首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
Isobe C  Murata T  Sato C  Terayama Y 《Life sciences》2005,77(15):1836-1843
We determined the concentrations of free homocysteine (HC) and total HC in the cerebrospinal fluid (CSF) of patients with Alzheimer's disease (AD) or Parkinson's disease (PD) in order to elucidate whether HC is related to the pathogenesis of these neurodegenerative diseases. The concentration of free HC did not differ significantly from that of the normal controls, while the concentration of total HC was significantly higher in the AD and PD patients (+31% in AD,+31% in PD; p<0.05). These findings suggest that an increase of total HC concentration in the brain is commonly seen in patients with AD and PD, and this may be related to the pathogenesis of these two diseases.  相似文献   

2.
Abstract : One of the leading etiologic hypotheses regarding Alzheimer's disease (AD) is the involvement of free radical-mediated oxidative stress in neuronal degeneration. Although several recent studies show an increase in levels of brain DNA oxidation in both aging and AD, there have been no studies of levels of markers of DNA oxidation in ventricular CSF. This is a study of levels of 8-hydroxy-2'-deoxyguanosine (8-OHdG), the predominant marker of oxidative DNA damage, in intact DNA and as the "free" repair product that results from repair mechanisms. Free 8-OHdG was isolated from CSF from nine AD and five age-matched control subjects using solidphase extraction columns and measured using gas chromatography/mass spectrometry with selective ion monitoring. Intact DNA was isolated from the same samples and the levels of 8-OHdG determined in the intact structures. Quantification of results was carried out using stable isotope-labeled 8-OHdG. By using this sensitive methodology, statistically significant elevations ( p < 0.05) of 8-OHdG were observed in intact DNA in AD subjects compared with age-matched control subjects. In contrast, levels of free 8-OHdG, removed via repair mechanisms, were depleted significantly in AD samples ( p < 0.05). Our results demonstrate an increase in unrepaired oxygen radical-mediated damage in AD DNA as evidenced by the increased presence of 8-OHdG in intact DNA and decreased concentrations of the free repair product. These data suggest that the brain in AD may be subject to the double insult of increased oxidative stress, as well as deficiencies in repair mechanisms responsible for removal of oxidized bases.  相似文献   

3.
Sphingolipids are important in many brain functions but their role in Alzheimer’s disease (AD) is not completely defined. A major limit is availability of fresh brain tissue with defined AD pathology. The discovery that cerebrospinal fluid (CSF) contains abundant nanoparticles that include synaptic vesicles and large dense core vesicles offer an accessible sample to study these organelles, while the supernatant fluid allows study of brain interstitial metabolism. Our objective was to characterize sphingolipids in nanoparticles representative of membrane vesicle metabolism, and in supernatant fluid representative of interstitial metabolism from study participants with varying levels of cognitive dysfunction. We recently described the recruitment, diagnosis, and CSF collection from cognitively normal or impaired study participants. Using liquid chromatography tandem mass spectrometry, we report that cognitively normal participants had measureable levels of sphingomyelin, ceramide, and dihydroceramide species, but that their distribution differed between nanoparticles and supernatant fluid, and further differed in those with cognitive impairment. In CSF from AD compared with cognitively normal participants: a) total sphingomyelin levels were lower in nanoparticles and supernatant fluid; b) levels of ceramide species were lower in nanoparticles and higher in supernatant fluid; c) three sphingomyelin species were reduced in the nanoparticle fraction. Moreover, three sphingomyelin species in the nanoparticle fraction were lower in mild cognitive impairment compared with cognitively normal participants. The activity of acid, but not neutral sphingomyelinase was significantly reduced in the CSF from AD participants. The reduction in acid sphingomylinase in CSF from AD participants was independent of depression and psychotropic medications. Acid sphingomyelinase activity positively correlated with amyloid β42 concentration in CSF from cognitively normal but not impaired participants. In dementia, altered sphingolipid metabolism, decreased acid sphingomyelinase activity and its lost association with CSF amyloid β42 concentration, underscores the potential of sphingolipids as disease biomarkers, and acid sphingomyelinase as a target for AD diagnosis and/or treatment.  相似文献   

4.

Background

Animal studies suggest that brain apolipoprotein E (apoE) levels influence amyloid-β (Aβ) deposition and thus risk for Alzheimer's disease (AD). We have previously demonstrated that deletion of the ATP-binding cassette A1 transporter (ABCA1) in mice causes dramatic reductions in brain and cerebrospinal fluid (CSF) apoE levels and lipidation. To examine whether polymorphisms in ABCA1 affect CSF apoE levels in humans, we measured apoE in CSF taken from 168 subjects who were 43 to 91 years old and were either cognitively normal or who had mild AD. We then genotyped the subjects for ten previously identified ABCA1 single nucleotide polymorphisms (SNPs).

Results

In all subjects, the mean CSF apoE level was 9.09 μg/ml with a standard deviation of 2.70 μg/ml. Levels of apoE in CSF samples taken from the same individual two weeks apart were strongly correlated (r2 = 0.93, p < 0.01). In contrast, CSF apoE levels in different individuals varied widely (coefficient of variation = 46%). CSF apoE levels did not vary according to AD status, APOE genotype, gender or race. Average apoE levels increased with age by ~0.5 μg/ml per 10 years (r2 = 0.05, p = 0.003). We found no significant associations between CSF apoE levels and the ten ABCA1 SNPs we genotyped. Moreover, in a separate sample of 1225 AD cases and 1431 controls, we found no association between the ABCA1 SNP rs2230806 and AD as has been previously reported.

Conclusion

We found that CSF apoE levels vary widely between individuals, but are stable within individuals over a two-week interval. AD status, APOE genotype, gender and race do not affect CSF apoE levels, but average CSF apoE levels increase with age. Given the lack of association between CSF apoE levels and genotypes for the ABCA1 SNPs we examined, either these SNPs do not affect ABCA1 function or if they do, they do not have strong effects in the CNS. Finally, we find no evidence for an association between the ABCA1 SNP rs2230806 and AD in a large sample set.  相似文献   

5.
The concentrations of free amino acids in plasma, CSF and in vivo dialysates of peripheral blood (neck sac fluid) and central nervous tissue (brain sac fluid) from each of five dogs (neck sac fluid from four of five dogs) were determined by ion-exchange chromatography. Dialysates were obtained by implanting small dialysis sacs filled with a dextran-saline solution into the subcutaneous tissue of the neck or the parenchyma of the brain at least 10 weeks before sample collection. The mean plasma concentration of most amino acids was within the range of values reported in the literature for human or dog plasma. The concentrations of most amino acids were higher in the neck sac fluid than in plasma; this discrepancy, however, was, for the most part, small and could most likely be accounted for by falling plasma free amino acid levels prior to sample taking. Previous conclusions that the CSF concentrations of most amino acids are lower than plasma concentrations are confirmed, although the present work indicates that there may be considerable individual variation in the CSF/plasma distribution ratio with respect to most amino acids. In the brain sac fluid the concentration of nearly every amino acid was consistently higher than that in CSF and lower than that in the neck sac fluid. The potassium concentration in the brain sac fluid was significantly higher than, and the total osmolality significantly lower than, those in the neck sac fluid. On the assumption that the brain sac fluid represents a dialysate of the brain extracellular fluid, these results contradict recent findings (Bito and Davson , 1965; 1966) indicating that the potassium concentration of the cortex extracellular fluid is lower than that of ventricular or cisterna magna CSF and certainly lower than that of plasma. Because of this and on the basis of consideration of the reaction of the brain to a foreign body, the possibility that the implanted brain sac lay on the‘blood side’of the bloodbrain barrier was suggested. Some implications of this possibility are discussed.  相似文献   

6.
Recently, a large meta-analysis of five genome wide association studies (GWAS) identified a novel locus (rs2718058) adjacent to NME8 that played a preventive role in Alzheimer''s disease (AD). However, this link between the single nucleotide polymorphism (SNP) rs2718058 and the pathology of AD have not been mentioned yet. Therefore, this study assessed the strength of association between the NME8 rs2718058 genotypes and AD-related measures including the cerebrospinal fluid (CSF) amyloid beta, tau, P-tau concentrations, neuroimaging biomarkers and cognitive performance, in a large cohort from Alzheimer''s Disease Neuroimaging Initiative (ADNI) database. We used information of a total of 719 individuals, including 211 normal cognition (NC), 346 mild cognitive impairment (MCI) and 162 AD. Although we didn''t observe a positive relationship between rs2718058 and AD, it was significantly associated with several AD related endophenotypes. Among the normal cognitively normal participants, the minor allele G carriers showed significantly associated with higher CDRSB score than A allele carriers (P = 0.021). Occipital gyrus atrophy were significantly associated with NME8 genotype status (P = 0.002), with A allele carriers has more atrophy than the minor allele G carriers in AD patients; lateral ventricle (both right and left) cerebral metabolic rate for glucose (CMRgl) were significantly associated with NME8 genotype (P<0.05), with GA genotype had higher metabolism than GG and AA genotypes in MCI group; the atrophic right hippocampus in 18 months is significantly different between the three group, with GG and AA genotypes had more hippocampus atrophy than GA genotypes in the whole group. Together, our results are consistent with the direction of previous research, suggesting that NME8 rs2718058 appears to play a role in lowering the brain neurodegeneration.  相似文献   

7.
Orexin A (ORX-A) is implicated in the regulation of various physiological processes, including sleep/wake cycles and reward/motivation. The hypothalamic ORX-A neurons project throughout the brain and spinal cord. In the present study we established and compared ORX-A levels in lumbar and ventricular cerebrospinal fluid (CSF) samples, drawn from idiopathic normal pressure hydrocephalus (INPH) patients, during respectively, lumbar puncture and shunt placement. Ventricular and lumbar CSF levels of total protein and of the dopamine, serotonin and norepinephrine metabolites HVA, 5-HIAA and MHPG respectively, were also estimated. ORX-A was quantified using a commercially available radioimmunoassay kit. Neurotransmitter metabolites were quantified by high performance liquid chromatography. Expectedly, HVA and 5-HIAA levels were significantly higher and total protein levels lower in ventricular compared to lumbar CSF while there were no differences in MHPG levels. However, in contrast to HVA and 5-HIAA and similar to total protein, lumbar ORX-A levels were significantly higher than ventricular levels. The higher lumbar compared to ventricular ORX-A levels may reflect elevated contributions from the spinal cord. The finding of a ventriculo-lumbar difference for ORX-A should be considered in studies utilizing its CSF levels in assessing Orexin system status.  相似文献   

8.

Background

Transthyretin (TTR), an abundant protein in cerebrospinal fluid (CSF), contains a free, oxidation-prone cysteine residue that gives rise to TTR isoforms. These isoforms may reflect conditions in vivo. Since increased oxidative stress has been linked to neurodegenerative disorders such as Alzheimer’s disease (AD) it is of interest to characterize CSF-TTR isoform distribution in AD patients and controls. Here, TTR isoforms are profiled directly from CSF by an optimized immunoaffinity-mass spectrometry method in 76 samples from patients with AD (n = 37), mild cognitive impairment (MCI, n = 17)), and normal pressure hydrocephalus (NPH, n = 15), as well as healthy controls (HC, n = 7). Fractions of three specific oxidative modifications (S-cysteinylation, S-cysteinylglycinylation, and S-glutathionylation) were quantitated relative to the total TTR protein. Results were correlated with diagnostic information and with levels of CSF AD biomarkers tau, phosphorylated tau, and amyloid β1-42 peptide.

Results

Preliminary data highlighted the high risk of artifactual TTR modification due to ex vivo oxidation and thus the samples for this study were all collected using strict and uniform guidelines. The results show that TTR is significantly more modified on Cys(10) in the AD and MCI groups than in controls (NPH and HC) (p ≤ 0.0012). Furthermore, the NPH group, while having normal TTR isoform distribution, had significantly decreased amyloid β peptide but normal tau values. No obvious correlations between levels of routine CSF biomarkers for AD and the degree of TTR modification were found.

Conclusions

AD and MCI patients display a significantly higher fraction of oxidatively modified TTR in CSF than the control groups of NPH patients and HC. Quantitation of CSF-TTR isoforms thus may provide diagnostic information in patients with dementia symptoms but this should be explored in larger studies including prospective studies of MCI patients. The development of methods for simple, robust, and reproducible inhibition of in vitro oxidation during CSF sampling and sample handling is highly warranted. In addition to the diagnostic information the possibility of using TTR as a CSF oxymeter is of potential value in studies monitoring disease activity and developing new drugs for neurodegenerative diseases.  相似文献   

9.
Cerebral spinal fluid (CSF) Aβ42, tau and p181tau are widely accepted biomarkers of Alzheimer’s disease (AD). Numerous studies show that CSF tau and p181tau levels are elevated in mild-to-moderate AD compared to age-matched controls. In addition, these increases might predict preclinical AD in cognitively normal elderly. Despite their importance as biomarkers, the molecular nature of CSF tau and ptau is not known. In the current study, reverse-phase high performance liquid chromatography was used to enrich and concentrate tau prior to western-blot analysis. Multiple N-terminal and mid-domain fragments of tau were detected in pooled CSF with apparent sizes ranging from <20 kDa to ~40 kDa. The pattern of tau fragments in AD and control samples were similar. In contrast, full-length tau and C-terminal-containing fragments were not detected. To quantify levels, five tau ELISAs and three ptau ELISAs were developed to detect different overlapping regions of the protein. The discriminatory potential of each assay was determined using 20 AD and 20 age-matched control CSF samples. Of the tau ELISAs, the two assays specific for tau containing N-terminal sequences, amino acids 9-198 (numbering based on tau 441) and 9-163, exhibited the most significant differences between AD and control samples. In contrast, CSF tau was not detected with an ELISA specific for a more C-terminal region (amino acids 159-335). Significant discrimination was also observed with ptau assays measuring amino acids 159-p181 and 159-p231. Interestingly, the discriminatory potential of p181 was reduced when measured in the context of tau species containing amino acids 9-p181. Taken together, these results demonstrate that tau in CSF occurs as a series of fragments and that discrimination of AD from control is dependent on the subset of tau species measured. These assays provide novel tools to investigate CSF tau and ptau as biomarkers for other neurodegenerative diseases.  相似文献   

10.
BackgroundUnderstanding of the significance of posttranslational glycosylation in Alzheimer's disease (AD) is of growing importance for the investigation of the pathogenesis of AD as well as discovery research of the disease-specific serum biomarkers.MethodsWe designed a standard protocol for the glycoblotting combined with MALDI-TOFMS to perform rapid and quantitative profiling of the glycan parts of glycoproteins (N-glycans) and glycosphingolipids (GSLs) using human AD's post-mortem samples such as brain tissues (dissected cerebral cortices such as frontal, parietal, occipital, and temporal domains), serum and cerebrospinal fluid (CSF).ResultsThe structural profiles of the major N-glycans released from glycoproteins and the total expression levels of the glycans were found to be mostly similar between the brain tissues of the AD patients and those of the normal control group. In contrast, the expression levels of the serum and CSF protein N-glycans such as bisect-type and multiply branched glycoforms were increased significantly in AD patient group. In addition, the levels of some gangliosides such as GM1, GM2 and GM3 appeared to alter in the AD patient brain and serum samples when compared with the normal control groups.ConclusionAlteration of the expression levels of major N- and GSL-glycans in human brain tissues, serum and CSF of AD patients can be monitored quantitatively by means of the glycoblotting-based standard protocols.General significanceThe changes in the expression levels of the glycans derived from the human post-mortem samples uncovered by the standardized glycoblotting method provides potential serum biomarkers in central nervous system disorders and can contribute to the insight into the molecular mechanisms in the pathogenesis of neurodegenerative diseases and future drug discovery. Most importantly, the present preliminary trials using human post-mortem samples of AD patients suggest that large-scale serum glycomics cohort by means of various-types of human AD patients as well as the normal control sera can facilitate the discovery research of highly sensitive and reliable serum biomarkers for an early diagnosis of AD. This article is part of a Special Issue entitled "Glycans in personalised medicine" Guest Editor: Professor Gordan Lauc.  相似文献   

11.

Background

Cerebrospinal fluid (CSF) α-synuclein is reduced in synucleinopathies, including dementia with Lewy bodies, and some studies have found increased CSF α-synuclein in Alzheimer’s disease (AD). No study has explored effects of CSF α-synuclein on brain atrophy. Here we tested if baseline CSF α-synuclein affects brain atrophy rates and if these effects vary across brain regions, and across the cognitive spectrum from healthy elders (NL), to patients with mild cognitive impairment (MCI) and AD.

Methods

Baseline CSF α-synuclein measurements and longitudinal structural brain magnetic resonance imaging was performed in 74 NL, 118 MCI patients and 55 AD patients. Effects of baseline CSF α-synuclein on regional atrophy rates were tested in 1) four pre-hoc defined regions possibly associated with Lewy body and/or AD pathology (amygdala, caudate, hippocampus, brainstem), and 2) all available regions of interest. Differences across diagnoses were tested by assessing the interaction of CSF α-synuclein and diagnosis (testing NL versus MCI, and NL versus AD).

Results

The effects of CSF α-synuclein on longitudinal atrophy rates were not significant after correction for multiple comparisons. There were tendencies for effects in AD in caudate (higher atrophy rates in subjects with higher CSF α-synuclein, P=0.046) and brainstem (higher atrophy rates in subjects with lower CSF α-synuclein, P=0.063). CSF α-synuclein had significantly different effects on atrophy rates in NL and AD in brainstem (P=0.037) and caudate (P=0.006). Discussion: With the possible exception of caudate and brainstem, the overall weak effects of CSF α-synuclein on atrophy rates in NL, MCI and AD argues against CSF α-synuclein as a biomarker related to longitudinal brain atrophy in these diagnostic groups. Any effects of CSF α-synuclein may be attenuated by possible simultaneous occurrence of AD-related neuronal injury and concomitant Lewy body pathology, which may elevate and reduce CSF α-synuclein levels, respectively.  相似文献   

12.
Postmortem demonstration of increased expression of biologically active S100B in Alzheimer's disease (AD) and its relation to progression of neuropathological changes across the cortical regions suggests involvement of this astrocytic cytokine in the pathophysiology of AD. The hypothesis that the overexpression of S100B in Alzheimer brain is related to the progression of clinical symptoms was addressed in living persons by measuring S100B concentrations in cerebrospinal fluid (CSF) from AD patients with a broad range of clinical dementia severity and from healthy older persons. The effect of normal aging on CSF S100B concentrations also was estimated. CSF S100B did not differ between all 68 AD subjects (0.98±0.09 ng/ml (mean±S.E.M.)) and 25 healthy older subjects (0.81±0.13 ng/ml). When AD subjects were divided into mild/moderate stage and advanced stage clinical dementia severity by the established Clinical Dementia Rating Scale (CDR) criteria, S100B was significantly higher in the 46 mild/moderate stage AD subjects (1.17±0.11 ng/ml) than in either the 22 advanced stage AD subjects (0.60±0.12 ng/ml) or the healthy older subjects. Consistent with higher CSF S100B in mild to moderate AD, there was a significant correlation among all AD subjects between CSF S100B and cognitive status as measured by the Mini Mental State Exam (MMSE) score. CSF S100B did not differ between healthy older subjects and healthy young subjects. These results suggest increased CNS expression of S100B in the earlier stages of AD, and are consistent with a role for S100B in the initiation and/or facilitation of neuritic plaque formation in AD brain.  相似文献   

13.

Objective

To investigate whether water influx into cerebrospinal fluid (CSF) space is reduced in Alzheimer’s patients as previously shown in the transgenic mouse model for Alzheimer’s disease.

Methods

Ten normal young volunteers (young control, 21-30 years old), ten normal senior volunteers (senior control, 60-78 years old, MMSE ≥ 29), and ten Alzheimer’s disease (AD) patients (study group, 59-84 years old, MMSE: 13-19) participated in this study. All AD patients were diagnosed by neurologists specializing in dementia based on DSM-IV criteria. CSF dynamics were analyzed using positron emission tomography (PET) following an intravenous injection of 1,000 MBq [15O]H2O synthesized on-line.

Results

Water influx into CSF space in AD patients, expressed as influx ratio, (0.755 ± 0.089) was significantly reduced compared to young controls (1.357 ± 0.185; p < 0.001) and also compared to normal senior controls (0.981 ± 0.253, p < 0.05). Influx ratio in normal senior controls was significantly reduced compared to young controls (p < 0.01).

Conclusion

Water influx into the CSF is significantly reduced in AD patients. β-amyloid clearance has been shown to be dependent on interstitial flow and CSF production. The current study indicates that reduction in water influx into the CSF may disturb the clearance rate of β-amyloid, and therefore be linked to the pathogenesis of AD.

Trial Registration

UMIN Clinical Trials Registry UMIN000011939  相似文献   

14.
There is controversy about whether supplementing diets with marine fish oil can regress, promote or prevent atherosclerosis. Therefore the effects of an Atlantic pilchard oil (FO) supplement and dietary change were measured in a proven atherosclerosis model. Vervet or African Green monkeys were fed an atherogenic diet (AD) for long enough to ensure progression before treatments started. Matched groups were then treated for 20 months, either by adding FO to the AD (AD/FO), or by changing to a therapeutic diet with FO (TD/FO). Control treatments consisted of supplementing with sunflower oil (SO) instead of FO, so that treatments were AD/SO and TD/SO. The same total polyunsaturates were supplied by the FO and SO and the dose of FO was realistic (2.5% of total energy). A reference group (R) received the TD with no oil supplements. Supplementing with FO did not change the concentrations of total, low or high density lipoprotein cholesterol in plasma. After The AD/FO the intimas of aortas contained more total (p < or = 0.001), free (p < or = 0.05) and esterified (p < or = 0.05) cholesterol, total phospholipid (p < or = 0.01) and sphingomyelin (p < or = 0.05) than after the AD/SO. After FO supplementation eicosapentaenoic acid was significantly higher and arachidonic acid significantly lower in the plasma and aorta intima phosphatidylcholine. None of these changes was anti-atherogenic in terms of atherosclerosis measured in the same individuals (1). Nor did FO increase the efficacy of the TD.  相似文献   

15.
Psychiatric patients undergoing the psychosurgical operation of stereotactic subcaudate tractotomy were infused intravenously with either saline or L-tryptophan (15 mg/kg/h). Plasma, lumbar cerebrospinal fluid (CSF), ventricular CSF and a specimen of frontal cortex were collected. The relationships of plasma concentrations of substances claimed to influence brain tryptophan concentration (total tryptophan, free tryptophan, large neutral amino acids) with the concentration of tryptophan in the cortex and CSF were investigated. Tryptophan infusion resulted in plasma tryptophan values comparable to those found after oral doses used in treating depression or insomnia, and about sixfold increases of tryptophan in the cerebral cortex. Increased brain 5-hydroxytryptamine synthesis was indicated by significant rises of CSF 5-hydroxyindoleacetic acid. The concentration of plasma free tryptophan was a better predictor than plasma total tryptophan of cortex tryptophan concentration. As all correlation coefficients of plasma versus brain or plasma versus ventricular CSF tryptophan concentrations were decreased when allowance was made for differences of concentration of large neutral amino acids, the results suggest that the role of these substances within their physiological range as inhibitors of tryptophan transport to the brain may previously have been overemphasised.  相似文献   

16.
We recently reported that expression levels of tumor necrosis factor (TNF) receptors, TNFR1 and TNFR2, are significantly changed in the brains and cerebrospinal fluid (CSF) with Alzheimer's disease (AD). Moreover, we also found that, in an Alzheimer's mouse model, genetic deletion of TNF receptor (TNFR1) reduces amyloid plaques and amyloid beta peptides (Aβ) production through β-secretase (BACE1) regulation. TNF-α converting enzyme (TACE/ADAM-17) does not only cleave pro- TNF-α but also TNF receptors, however, whether the TACE activity was changed in the CSF was not clear. In this study, we examined TACE in the CSF in 32 AD patients and 27 age-matched healthy controls (HCs). Interestingly, we found that TACE activity was significantly elevated in the CSF from AD patients compared with HCs. Furthermore, we also assayed the CSF levels of TACE cleaved soluble forms of TNFR1 and TNFR2 in the same patients. We found that AD patients had higher levels of both TACE cleaved soluble TNFR1 (sTNFR1) and TNFR2 (sTNFR2) in the CSF compared to age- and gender-matched healthy controls. Levels of sTNFR1 correlated strongly with the levels of sTNFR2 (rs = 0.567-0.663, p < 0.01). The levels of both sTNFR1 and sTNFR2 significantly correlated with the TACE activity (rs = 0.491-0.557, p < 0.05). To examine if changes in TACE activity and in levels of cleaved soluble TNFRs are an early event in the course of AD, we measured these molecules in the CSF from 47 subjects with mild cognitive impairment (MCI), which is considered as a preclinical stage of AD. Unexpectedly, we found significantly higher levels of TACE activity and soluble TNFRs in the MCI group than that in AD patients. These results suggest that TACE activity and soluble TNF receptors may be potential diagnostic candidate biomarkers in AD and MCI.  相似文献   

17.
Abstract: The principal constituent of amyloid plaques found in the brains of individuals with Alzheimer's disease (AD) is a 39–42-amino-acid protein, amyloid β protein (Aβ). This study examined whether the measurement of Aβ levels in CSF has diagnostic value. There were 108 subjects enrolled in this prospective study: AD (n = 39), non-AD controls (dementing diseases/syndromes; n = 20), and other (n = 49). CSF was obtained by lumbar puncture, and Aβ concentrations were determined using a dual monoclonal antibody immunoradiometric sandwich assay. The mean Aβ value for the AD group (15.9 ± 6.8 ng/ml) was not significantly different from that for the non-AD control group (13.0 ± 7.1 ng/ml; p = 0.07), and substantial overlap in results were observed. Aβ values did not correlate with age ( r = −0.05, p = 0.59), severity of cognitive impairment ( r = 0.22, p = 0.21), or duration of AD symptoms ( r = 0.14, p = 0.45). These findings are in conflict with other reports in the literature; discrepant results could be due to the instability of Aβ in CSF. Aβ immunoreactivity decays rapidly under certain conditions, particularly multiple freeze/thaw cycles. Use of a stabilizing sample treatment buffer at the time of lumbar puncture allows storage of CSF without loss of Aβ reactivity. In conclusion, the total CSF Aβ level is not a useful marker for current diagnosis of AD.  相似文献   

18.
Increasing evidence suggests that oxidative stress is associated with normal aging and several neurodegenerative diseases, including Alzheimer's disease (AD). Here we quantified multiple oxidized bases in nuclear and mitochondrial DNA of frontal, parietal, and temporal lobes and cerebellum from short postmortem interval AD brain and age-matched control subjects using gas chromatography/mass spectrometry with selective ion monitoring (GC/MS-SIM) and stable labeled internal standards. Nuclear and mitochondrial DNA were extracted from eight AD and eight age-matched control subjects. We found that levels of multiple oxidized bases in AD brain specimens were significantly (p < 0.05) higher in frontal, parietal, and temporal lobes compared to control subjects and that mitochondrial DNA had approximately 10-fold higher levels of oxidized bases than nuclear DNA. These data are consistent with higher levels of oxidative stress in mitochondria. Eight-hydroxyguanine, a widely studied biomarker of DNA damage, was approximately 10-fold higher than other oxidized base adducts in both AD and control subjects. DNA from temporal lobe showed the most oxidative damage, whereas cerebellum was only slightly affected in AD brains. These results suggest that oxidative damage to mitochondrial DNA may contribute to the neurodegeneration of AD.  相似文献   

19.
Abstract: In the present study we describe an ELISA to quantify the light subunit of the neurofilament triplet protein (NFL) in CSF. The method was validated by measuring CSF NFL concentrations in healthy individuals and in two well-characterized groups of patients with amyotrophic lateral sclerosis (ALS) and Alzheimer's disease (AD). The levels were increased in ALS (1,743 ± 1,661 ng/L; mean ± SD) and AD (346 ± 176 ng/L) compared with controls (138 ± 31 ng/L; p < 0.0001 for both). Within the ALS group, patients with lower motor neuron signs only had lower NFL levels (360 ± 237 ng/L) than those with signs of upper motor neuron disease (2,435 ± 1,633 ng/L) ( p < 0.05). In a second study patients with miscellaneous neurodegenerative diseases were investigated (vascular dementia, olivopontocerebellar atrophy, normal pressure hydrocephalus, cerebral infarctions, and multiple sclerosis), and the CSF NFL level was found to be increased (665 ± 385 ng/L; p < 0.0001). NFL is a main structural protein of axons, and we suggest that CSF NFL can be used to monitor neurodegeneration in general, but particularly in ALS with involvement of the pyramidal tract.  相似文献   

20.
Prothrombin, known to be expressed in brain and to possess growth modulating properties, has been suggested to be involved in the pathogenesis of Alzheimer's disease (AD). We studied prothrombin concentration in lumbar CSF (L-CSF) in patients with AD (n = 25), neurologic disease controls (NDC; n = 33) covering a wide range of neurologic disorders, and subjects with Guillain-Barré syndrome (GBS; n = 4) as well as in samples of non-pathological ventricular CSF (V-CSF; n = 4). The results were evaluated with respect to CSF flow rate, as indicated by the albumin quotient (QAlb). The concentrations of prothrombin in L-CSF in NDC (mean: 0.46 mg/l, range: 0.21–0.96), and AD (mean: 0.6 mg/l, range: 0.19–1.2) were in the normal range reported previously. Expectedly, prothrombin concentration in L-CSF of GBS was increased (mean: 6.3 mg/l, range: 2.3–9.7) corresponding to the increased QAlb in this group (mean 54.6 × 10–3, range: 17–88.1). The concentrations of both prothrombin and albumin were 5.5-fold higher in L-CSF than in V-CSF (mean QAlb : 1.1 × 10–3, mean concentration of prothrombin: 0.088 mg/l). In conclusion, CSF prothrombin in all conditions evaluated here is exclusively derived from blood.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号