首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
We have used an hrp-positive strain of the soft rot pathogen Erwinia carotovora subsp. carotovora to elucidate plant responses to this bacterial necrotroph. Purified virulence determinants, harpin (HrpN) and polygalacturonase (PehA), were used as tools to facilitate this analysis. We show that HrpN elicits lesion formation in Arabidopsis and tobacco and triggers systemic resistance in Arabidopsis. Establishment of resistance is accompanied by the expression of salicylic acid (SA)-dependent, but also jasmonate/ethylene (JA/ET)-dependent, marker genes PR1 and PDF1.2, respectively, suggesting that both SA-dependent and JA/ET-dependent defense pathways are activated. Use of pathway-specific mutants and transgenic NahG plants show that both pathways are required for the induction of resistance. Arabidopsis plants treated simultaneously with both elictors PehA, known to trigger only JA/ET-dependent defense signaling, and HrpN react with accelerated and enhanced induction of the marker genes PR1 and PDF1.2 both locally and systemically. This mutual amplification of defense gene expression involves both SA-dependent and JA/ET-dependent defense signaling. The two elicitors produced by E. carotovora subsp. carotovora also cooperate in triggering increased production of superoxide and lesion formation.  相似文献   

3.
We have characterized the role of salicylic acid (SA)-independent defense signaling in Arabidopsis thaliana in response to the plant pathogen Erwinia carotovora subsp. carotovora. Use of pathway-specific target genes as well as signal mutants allowed us to elucidate the role and interactions of ethylene, jasmonic acid (JA), and SA signal pathways in this response. Gene expression studies suggest a central role for both ethylene and JA pathways in the regulation of defense gene expression triggered by the pathogen or by plant cell wall-degrading enzymes (CF) secreted by the pathogen. Our results suggest that ethylene and JA act in concert in this regulation. In addition, CF triggers another, strictly JA-mediated response inhibited by ethylene and SA. SA does not appear to have a major role in activating defense gene expression in response to CF. However, SA may have a dual role in controlling CF-induced gene expression, by enhancing the expression of genes synergistically induced by ethylene and JA and repressing genes induced by JA alone.  相似文献   

4.
5.
The plant growth-promoting fungus (PGPF), Phoma sp. GS8-3, isolated from a zoysia grass rhizosphere, is capable of protecting cucumber plants against virulent pathogens. This fungus was investigated in terms of the underlying mechanisms and ability to elicit systemic resistance in Arabidopsis thaliana . Root treatment of Arabidopsis plants with a culture filtrate (CF) from Phoma sp. GS8-3 elicited systemic resistance against the bacterial speck pathogen Pseudomonas syringae pv. tomato DC3000 ( Pst ), with restricted disease development and inhibited pathogen proliferation. Pathway-specific mutant plants, such as jar1 (jasmonic acid insensitive) and ein2 (ethylene insensitive), and transgenic NahG plants (impaired in salicylate signalling) were protected after application of the CF, demonstrating that these pathways are dispensable (at least individually) in CF-mediated resistance. Similarly, NPR1 interference in npr1 mutants had no effect on CF-induced resistance. Gene expression studies revealed that CF treatment stimulated the systemic expression of both the SA-inducible PR-1 and JA/ET-inducible PDF1.2 genes. However, pathogenic challenge to CF-treated plants was associated with potentiated expression of the PR-1 gene and down-regulated expression of the PDF1.2 gene. The observed down-regulation of the PDF1.2 gene in CF-treated plants indicates that there may be cross-talk between SA- and JA/ET-dependent signalling pathways during the pathogenic infection process. In conclusion, our data suggest that CF of Phoma sp. GS8-3 induces resistance in Arabidopsis in a manner where SA and JA/ET may play a role in defence signalling.  相似文献   

6.
7.
In order to identify components of the defense signaling network engaged following attempted pathogen invasion, we generated a novel PR-1::luciferase (LUC) transgenic line that was deployed in an imaging-based screen to uncover defense-related mutants. The recessive mutant designated cir1 exhibited constitutive expression of salicylic acid (SA), jasmonic acid (JA)/ethylene, and reactive oxygen intermediate-dependent genes. Moreover, this mutation conferred resistance against the bacterial pathogen Pseudomonas syringae pv. tomato DC3000 and a virulent oomycete pathogen Peronospora parasitica Noco2. Epistasis analyses were undertaken between cir1 and mutants that disrupt the SA (nprl, nahG), JA (jar1), and ethylene (ET) (ein2) signaling pathways. While resistance against both P. syringae pv. tomato DC3000 and Peronospora parasitica Noco2 was partially reduced by npr1, resistance against both of these pathogens was lost in an nahG genetic background. Hence, cirl-mediated resistance is established via NPR1-dependent and -independent signaling pathways and SA accumulation is essential for the function of both pathways. While jar1 and ein2 reduced resistance against P. syringae pv. tomato DC3000, these mutations appeared not to impact cir1-mediated resistance against Peronospora parasitica Noco2. Thus, JA and ET sensitivity are required for cir1-mediated resistance against P. syringae pv. tomato DC3000 but not Peronospora parasitica Noco2. Therefore, the cir1 mutation may define a negative regulator of disease resistance that operates upstream of SA, JA, and ET accumulation.  相似文献   

8.
Although a wealth of information is available regarding resistance induced by plant growth-promoting rhizobacteria (PGPR), not much is known about plant growth-promoting fungi (PGPF). Hence, the goal of the present research was to provide more information on this matter. In Arabidopsis thaliana L., root colonizing PGPF Penicillium sp. GP16-2 or its cell free filtrate (CF) elicited an induced systemic resistance (ISR) against infection by Pseudomonas syringae pv. tomato DC3000 (Pst), leading to a restriction of pathogen growth and disease development. We demonstrate that signal transduction leading to GP16-2-mediated ISR requires responsiveness to JA and ET in a NPR1-dependent manner, while CF-mediated ISR shows dispensability of SA, JA, ET and NPR1-dependent signaling (at least individually). In addition, root colonization by GP16-2 is not associated with a direct effect on expression of known defense-related genes, but potentiates the activation of JA/ET-inducible ChitB, which only becomes apparent after infection by Pst. However, CF-mediated ISR was partly associated with the direct activation of marker genes responsive to both SA and JA/ET signaling pathways and partly associated with priming, leading to activation of JA-/ET-inducible ChitB and Hel genes. These suggest that CF may contain one or more elicitors that induce resistance by way where at least SA, JA and ET may play a role in defense signaling in Arabidopsis. Therefore, defense gene changes and underlying signaling pathways induced by Penicillium sp. GP16-2 root colonization and its CF application are not the same and only partially overlap.  相似文献   

9.
Abstract: In Arabidopsis thaliana, non-pathogenic, root-colonizing Pseudomonas fluorescens WCS417r bacteria trigger an induced systemic resistance (ISR) that is phenotypically similar to pathogen-induced systemic acquired resistance (SAR). In contrast to SAR, WCS417r-mediated ISR is controlled by a salicylic acid (SA)-independent signalling pathway that requires an intact response to the plant hormones jasmonic acid (JA) and ethylene (ET). Arabidopsis accessions RLD1 and Ws-0 fail to express ISR against Pseudomonas syringae pv. tomato and show enhanced disease susceptibility to this pathogen. Genetic analysis of progeny from crosses between WCS417r-responsive and non-responsive accessions demonstrated that ISR inducibility and basal resistance against P. syringae pv. tomato are controlled by a single dominant locus (ISR1) on chromosome III (Ton et al., 1999[294]). Here, we investigated the role of the ISR1 locus in ISR, SAR and basal resistance against three additional pathogens: Xanthomonas campestris pv. armoraciae, Peronospora parasitica and turnip crinkle virus (TCV), using accessions Col-0 (ISR1), RLD1 (isr1) and Ws-0 (isr1) as host plants.  相似文献   

10.
Although defense responses mediated by the plant oxylipin jasmonic acid (JA) are often necessary for resistance against pathogens with necrotrophic lifestyles, in this report we demonstrate that jasmonate signaling mediated through COI1 in Arabidopsis thaliana is responsible for susceptibility to wilt disease caused by the root-infecting fungal pathogen Fusarium oxysporum . Despite compromised JA-dependent defense responses, the JA perception mutant coronatine insensitive 1 ( coi1 ), but not JA biosynthesis mutants, exhibited a high level of resistance to wilt disease caused by F. oxysporum . This response was independent from salicylic acid-dependent defenses, as coi1/NahG plants showed similar disease resistance to coi1 plants. Inoculation of reciprocal grafts made between coi1 and wild-type plants revealed that coi1 -mediated resistance occurred primarily through the coi1 rootstock tissues. Furthermore, microscopy and quantification of fungal DNA during infection indicated that coi1 -mediated resistance was not associated with reduced fungal penetration and colonization until a late stage of infection, when leaf necrosis was highly developed in wild-type plants. In contrast to wild-type leaves, coi1 leaves showed no necrosis following the application of F. oxysporum culture filtrate, and showed reduced expression of senescence-associated genes during disease development, suggesting that coi1 resistance is most likely achieved through the inhibition of F. oxysporum -incited lesion development and plant senescence. Together, our results indicate that F. oxysporum hijacks non-defensive aspects of the JA-signaling pathway to cause wilt-disease symptoms that lead to plant death in Arabidopsis.  相似文献   

11.
Oligogalacturonides (OGs) released from plant cell walls by pathogen polygalacturonases induce a variety of host defense responses. Here we show that in Arabidopsis (Arabidopsis thaliana), OGs increase resistance to the necrotrophic fungal pathogen Botrytis cinerea independently of jasmonate (JA)-, salicylic acid (SA)-, and ethylene (ET)-mediated signaling. Microarray analysis showed that about 50% of the genes regulated by OGs, including genes encoding enzymes involved in secondary metabolism, show a similar change of expression during B. cinerea infection. In particular, expression of PHYTOALEXIN DEFICIENT3 (PAD3) is strongly up-regulated by both OGs and infection independently of SA, JA, and ET. OG treatments do not enhance resistance to B. cinerea in the pad3 mutant or in underinducer after pathogen and stress1, a mutant with severely impaired PAD3 expression in response to OGs. Similarly to OGs, the bacterial flagellin peptide elicitor flg22 also enhanced resistance to B. cinerea in a PAD3-dependent manner, independently of SA, JA, and ET. This work suggests, therefore, that elicitors released from the cell wall during pathogen infection contribute to basal resistance against fungal pathogens through a signaling pathway also activated by pathogen-associated molecular pattern molecules.  相似文献   

12.
Disease resistance in Arabidopsis is regulated by multiple signal transduction pathways in which salicylic acid (SA), jasmonic acid (JA), and ethylene (ET) function as key signaling molecules. Epistasis analyses were performed between mutants that disrupt these pathways (npr1, eds5, ein2, and jar1) and mutants that constitutively activate these pathways (cpr1, cpr5, and cpr6), allowing exploration of the relationship between the SA- and JA/ET-mediated resistance responses. Two important findings were made. First, the constitutive disease resistance exhibited by cpr1, cpr5, and cpr6 is completely suppressed by the SA-deficient eds5 mutant but is only partially affected by the SA-insensitive npr1 mutant. Moreover, eds5 suppresses the SA-accumulating phenotype of the cpr mutants, whereas npr1 enhances it. These data indicate the existence of an SA-mediated, NPR1-independent resistance response. Second, the ET-insensitive mutation ein2 and the JA-insensitive mutation jar1 suppress the NPR1-independent resistance response exhibited by cpr5 and cpr6. Furthermore, ein2 potentiates SA accumulation in cpr5 and cpr5 npr1 while dampening SA accumulation in cpr6 and cpr6 npr1. These latter results indicate that cpr5 and cpr6 regulate resistance through distinct pathways and that SA-mediated, NPR1-independent resistance works in combination with components of the JA/ET-mediated response pathways.  相似文献   

13.
最早从拟南芥(Arabidopsis thaliana)中克隆到的NPR1(nonexpressor of pathogenesis-related genes 1)基因是调控植物病害抗性的一个关键基因。它不仅对植物系统获得抗性(systemic acquired resistance,SAR)和诱导系统抗性(induced systemic resistance, ISR)起核心调控作用,而且是植物基础抗性(basic resistance)以及由抗病基因(resistance gene,R)决定的抗性的重要调控因子。氧化突发(oxidative burst)造成的强还原势导致NPR1蛋白还原成单体,以及NPR1单体在细胞核内的积累是诱导水杨酸(salicylic acid,SA)介导的PR(pathogenesis-related)基因表达和SAR产生的充分必要条件。NPR1通过与TGA转录因子的相互作用调控PR基因表达。NPR1作为多种信号途径的交叉点,与某些WRKY转录因子和NPR4一起,在调节和平衡SA和茉莉酸信号传导途径中起关键作用。NPR1的这种调控作用在细胞质内进行,通过遗传工程将其用于植物保护有很好的应用前景。  相似文献   

14.
Arabidopsis thaliana grown in soil amended with barley grain inocula of Penicillium simplicissimum GP17-2 or receiving root treatment with its culture filtrate (CF) exhibited clear resistance to Pseudomonas syringae pv. tomato DC3000 (Pst). To assess the contribution of different defense pathways, Arabidopsis genotypes implicated in salicylic acid (SA) signaling expressing the NahG transgene or carrying disruption in NPR1 (npr1), jasmonic acid (JA) signaling (jar1) and ethylene (ET) signaling (ein2) were tested. All genotypes screened were protected by GP17-2 or its CF. However, the level of protection was significantly lower in NahG and npr1 plants than it was in similarly treated wild-type plants, indicating that the SA signaling pathway makes a minor contribution to the GP17-2-mediated resistance and is insufficient for a full response. Examination of local and systemic gene expression revealed that GP17-2 and its CF modulate the expression of genes involved in both the SA and JA/ET signaling pathways. Subsequent challenge of GP17-2-colonized plants with Pst was accompanied by direct activation of SA-inducible PR-2 and PR-5 genes as well as potentiated expression of the JA-inducible Vsp gene. In contrast, CF-treated plants infected with Pst exhibited elevated expression of most defense-related genes (PR-1, PR-2, PR-5, PDF1.2 and Hel) studied. Moreover, an initial elevation of SA responses was followed by late induction of JA responses during Pst infection of induced systemic resistance (ISR)-expressing plants. In conclusion, we hypothesize the involvement of multiple defense mechanisms leading to an ISR of Arabidopsis by GP17-2.  相似文献   

15.
The cereal ear blight fungal pathogen Fusarium culmorum can infect Arabidopsis floral tissue, causing disease symptoms and mycotoxin production. Here we assessed the effect of seven mutants and one transgenic overexpression line, residing in either the salicylic acid (SA), jasmonic acid (JA) or ethylene (ET) defence signalling pathways, on the outcome of the Fusarium –Arabidopsis floral interaction. The bacterial susceptiblity mutant eds11 was also assessed. Flowering plants were spray inoculated with F. culmorum conidia to determine the host responses to initial infection and subsequent colonization. Enhanced susceptibility and higher concentrations of deoxynivalenol mycotoxin were observed in buds and flowers of the npr1 and eds11 mutants than in the wild-type Col-0 plants. An effect of the other two defence signalling pathways on disease was either absent (ET/JA combined), absent/minimal (ET) or inconclusive (JA). Overall, this study highlights a role for NPR1 and EDS11 in basal defence against F. culmorum in some floral organs. This is the first time that any of these well-characterized defence signalling mutations have been evaluated for a role in floral defence in any plant species.  相似文献   

16.
Probenazole (PBZ; 3-allyloxy-1,2-benzisothiazole-1,1-dioxide), which is the active ingredient in Oryzemate, has been used widely in Asia to protect rice plants against the rice blast fungus Magnaporthe grisea. To study PBZ's mode of action, we analyzed its ability, as well as that of its active metabolite 1, 2-benzisothiazol-3 (2H)-one 1,1-dioxide (BIT) to induce defense gene expression and resistance in Arabidopsis mutants that are defective in various defense signaling pathways. Wild-type Arabidopsis treated with PBZ or BIT exhibited increased expression of several pathogenesis-related genes, increased levels of total salicylic acid (SA), and enhanced resistance to the bacterial pathogen Pseudomonas syringae pv. tomato DC 3000 and the oomycete pathogen Peronospora parasitica Emco5. The role of several defense signaling hormones, such as SA, ethylene and jasmonic acid (JA), in activating resistance following PBZ or BIT treatment was analyzed using NahG transgenic plants and etr1-1 and coi1-1 mutant plants, respectively. In addition, the involvement of NPR1, a key component in the SA signaling pathway leading to defense responses, was assessed. PBZ or BIT treatment did not induce disease resistance or PR-1 expression in NahG transgenic or npr1 mutant plants, but it did activate these phenomena in etr1-1 and coi 1-1 mutant plants. Thus SA and NPR1 appear to be required for PBZ- and BIT-mediated activation of defense responses, while ethylene and JA are not. Furthermore, our data suggest that PBZ and BIT comprise a novel class of defense activators that stimulate the SA/NPR1-mediated defense signaling pathway upstream of SA.  相似文献   

17.
植物中逆境反应相关的WRKY转录因子研究进展   总被引:3,自引:0,他引:3  
李冉  娄永根 《生态学报》2011,31(11):3223-3231
WRKY转录因子是植物体内一类比较大的转录因子家族,它在植物的生长发育以及抗逆境反应中起着非常重要的作用。本文综述了WRKY转录因子在植物应对冻害、干旱、盐害等非生物胁迫与病原菌、虫害等生物胁迫反应中的重要调控功能,并概括了WRKY转录因子在调控这些逆境反应中的机制。  相似文献   

18.
The biocontrol bacterium Paenibacillus alvei K165 has the ability to protect Arabidopsis thaliana against Verticillium dahliae. A direct antagonistic action of strain K165 against V. dahliae was ruled out, making it likely that K165-mediated protection results from induced systemic resistance (ISR) in the host. K165-mediated protection was tested in various Arabidopsis mutants and transgenic plants impaired in defense signaling pathways, including NahG (transgenic line degrading salicylic acid [SA]), etr1-1 (insensitive to ethylene), jar1-1 (insensitive to jasmonate), npr1-1 (nonexpressing NPR1 protein), pad3-1 (phytoalexin deficient), pad4-1 (phytoalexin deficient), eds5/sid1 (enhanced disease susceptibility), and sid2 (SA-induction deficient). ISR was blocked in Arabidopsis mutants npr1-1, eds5/sid1, and sid2, indicating that components of the pathway from isochorismate and a functional NPR1 play a crucial role in the K165-mediated ISR. Furthermore, the concomitant activation and increased transient accumulation of the PR-1, PR-2, and PR-5 genes were observed in the treatment in which both the inducing bacterial strain and the challenging pathogen were present in the rhizosphere of the A. thaliana plants.  相似文献   

19.
The responses of Arabidopsis accessions and characterized genotypes were used to explore components in the early defense responses to the soilborne fungus Verticillium longisporum. V. longisporum susceptibility was found to be a complex trait, in which different disease phenotypes, such as stunting, altered flowering time, weight loss, and chlorosis were perceived differently across genotypes. A Bay-0 x Shahdara recombinant inbred line population was used to identify two loci on chromosomes 2 and 3 of Bay-0 origin that caused enhanced chlorosis after V. longisporum challenge. Furthermore, the observation that a mutation in RFO1 in Col-0 resulted in susceptibility whereas the natural rfo1 allele in Ty-0 showed a high degree of resistance to the pathogen supports the hypothesis that several resistance quantitative trait loci reside among Arabidopsis accessions. Analysis of mutants impaired in known pathogen response pathways revealed an enhanced susceptibility in ein2-1, ein4-1, ein6-1, esa1-1, and pad1-1, but not in other jasmonic acid (JA)-, ethylene (ET)-, or camalexin-deficient mutants, suggesting that V. longisporum resistance is regulated via a hitherto unknown JA- and ET-associated pathway. Pretreatments with the ET precursor 1-aminocyclo-propane-1-carboxylic acid (ACC) or methyl jasmonate (MeJA) caused enhanced resistance to V. longisporum. Mutants in the salicylic acid (SA) pathway (eds1-1, NahG, npr1-3, pad4-1, and sid2-1) did not show enhanced susceptibility to V. longisporum. In contrast, the more severe npr1-1 allele displayed enhanced V. longisporum susceptibility and decreased responses to ACC or MeJA pretreatments. This shows that cytosolic NPR1, in addition to SA responses, is required for JA- and ET-mediated V. longisporum resistance. Expression of the SA-dependent PR-1 and PR-2 and the ET-dependent PR-4 were increased 7 days postinoculation with V. longisporum. This indicates increased levels of SA and ET in response to V. longisporum inoculation. The R-gene signaling mutant ndr1-1 was found to be susceptible to V. longisporum, which could be complemented by ACC or MeJA pretreatments, in contrast to the rfo1 T-DNA mutant, which remained susceptible, suggesting that RFO1 (Fusarium oxysporum resistance) and NDR1 (nonrace specific disease resistance 1) activate two distinct signaling pathways for V. longisporum resistance.  相似文献   

20.
Identification of Arabidopsis thaliana genes responsive to plant cell-wall-degrading enzymes of Erwinia carotovora subsp. carotovora led to the isolation of a cDNA clone with high sequence homology to the gene for allene oxide synthase, an enzyme involved in the biosynthesis of jasmonates. Expression of the corresponding gene was induced by the extracellular enzymes from this pathogen as well as by treatment with methyl jasmonate and short oligogalacturonides (OGAs). This suggests that OGAs are involved in the induction of the jasmonate pathway during plant defense response to E. carotovora subsp. carotovora attack.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号