria.  相似文献   

8.
Some isatin derived sulfonamides and their transition metal [Co(II), Cu(II), Ni(II), Zn(II)] complexes have been synthesized and characterized. The structure of synthesized compounds and their nature of bonding have been inferred on the basis of their physical (magnetic susceptibility and conductivity measurements), analytical (elemental analyses) and spectral (IR, (1)H NMR and (13)C NMR) properties. An octahedral geometry has been suggested for Co(II), Ni(II) and Zn(II) and square-planar for Cu(II) complexes. In order to assess the antibacterial and antifungal behavior, the ligands and their metal(II) complexes were screened for their in vitro antibacterial activity against four Gram-negative species, Escherichia coli, Shigella flexneri, Pseudomonas aeruginosa and Salmonella typhi and two Gram-positive species, Staphylococcus aureus and Bacillus subtilis and, for in vitro antifungal activity against Trichophyton longifusus, Candida albicans, Aspergillus flavus, Microsporum canis, Fusarium solani and Candida glaberata. In vitro cytotoxic properties of all the compounds were also studied against Artemia salina by brine shrimp bioassay. The results of average antibacterial/antifungal activity showed that zinc(II) complexes were found to be the most active against one or more bacterial/fungal strains as compared to the other metal complexes.  相似文献   

9.
A series of isatins incorporating thiazole, thiadiazole, benzothiazole and p-toluene sulfonyl hydrazide moieties, along with their cobalt(II), copper(II), nickel(II) and zinc(II) metal complexes have been synthesized and characterized by elemental analyses, molar conductances, magnetic moments, IR, NMR and electronic spectral data. These compounds have been screened for antibacterial activity against Escherichia coli, Bacillus subtillis, Shigella flexneri, Staphylococcus aureus, Pseudomonas aeruginosa and Salmonella typhi, and for antifungal activity against Trichophyton longifusus, Candida albicans, Aspergillus flavus, Microsporum canis, Fusarium solani and Candida glaberata using the agar-well diffusion method. All the synthesized compounds have shown good affinity as antibacterial and/or antifungal agents which increased in most of the cases on complexation with the metal ions.  相似文献   

10.
R Husseini  R J Stretton 《Microbios》1980,29(116):109-125
Phanquone is active against a wide range of Gram-positive and Gram-negative organisms. Its activity is affected by the nature of the suspending fluid, pH and anaerobic growth conditions. Its ability to chelate metal ions was examined and found to be related to its antibacterial activity, which was reduced by the presence of added metal ions, e.g. Co (II), Cu(II), Fe(II) and Fe(III) in nutrient media for both E. coli and S. aureus. When antibacterial activity was examined in dis-nutrient media for both E. coli and S. aureus. When antibacterial activity was examined in distilled water, then certain added metal ions, whilst antagonizing activity was examined in distilled water, then certain added metal ions, whilst antagonizing the activity of Phanquone against E. coli, exerted a co-operative effect in the case of S. aureus. The addition of EDTA and NTA lowered the activity of Phanquone against S. aureus, but not E. coli, while the addition of thiol-containing compounds lowered its activity against E. coli but not S. aureus. concentration quenching was observed for S. aureus but not for E. coli, while overnight pre-incubation at 4 degrees C resulted in the appearance of a growth zone inside the zone of inhibition in the case of S. aureus but not E. coli. Phanquone may have a different mode of action against the two organisms.  相似文献   

11.
Kefzol (kzl), a beta-lactam antibiotic, possesses various donor sites for interaction with transition metal(II) ions [Co(II), Cu(II), Ni(II) and Zn(II)] to form complexes of the type [M(kzl)2]Cl2 and [M(kzl)Cl], with molar ratio of metal: ligand (M:L) of 1:2 and 1:1 respectively. These complexes were prepared and characterized by physicochemical and spectroscopic methods. Their IR and NMR spectra suggest that kefzol potentially acts as a bidentate, tridentate as well as monoanionic tetradentate ligand. The complexes have been screened for antibacterial activity and results were compared with the activity of the uncomplexed antibiotic against Staphylococcus aureus, Klebsiella pneumoniae, Pseudomonas aeruginosa, Escherichia coli and Proteus mirabilis. The metal complexes were found to be more potent against one or more bacterial species than the uncomplexed kefzol.  相似文献   

12.
A new series of antibacterial and antifungal triazine-derived mono- and di-substituted (symmetrical and unsymmetrical) Schiff-bases and their cobalt(II), copper(II), nickel(II) and zinc(II) metal complexes have been synthesized and characterized by their elemental analyses, molar conductances, magnetic moments and IR and electronic spectral measurements. IR spectra indicated the ligands to act as tridentate towards divalent metal ions via a trazine-N, the azomethine-N and, indole-NH and deprotonated-O of salicylaldehyde. The magnetic moments and electronic spectral data suggest octahedral geometry for the Co(II), Ni(II) and Zn(II)complexes and square-pyramid for Cu(II) complexes. NMR spectral data of the ligands and their diamagnetic zinc(II) complexes well-define their proposed structures/geometries. Elemental analyses data of the ligands and metal complexes agree with their proposed structures/geometries. The synthesized ligands, along with their metal complexes were screened for their antibacterial activity against Escherichia coli, Bacillus subtillis, Shigella flexneri, Staphylococcus aureus, Pseudomonas aeruginosa and Salmonella typhi and for antifungal activity against Trichophyton longifusus, Candida albicans, Aspergillus flavus, Microsporum canis, Fusarium solani and Candida glaberata. The results of these studies show the metal complexes to be more antibacterial/antifungal against two or more species as compared to the uncomplexed Schiff-base ligands.  相似文献   

13.
Schiff bases derived from oxaldiamide/oxalylhydrazine and pyrrol-2-carbaldehyde, or salicylaldehyde respectively, as well as their Zn(II) complexes have been prepared and tested as antibacterial agents. These Schiff bases function as tetradentate ligands, forming octahedral Zn(II) complexes. The ketonic form for the diamide derived Schiff base and the enolic form of the hydrazide derived Schiff base were the preferred tautomers for coordination of the metal ions. The title compounds and their Zn(II) derivatives were evaluated for antibacterial activity against several bacterial strains which easily develop resistance to classical antibiotics, such as Escherichia coli, Staphylococcus aureus and Pseudomonas aeruginosa. Some of them showed promising biological activity in inhibiting the growth of such organisms.  相似文献   

14.
Keflin (kefl) interacts with Co(II), Cu(II), Ni(II) and Zn(II) metal ions leading to complexes of the type M(kefl)2Cl2 and M(kefl)Cl2, which have been characterized by physicochemical and spectroscopic methods. Magnetic moment, IR, electronic spectral and elemental analyses data suggest that keflin behaves tridentately forming octahedral or trigonal bipyramidal complexes with the metal ions mentioned above. The new compounds have been screened in-vitro for antibacterial and cytotoxic activity against Escherichia coli, Klebsiella pneumoniae, Proteus mirabilis, Pseudomonas aeruginosa, Salmonella typhi, Shigella dysentriae, Bacillus cereus, Corynebacterium diphtheriae, Staphylococcus aureus and Streptococcus pyogenes bacterial strains. Compounds, 4 and 8 showed promising activity (90%) against seven, compound 6 showed significant activity (52%) against four and, compounds 1 and 5 showed activity (40%) against three test bacterial strains at concentration of 10 microM.  相似文献   

15.
A series of new antibacterial and antifungal Schiff's bases derived from sulfonamides, as well as their transition metal complexes incorporating cobalt (II), copper (II), nickel (II) and zinc (II) were synthesized, characterized and screened for their in-vitro antibacterial activity against six Gram-negative (Escherichia coli, Klebsiella pneumoniae, Proteus mirabilis, Pseudomonas aeruginosa, Salmonella typhi and Shigella dysentriae) and four Gram-positive (Bacillus cereus, Corynebacterium diphtheriae, Staphylococcus aureous and Streptococcus pyogenes) bacterial strains and for in-vitro antifungal activity against Trichophyton longifusus, Candida albicans, Aspergillus flavus, Microsporum canis, Fusarium solani, Candida glaberata. The results of these studies show the metal complexes to be more antibacterial and antifungal as compared to the uncomplexed Schiffs' bases. The brine shrimp bioassay was also carried out to study the in-vitro cytotoxic properties of these synthesized ligands and their complexes.  相似文献   

16.
A series of new antibacterial and antifungal coumarin-derived compounds and their transition metal complexes [cobalt (II), copper (II), nickel (II) and zinc (II)] have been synthesized, characterized and screened for their in vitro antibacterial activity against Escherichia coli, Klebsiella pneumoniae, Proteus mirabilis, Pseudomonas aeruginosa, Salmonella typhi, Shigella dysenteriae, Bacillus cereus, Corynebacterium diphtheriae, Staphylococcus aureus and Streptococcus pyogenes bacterial strains and for in vitro antifungal activity against Trichophyton longifusus, Candida albicans, Aspergillus flavus, Microsporum canis, Fusarium solani, Candida glaberata. The results of these studies show the metal complexes to be more antibacterial and antifungal as compared to the uncomplexed coumarins. The brine shrimp bioassay was also carried out to study their in vitro cytotoxic properties.  相似文献   

17.
Kefzol (kzl), a β-lactam antibiotic, possesses various donor sites for interaction with transition metal(II) ions [Co(II), Cu(II), Ni(II) and Zn(II)] to form complexes of the type [M(kzl)2]Cl2 and [M(kzl)Cl], with molar ratio of metal: ligand (M:L) of 1:2 and 1:1 respectively. These complexes were prepared and characterized by physicochemical and spectroscopic methods. Their IR and NMR spectra suggest that kefzol potentially acts as a bidentate, tridentate as well as monoanionic tetradentate ligand. The complexes have been screened for antibacterial activity and results were compared with the activity of the uncomplexed antibiotic against Staphylococcus aureus, Klebsiella pneumoniae, Pseudomonas aeruginosa, Escherichia coli and Proteus mirabilis. The metal complexes were found to be more potent against one or more bacterial species than the uncomplexed kefzol.  相似文献   

18.
The synthesis and characterization of cloxacillin (clox) complexes with divalent metal ions [Co (II), Cu (II), Ni (II) and Zn (II)] is described. The nature of bonding of the chelated cloxacillin and the structures of the metal complexes have been elucidated on the basis of their physical and spectroscopic data. In all the complexes, the cloxacillin acts as a uninegatively charged bidentate ligand with coordination involving the carboxylate-O and endocyclic-N of the beta-lactam ring. The new compounds have been screened for in-vitro antibacterial activity against Escherichia coli (a), Klebsiella pneumonae (b), Proteus mirabilis (c), Pseudomonas aeruginosa (d), Salmonella typhi (e), Shigella dysentriae (f), Bacillus cereus (g), Corynebacterium diphtheriae (h), Staphylococcus aureus (j) and Streptococcus pyogenes (k) bacterial strains. The brine shrimp bioassay was also carried out to study their in-vitro cytotoxic properties. All compounds, respectively, showed a promising activity (90%) against five bacterial species at 10 microg/ml concentration and a significant activity (52%) against the same test bacteria at 25 microg/ml concentration.  相似文献   

19.
Schiff bases derived from oxaldiamide/oxalylhydrazine and pyrrol-2-carbaldehyde, or salicylaldehyde respectively, as well as their Zn(II) complexes have been prepared and tested as antibacterial agents. These Schiff bases function as tetradentate ligands, forming octahedral Zn(II) complexes. The ketonic form for the diamide derived Schiff base and the enolic form of the hydrazide derived Schiff base were the preferred tautomers for coordination of the metal ions. The title compounds and their Zn(II) derivatives were evaluated for antibacterial activity against several bacterial strains which easily develop resistance to classical antibiotics, such as Escherichia coli, Staphylococcus aureus and Pseudomonas aeruginosa. Some of them showed promising biological activity in inhibiting the growth of such organisms.  相似文献   

20.
A series of Co (II), Cu (II), Ni (II) and Zn (II) complexes of mercaptothiadiazole-derived furanyl, thienyl, pyrrorlyl, salicylyl and pyridinyl Schiff bases were synthesized, characterized and screened for their in vitro antibacterial activity against four Gram-negative, Escherichia coli, Pseudomonas aeruginosa, Salmonella typhi and Shigella fexneri, and two Gram-positive; Bacillus subtilis and Staphylococcus aureous bacterial strains. The results of these studies show the metal complexes to be more antibacterial as compared to the prepared un-complexed Schiff bases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号