首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 81 毫秒
1.
Microsomal triglyceride transfer protein (MTP) is required for the assembly and secretion of apolipoprotein (apo) B-containing lipoproteins. Previously, we demonstrated that the N-terminal 1,000 residues of apoB (apoB:1000) are necessary for the initiation of apoB-containing lipoprotein assembly in rat hepatoma McA-RH7777 cells and that these particles are phospholipid (PL) rich. To determine if the PL transfer activity of MTP is sufficient for the assembly and secretion of primordial apoB:1000-containing lipoproteins, we employed microRNA-based short hairpin RNAs (miR-shRNAs) to silence Mttp gene expression in parental and apoB:1000-expressing McA-RH7777 cells. This approach led to 98% reduction in MTP protein levels in both cell types. Metabolic labeling studies demonstrated a drastic 90–95% decrease in the secretion of rat endogenous apoB100-containing lipoproteins in MTP-deficient McA-RH7777 cells compared with cells transfected with negative control miR-shRNA. A similar reduction was observed in the secretion of rat endogenous apoB48 under the experimental conditions employed. In contrast, MTP absence had no significant effect on the synthesis, lipidation, and secretion of human apoB:1000-containing particles. These results provide strong evidence in support of the concept that in McA-RH7777 cells, acquisition of PL by apoB:1000 and initiation of apoB-containing lipoprotein assembly, a process distinct from the conventional first-step assembly of HDL-sized apoB-containing particles, do not require MTP. This study indicates that, in hepatocytes, a factor(s) other than MTP mediates the formation of the PL-rich primordial apoB:1000-containing initiation complex.  相似文献   

2.
Naringenin, the principal flavonoid in grapefruit, reduces plasma lipids in vivo and inhibits apoB secretion, cholesterol esterification, and MTP activity in HepG2 human hepatoma cells. Although naringenin inhibits ACAT, we recently demonstrated that CE availability in the microsomal lumen does not regulate apoB secretion in HepG2 cells. We therefore hypothesized that inhibition of TG accumulation in the ER lumen, secondary to MTP inhibition, is the primary mechanism whereby naringenin blocks lipidation and subsequent secretion of apoB. Multicompartmental modeling of pulse-chase studies was used to compare cellular apoB kinetics in the presence of either naringenin or the specific MTP inhibitor, BMS-197636. At concentrations that reduced apoB secretion by 50%, both compounds selectively enhanced degradation via a kinetically defined, rapid, proteasomal pathway to the same extent. Subcellular fractionation experiments revealed that naringenin and BMS-197636 reduced accumulation of newly synthesized TG in the microsomal lumen by 48% and 54%, respectively. Newly synthesized CE accumulation in the lumen was reduced by 80% and 33% with naringenin and BMS-197636, respectively, demonstrating for the first time that MTP is involved in CE accumulation in the microsomal lumen. Reduced TG availability at this initial site of lipoprotein assembly was associated with significant reductions in the secretion of apoB-containing lipoproteins. Both naringenin and BMS-197636 were most effective in reducing secretion of IDL and LDL, but also inhibited secretion of apoB-containing HDL-sized particles. Furthermore, in McA-RH7777-derived cell lines, naringenin reduced secretion of hapoB72 and hapoB100, which require significant assembly with lipid to be secreted, but did not reduce secretion of hapoB17, hapoB23, and hapoB48, which require only minimal lipidation. Taken together, our results indicate that naringenin inhibits the lipidation and subsequent secretion of apoB-containing lipoproteins primarily by limiting the accumulation of TG in the ER lumen, secondary to MTP inhibition.  相似文献   

3.
Apolipoprotein B (apoB) and microsomal triglyceride transfer protein (MTP) are essential for the efficient assembly of triglyceride-rich lipoproteins. Evidence has been presented for physical interactions between these proteins. To study the importance of apoB-MTP binding in apoB secretion, we have identified a compound, AGI-S17, that inhibited (60-70% at 40 microM) the binding of various apoB peptides to MTP but not to an anti-apoB monoclonal antibody, 1D1, whose epitope overlaps with an MTP binding site in apoB. AGI-S17 had no significant effect on the lipid transfer activity of the purified MTP. In contrast, another antagonist, BMS-200150, did not affect apoB-MTP binding but inhibited MTP's lipid transfer activity. The differential effects of these inhibitors suggest two functionally independent, apoB binding and lipid transfer, domains in MTP. AGI-S17 was then used to study its effect on the lipid transfer and apoB binding activities of MTP in HepG2 cells. AGI-S17 had no effect on cellular lipid transfer activities, but it inhibited coimmunoprecipitation of apoB with MTP. These studies indicate that AGI-S17 inhibits apoB-MTP binding but has no effect on MTP's lipid transfer activity. Experiments were then performed to study the effect of inhibition of apoB-MTP binding on apoB secretion in HepG2 cells. AGI-S17 (40 microM) did not affect cell protein levels but decreased the total mass of apoB secreted by 70-85%. Similarly, AGI-S17 inhibited the secretion of nascent apoB by 60-80%, but did not affect albumin secretion. These studies indicate that AGI-S17 decreases apoB secretion most likely by inhibiting apoB-MTP interactions. Thus, the binding of MTP to apoB may be important for the assembly and secretion of apoB-containing lipoproteins and can be a potential target for the development of lipid-lowering drugs. It is proposed that the apoB binding may represent MTP's chaperone activity that assists in the transfer from the membrane to the lumen of the endoplasmic reticulum and in the net lipidation of nascent apoB, and may be essential for lipoprotein assembly and secretion.  相似文献   

4.
Dashti N  Gandhi M  Liu X  Lin X  Segrest JP 《Biochemistry》2002,41(22):6978-6987
Apolipoprotein (apo) B, the major protein component of the atherogenic low-density lipoprotein (LDL), has a pentapartite structure, NH2-betaalpha1-beta1-alpha2-beta2-alpha3-COOH, the beta domains containing multiple amphipathic beta strands and the alpha domains containing multiple amphipathic alpha helixes. We recently reported that the first 1000 residues of human apoB-100 have sequence and amphipathic motif homologies to the lipid-pocket of lamprey lipovitellin (LV) [Segrest, J. P., Jones, M. K., and Dashti, N. (1999) J. Lipid Res. 40, 1401-1416]. The lipid-pocket of LV is a small triangular space lined by three antiparallel amphipathic beta sheets, betaA, betaB, and betaD. The betaA and betaB sheets are joined together by an antiparallel alpha helical bundle, alpha domain. We proposed [Segrest, J. P., Jones, M. K., and Dashti, N. (1999) J. Lipid Res. 40, 1401-1416] that formation of a LV-like lipid-pocket is necessary for lipid-transfer to apoB-containing lipoprotein particles and that this pocket is formed by association of the region of the betaalpha1 domain homologous to the betaA and betaB sheets of LV with a betaD-like amphipathic beta sheet from microsomal triglyceride transfer protein (MTP). To test this hypothesis, we generated four truncated cDNA constructs terminating at or near the juncture of the betaalpha1 and beta1 domains: Residues 1-800 (apoB:800), 1-931 (apoB:931), 1-1000 (apoB:1000), and 1-1200 (apoB:1200). Characterization of particles secreted by stable transformants of the McA-RH7777 cell line demonstrated that (i) ApoB:800, missing the betaB domain, was secreted as a lipid-poor aggregate. (ii) ApoB:931, containing most, but not all, of the betaB domain, was secreted as lipid-poor particles unassociated with MTP. (iii) ApoB:1000, containing the entire betaB domain, was secreted as a relatively lipid-rich particle associated hydrophobically with MTP. (iv) ApoB:1200, containing the betaalpha1 domain plus 200 residues of the beta1 domain, was secreted predominantly as a lipid-poor particle but also as a minor relatively lipid-rich, MTP-associated particle. We thus have captured an intermediate in apoB-containing particle assembly, a lipid transfer competent pocket formed by association of the complete betaalpha1 domain of apoB with MTP.  相似文献   

5.
Although microsomal triglyceride transfer protein (MTP) and newly synthesized triglyceride (TG) are critical for co-translational targeting of apolipoprotein B (apoB100) to lipoprotein assembly in hepatoma cell lines, their roles in the later stages of lipoprotein assembly remain unclear. Using N-acetyl-Leu-Leu-norleucinal to prevent proteasomal degradation, HepG2 cells were radiolabeled and chased for 0-90 min (chase I). The medium was changed and cells chased for another 150 min (chase II) in the absence (control) or presence of Pfizer MTP inhibitor CP-10447 (CP). As chase I was extended, inhibition of apoB100 secretion by CP during chase II decreased from 75.9% to only 15% of control (no CP during chase II). Additional studies were conducted in which chase I was either 0 or 90 min, and chase II was in the presence of [(3)H]glycerol and either BSA (control), CP (inhibits both MTP activity and TG synthesis),BMS-1976360-1) (BMS) (inhibits only MTP activity), or triacsin C (TC) (inhibits only TG synthesis). When chase I was 0 min, CP, BMS, and TC reduced apoB100 secretion during chase II by 75.3, 73.9, and 53.9%. However, when chase I was 90 min, those agents reduced apoB100 secretion during chase II by only 16.0, 19.2, and 13.9%. Of note, all three inhibited secretion of newly synthesized TG during chase II by 80, 80, and 40%, whether chase I was 0 or 90 min. In both HepG2 cells and McA-RH7777 cells, if chase I was at least 60 min, inhibition of TG synthesis and/or MTP activity did not affect the density of secreted apoB100-lipoproteins under basal conditions. Oleic acid increased secretion of TG-enriched apoB100-lipoproteins similarly in the absence or presence of either of CP, BMS, or TC. We conclude that neither MTP nor newly synthesized TG is necessary for the later stages of apoB100-lipoprotein assembly and secretion in either HepG2 or McA-RH7777 cells.  相似文献   

6.
Although the evidence linking apoA-IV expression and triglyceride (TG)-rich lipoprotein assembly and secretion is compelling, the intracellular mechanisms by which apoA-IV could modulate these processes remain poorly understood. We therefore examined the functional impact of apoA-IV expression on endogenous apoB, TG, and VLDL secretion in stably transfected McA-RH7777 rat hepatoma cells. Expression of apoA-IV modified with the endoplasmic reticulum (ER) retention signal KDEL (apoA-IV-KDEL) dramatically decreased both the rate and efficiency of endogenous apoB secretion, suggesting a presecretory interaction between apoA-IV-KDEL and apoB or apoB-containing lipoproteins. Expression of native apoA-IV using either a constitutive or tetracycline-inducible promoter delayed the initial rate of apoB secretion and reduced the final secretion efficiency by ~40%. However, whereas apoA-IV-KDEL reduced TG secretion by 75%, expression of native apoA-IV caused a 20-35% increase in TG secretion, accompanied by a ~55% increase in VLDL-associated apoB, an increase in the TG:phospholipid ratio of secreted d < 1.006 lipoproteins, and a 10.1 nm increase in peak VLDL(1) particle diameter. Native apoA-IV expression had a negligible impact on expression of the MTP gene. These data suggest that by interacting with apoB in the secretory pathway, apoA-IV alters the trafficking kinetics of apoB-containing TG-rich lipoproteins through cellular lipidation compartments, which in turn, enhances particle expansion and increases TG secretion.  相似文献   

7.
8.
We previously proposed that the N-terminal 1000-residue betaalpha(1) domain of apolipoprotein B (apoB) forms a bulk lipid pocket homologous to that of lamprey lipovitellin. In support of this "lipid pocket" hypothesis, we demonstrated that apoB:1000 (residues 1-1000) is secreted by a stable transformant of McA-RH7777 cells as a monodisperse particle with high density lipoprotein 3 (HDL(3)) density. In contrast, apoB:931 (residues 1-931), missing only 69 residues of the sequence homologous to lipovitellin, was secreted as a particle considerably more dense than HDL(3). In the present study we have determined the stoichiometry of the lipid component of the apoB:931 and apoB:1000 particles. The secreted [(3)H]glycerol-labeled apoB:1000 particles, isolated by nondenaturing gradient gel electrophoresis, contained 50 phospholipid (PL) and 11 triacylglycerol (TAG) molecules/particle. In contrast, apoB:931 particles contained only a few molecules of PL and were devoid of TAG. The unlabeled apoB:1000 particles, isolated by immunoaffinity chromatography, contained 56 PL, 8 TAG, and 7 cholesteryl ester molecules/particle. The surface to core lipid ratio of apoB:1000-containing particles was approximately 4:1 and was not affected by oleate supplementation. Although very small amounts of microsomal triglyceride transfer protein (MTP) were associated with apoB:1000 particles, it never approached a 1:1 molar ratio of MTP to apoB. These results support a model in which (i) the first 1000 amino acid residues of apoB are competent to complete the lipid pocket without a structural requirement for MTP; (ii) a portion, or perhaps all, of the amino acid residues between 931 and 1000 of apoB-100 are critical for the formation of a stable, bulk lipid-containing nascent lipoprotein particle, and (iii) the lipid pocket created by the first 1000 residues of apoB-100 is PL-rich, suggesting a small bilayer type organization and has a maximum capacity on the order of 50 molecules of phospholipid.  相似文献   

9.
Apolipoprotein (apo) B is an obligatory component of very low density lipoprotein (VLDL), and its cotranslational and posttranslational modifications are important in VLDL synthesis, secretion, and hepatic lipid homeostasis. ApoB100 contains 25 cysteine residues and eight disulfide bonds. Although these disulfide bonds were suggested to be important in maintaining apoB100 function, neither the specific oxidoreductase involved nor the direct role of these disulfide bonds in apoB100-lipidation is known. Here we used RNA knockdown to evaluate both MTP-dependent and -independent roles of PDI1 in apoB100 synthesis and lipidation in McA-RH7777 cells. Pdi1 knockdown did not elicit any discernible detrimental effect under normal, unstressed conditions. However, it decreased apoB100 synthesis with attenuated MTP activity, delayed apoB100 oxidative folding, and reduced apoB100 lipidation, leading to defective VLDL secretion. The oxidative folding–impaired apoB100 was secreted mainly associated with LDL instead of VLDL particles from PDI1-deficient cells, a phenotype that was fully rescued by overexpression of wild-type but not a catalytically inactive PDI1 that fully restored MTP activity. Further, we demonstrate that PDI1 directly interacts with apoB100 via its redox-active CXXC motifs and assists in the oxidative folding of apoB100. Taken together, these findings reveal an unsuspected, yet key role for PDI1 in oxidative folding of apoB100 and VLDL assembly.  相似文献   

10.
In this study, we tested the hypothesis that phospholipid transfer protein (PLTP) is a plausible mediator of phospholipid (PL) transfer to the N-terminal 1000 residues of apoB (apoB:1000) leading to the initiation of apoB-containing lipoprotein assembly. To this end, primary hepatocytes from wild type (WT) and PLTP knock-out (KO) mice were transduced with adenovirus-apoB:1000 with or without co-transduction with adenovirus-PLTP, and the assembly and secretion of apoB:1000-containing lipoproteins were assessed. PLTP deficiency resulted in a 65 and 72% reduction in the protein and lipid content, respectively, of secreted apoB:1000-containing lipoproteins. Particles secreted by WT hepatocytes contained 69% PL, 9% diacylglycerol (DAG), and 23% triacylglycerol (TAG) with a stoichiometry of 46 PL, 6 DAG, and 15 TAG molecules per apoB:1000. PLTP absence drastically altered the lipid composition of apoB:1000 lipoproteins; these particles contained 46% PL, 13% DAG, and 41% TAG with a stoichiometry of 27 PL, 10 DAG, and 23 TAG molecules per apoB:1000. Reintroduction of Pltp gene into PLTP-KO hepatocytes stimulated the lipidation and secretion of apoB:1000-containing lipoproteins by ∼3-fold; the lipid composition and stoichiometry of these particles were identical to those secreted by WT hepatocytes. In contrast to the WT, apoB:1000 in PLTP-KO hepatocytes was susceptible to intracellular degradation predominantly in the post-endoplasmic reticulum, presecretory compartment. Reintroduction of Pltp gene into PLTP-KO hepatocytes restored the stability of apoB:1000. These results provide compelling evidence that in hepatocytes initial recruitment of PL by apoB:1000 leading to the formation of the PL-rich apoB-containing initiation complex is mediated to a large extent by PLTP.  相似文献   

11.
We examined the relationship between the size of human apolipoprotein (apo) B and the formation and secretion of apoB-containing lipoprotein particles. Stable transformants of the rat hepatoma cell line McA-RH7777 harboring a variety of human apoB cDNA constructs were established, and these produced carboxyl-terminally truncated apoB proteins (apoB18, -B23, -B28, -B31, -B48, and -B53). Immunoblotting of apoB proteins secreted into the culture medium and fractionated by equilibrium density ultracentrifugation revealed that each of the truncated apoB species was secreted from the cells. The peak densities of the apoB-containing particles decreased as the length of the apoB proteins increased. Apolipoproteins B18 and B23 appeared at the bottom of the salt gradient (d = 1.23 g/ml), whereas particles containing apoB28, -B31, -B37, -B48, and -B53 exhibited progressive decreases in density. The density distribution of secreted apolipoproteins was not affected by the expression or secretion of these recombinant apoB species. As determined by nondenaturing gel electrophoresis, apoB28, -B31, -B37, -B48, and -B53 formed their own discrete particles, and there was a direct correlation between the size of the particles and the length of the apoB species. The efficiency and rate of secretion of these truncated forms of apoB were studied by measuring the decrease of immunoprecipitated 35S-labeled apoB proteins in the cells and their accumulation in the medium. Proteins corresponding to apoB28 or larger were rapidly and efficiently secreted, whereas apoB18 and apoB23 were secreted much more slowly. These data imply that the size of these truncated apoB forms governs the lipid content of the apoB-containing lipoproteins formed as well as the kinetics of secretion.  相似文献   

12.
We previously demonstrated that a portion, or perhaps all, of the residues between 931 and 1000 of apolipoprotein (apo) B100 are required for the initiation of apoB-containing particle assembly. Based on our structural model of the first 1000 residues of apoB (designated as apoB:1000), we hypothesized that this domain folds into a three-sided lipovitellin-like "lipid pocket" via a hairpin-bridge mechanism. We proposed that salt bridges are formed between four tandem charged residues 717-720 in the turn of the hairpin bridge and four tandem complementary residues 997-1000 located at the C-terminal end of the model. To identify the specific motif within residues 931 and 1000 that is critical for apoB particle assembly, apoB:956 and apoB:986 were produced. To test the hairpin-bridge hypothesis, the following mutations were made: 1) residues 997-1000 deletion (apoB:996), 2) residues 717-720 deletion (apoB:1000Delta717-720), and 3) substitution of charged residues 997-1000 with alanines (apoB:996 + 4Ala). Characterization of particles secreted by stable transformants of McA-RH7777 cells demonstrated the following. 1) ApoB:956 did not form stable particles and was secreted as large lipid-rich aggregates. 2) ApoB:986 formed both a lipidated particle that was denser than HDL(3) and large lipid-rich aggregates. 3) Compared with wild-type apoB:1000, apoB:1000Delta717-720 displayed the following: (i) significantly diminished capacity to form intact lipidated particles and (ii) increased propensity to form large lipid-rich aggregates. 4) In striking contrast to wild-type apoB:1000, (i) apoB:996 and apoB:996 + 4Ala were highly susceptible to intracellular degradation, (ii) only a small proportion of the secreted proteins formed stable HDL(3)-like lipoproteins, and (iii) a majority of the secreted proteins formed large lipid-rich aggregates. We conclude that the first 1000 amino acid residues of human apoB100 are required for the initiation of nascent apoB-containing lipoprotein assembly, and residues 717-720 and 997-1000 play key roles in this process, perhaps via a hairpin-bridge mechanism.  相似文献   

13.
Cellular apoB in primary rat hepatocyte cultures was pulse-labeled with [(35)S]methionine for 1 h. Cells were then chased with excess unlabeled methionine for periods of up to 16 h in the presence or absence of BMS-200150, an inhibitor of microsomal triglyceride transfer protein (MTP). The secretion of apoB-48-VLDL was more sensitive to MTP inhibition than was apoB-100-VLDL. Inhibition of MTP had no inhibitory effect on the secretion of denser particles (apoB-48 HDL and apoB-100 HDL). BMS-200150 delayed the net removal of newly synthesized apoB-48 and apoB-100 from the microsomal and Golgi membranes, but not from the corresponding lumenal compartments. Only minor proportions of the microsomal lumen apoB-48 and apoB-100 (12-16% and 17-19%, respectively) were present as VLDL irrespective of whether MTP was inactivated or not. The HDL fraction contained most of the lumenal apoB-48 (67-73%) and a somewhat smaller proportion of apoB-100 (44-47%). The remainder of the lumenal apoB was associated with the IDL/LDL fraction. These proportions were unaffected by MTP inactivation. Excess labeled apoB which accumulated in the membranes in the presence of BMS-200150 was degraded. Inhibition of MTP prevented the removal of pre-synthesized triacylglycerol (TAG) from the hepatocytes as apoB-VLDL. Under these conditions intracellular TAG accumulated mainly in the cell cytosol, but also, to a lesser extent, in the microsomal membranes. The results suggest that inactivation of MTP inhibits a pathway of VLDL assembly which does not involve the bulk lumenal compartments of the microsomes. Suppression of this pathway ultimately prevents the net transfer of cytosolic TAG into mature apoB-VLDL.  相似文献   

14.
Bile salts (BS) inhibit the secretion of apolipoprotein B (apoB) and triacylglycerol (TG) in primary rat, mouse and human hepatocytes and in mice in vivo. We investigated whether lipidation of apoB into a lipoprotein particle is required for this inhibitory action of BS. The sodium/taurocholate co-transporting polypeptide (Ntcp) was co-expressed in McArdle-RH7777 (McA-RH7777) cells stably expressing the full-length human apoB100 (h-apoB100, secreted as TG-rich lipoprotein particles) or carboxyl-truncated human apoB18 (h-apoB18, secreted in lipid-free form). The doubly transfected cell lines (h-apoB/r-Ntcp) effectively accumulated taurocholic acid (TC). TC incubation decreased the secretion of endogenous rat apoB100 (-50%) and h-apoB18 (-35%), but did not affect secretion of rat apoA-I. Pulse-chase experiments (35S-methionine) indicated that the impaired secretion of radiolabeled h-apoB18 and h-apoB100 was associated with accelerated intracellular degradation. The calpain protease inhibitor N-acetyl-leucyl-leucyl-norleucinal (ALLN) partially inhibited intracellular apoB degradation but did not affect the amount of either h-apoB18 or h-apoB100 secreted into the medium, indicating that inhibition of apoB secretion by TC is not due to calpain-dependent proteasomal degradation. We conclude that TC does not inhibit apoB secretion by interference with its lipidation, but rather involves a mechanism dependent on the N-terminal end of apoB.  相似文献   

15.
The microsomal triglyceride transfer protein (MTP) is essential for the secretion of apolipoprotein B (apoB)48- and apoB100-containing lipoproteins in the intestine and liver, respectively. Loss of function mutations in MTP cause abetalipoproteinemia. Heterologous cells are used to evaluate the function of MTP in apoB secretion to avoid background MTP activity in liver and intestine-derived cells. However, these systems are not suitable to study the role of MTP in the secretion of apoB100-containing lipoproteins, as expression of a large apoB100 peptide using plasmids is difficult. Here, we report a new cell culture model amenable for studying the role of different MTP mutations on apoB100 secretion. The endogenous MTTP gene was ablated in human hepatoma Huh-7 cells using single guide RNA and RNA-guided clustered regularly interspaced short palindromic repeats-associated sequence 9 ribonucleoprotein complexes. We successfully established three different clones that did not express any detectable MTTP mRNA or MTP protein or activity. These cells were defective in secreting apoB-containing lipoproteins and accumulated lipids. Furthermore, we show that transfection of these cells with plasmids expressing human MTTP cDNA resulted in the expression of MTP protein, restoration of triglyceride transfer activity, and secretion of apoB100. Thus, these new cells can be valuable tools for studying structure-function of MTP, roles of different missense mutations in various lipid transfer activities of MTP, and their ability to support apoB100 secretion, compensatory changes associated with loss of MTP, and in the identification of novel proteins that may require MTP for their synthesis and secretion.  相似文献   

16.
The microsomal triglyceride transfer protein (MTP) is essential for the synthesis and secretion of apolipoprotein B (apoB)-containing lipoproteins. We investigated the role the MTP -493G/T gene polymorphism in determining the apoB-100 secretion pattern and LDL heterogeneity in healthy human subjects. Groups of carriers of the T and the G variants (n = 6 each) were recruited from a cohort of healthy 50-yr-old men. Kinetic studies were performed by endogenous [(2)H(3)]leucine labeling of apoB and subsequent quantification of the stable isotope incorporation. apoB production rates, metabolic conversions, and eliminations were calculated by multicompartmental modeling (SAAM-II). LDL subfraction distribution was analyzed in the entire cohort (n = 377). Carriers of the MTP -493T allele had lower plasma LDL apoB and lower concentration of large LDL particles [LDL-I: 136 +/- 57 (TT) vs. 175 +/- 55 (GG) mg/l, P < 0.01]. Kinetic modeling suggested that MTP -493T homozygotes had a 60% lower direct production rate of intermediate-density lipoprotein (IDL) plus LDL compared with homozygotes for the G allele (P < 0.05). No differences were seen in production rates of large and small VLDL, nor were there any differences in metabolic conversion or elimination rates of apoB between the genotype groups. This study shows that a polymorphism in the MTP gene affects the spectrum of endogenous apoB-containing lipoprotein particles produced in humans. Reduced direct production of LDL plus IDL appears to be related to lower plasma concentrations of large LDL particles.  相似文献   

17.
Due to the absence of microsomal triglyceride transfer protein (MTP), Chinese hamster ovary (CHO) cells lack the ability to translocate apoB into the lumen of the endoplasmic reticulum, causing apoB to be rapidly degraded by an N-acetyl-leucyl-leucyl-norleucinal-inhibitable process. The goal of this study was to examine if expression of MTP, whose genetic deletion is responsible for the human recessive disorder abetalipoproteinemia, would recapitulate the lipoprotein assembly pathway in CHO cells. Unexpectedly, expression of MTP mRNA and protein in CHO cells did not allow apoB-containing lipoproteins to be assembled and secreted by CHO cells expressing apoB53. Although expression of MTP in cells allowed apoB to completely enter the endoplasmic reticulum, it was degraded by a proteolytic process that was inhibited by dithiothreitol (1 mM) and chloroquine (100 microM), but resistant to N-acetyl-leucyl-leucyl-norleucinal. In marked contrast, coexpression of the liver-specific gene product cholesterol 7alpha-hydroxylase with MTP resulted in levels of MTP lipid transfer activity that were similar to those in mouse liver and allowed intact apoB53 to be secreted as a lipoprotein particle. These data suggest that, although MTP-facilitated lipid transport is not required for apoB translocation, it is required for the secretion of apoB-containing lipoproteins. We propose that, in CHO cells, MTP plays two roles in the assembly and secretion of apoB-containing lipoproteins: 1) it acts as a chaperone that facilitates apoB53 translocation, and 2) its lipid transfer activity allows apoB-containing lipoproteins to be assembled and secreted. Our results suggest that the phenotype of the cell (e.g. expression of cholesterol 7alpha-hydroxylase by the liver) may profoundly influence the metabolic relationships determining how apoB is processed into lipoproteins and/or degraded.  相似文献   

18.
The relative importance of each core lipid in the assembly and secretion of very low density lipoproteins (VLDL) has been of interest over the past decade. The isolation of genes encoding diacylglycerol acyltransferase (DGAT) and acyl-CoA:cholesterol acyltransferases (ACAT1 and ACAT2) provided the opportunity to investigate the effects of isolated increases in triglycerides (TG) or cholesteryl esters (CE) on apolipoprotein B (apoB) lipoprotein biogenesis. Overexpression of human DGAT1 in rat hepatoma McA-RH7777 cells resulted in increased synthesis, cellular accumulation, and secretion of TG. These effects were associated with decreased intracellular degradation and increased secretion of newly synthesized apoB as VLDL. Similarly, overexpression of human ACAT1 or ACAT2 in McA-RH7777 cells resulted in increased synthesis, cellular accumulation, and secretion of CE. This led to decreased intracellular degradation and increased secretion of VLDL apoB. Overexpression of ACAT2 had a significantly greater impact upon assembly and secretion of VLDL from liver cells than did overexpression of ACAT1. The addition of oleic acid (OA) to media resulted in a further increase in VLDL secretion from cells expressing DGAT1, ACAT1, or ACAT2. VLDL secreted from DGAT1-expressing cells incubated in OA had a higher TG:CE ratio than VLDL secreted from ACAT1- and ACAT2-expressing cells treated with OA. These studies indicate that increasing DGAT1, ACAT1, or ACAT2 expression in McA-RH7777 cells stimulates the assembly and secretion of VLDL from liver cells and that the core composition of the secreted VLDL reflects the enzymatic activity that is elevated.  相似文献   

19.
Despite a complete lack of microsomal triglyceride transfer protein (MTP), L35 rat hepatoma cells secrete triglyceride-containing lipoproteins, albeit at a rate 25% of that of parental FAO hepatoma cells, which express high levels of MTP. The inability to express MTP was associated with a complete block in the secretion of both apolipoprotein (apo)B-100 and apoB-48. Stable expression of a MTP transgene restored the secretion of both apoB-100 and apoB-48 in L35 cells, indicating that MTP is essential for the secretion of both forms of apoB. Treatment with the MTP inhibitor BMS-200150 reduced the secretion of triglyceride by 70% in FAO cells, whereas the inhibitor did not affect the secretion of triglycerides by L35 cells. Thus, in the presence of the MTP inhibitor, both cell types secreted triglycerides at similar rates. Essentially, all of the triglycerides secreted by L35 cells were associated with HDL containing apoA-IV and apoE but devoid of apoB-100 or apoB-48. These results suggest that these triglyceride-containing lipoproteins are assembled and secreted via a pathway that is independent of both apoB and MTP. Our findings support the concept that apoB and MTP co-evolved and provided a means to augment the secretion of triglyceride through the formation of lipoproteins containing large hydrophobic cores enriched with triglycerides.  相似文献   

20.
Supply of lipids from the mother is essential for fetal growth and development. In mice, disruption of yolk sac cell secretion of apolipoprotein (apo) B-containing lipoproteins results in embryonic lethality. In humans, the yolk sac is vestigial. Nutritional functions are instead established very early during pregnancy in the placenta. To examine whether the human placenta produces lipoproteins, we examined apoB and microsomal triglyceride transfer protein (MTP) mRNA expression in placental biopsies. ApoB and MTP are mandatory for assembly and secretion of apoB-containing lipoproteins. Both genes were expressed in placenta and microsomal extracts from human placenta contained triglyceride transfer activity, indicating expression of bioactive MTP. To detect lipoprotein secretion, biopsies from term placentas were placed in medium with [(35)S]methionine and [(35)S]cysteine for 3-24 h. Upon sucrose gradient ultracentrifugation of the labeled medium, fractions were analyzed by apoB-immunoprecipitation. (35)S-labeled apoB-100 was recovered in d approximately 1.02-1.04 g/ml particles (i.e. similar to the density of plasma low density lipoproteins). Electron microscopy of negatively stained lipoproteins secreted from placental tissue showed spherical particles with a diameter of 47 +/- 10 nm. These results demonstrate that human placenta expresses both apoB and MTP and consequently synthesize and secrete apoB-100-containing lipoproteins. Placental lipoprotein formation constitutes a novel pathway of lipid transfer from the mother to the developing fetus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号