首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
In this study we examined interactions between two solitary endoparasitoids, the braconid Chelonus insularis and the ichneumonid Campoletis sonorensis, and a multiple-enveloped nucleopolyhedrovirus infecting Spodoptera frugiperda larvae. We examined whether ovipositing females minimize interference by discriminating amongst hosts and examined the outcome of within-host competition between parasitoid species and between the parasitoids and the virus. The egg–larval parasitoid Ch. insularis did not discriminate between virus-contaminated and uncontaminated S. frugiperda eggs; all S. frugiperda larvae that emerged from surface-contaminated eggs died of viral infection prior to parasitoid emergence. The larval parasitoid C. sonorensis also failed to discriminate between healthy and virus-infected S. frugiperda larvae or between larvae unparasitized or parasitized by Ch. insularis. Host larvae parasitized in the egg stage by Ch. insularis were suitable for the development of C. sonorensis when they were multiparasitized by C. sonorensis as first, second, third, and fourth instars, whereas emergence of Ch. insularis was dramatically reduced (by 85 to 100%) in multiparasitized hosts. Nonspecific host mortality was significantly higher in multiparasitized hosts than in singly parasitized hosts. The development time and sex ratio of C. sonorensis in multiparasitized host larvae were unaffected by the presence of Ch. insularis larval stages. Both Ch. insularis parasitized and nonparasitized larvae of the same instar (second, third, or fourth instars) had a similar quantitative response to a challenge of virus inoculum. All host larvae that ingested a lethal dose of virus were unsuitable for Ch. insularis development. In contrast, C. sonorensis did not survive in hosts that ingested a lethal virus dose immediately after parasitism, but parasitoid survival was possible with a 2-day delay between parasitism and viral infection and the percentage of parasitoid emergence increased significantly as the interval between parasitism and viral infection increased. The development time of C. sonorensis was significantly reduced in virus-infected hosts compared to conspecifics that developed in healthy hosts. C. sonorensis females that oviposited in virus-infected hosts did not transmit the virus to healthy hosts that were parasitized subsequently. Field applications of virus for biocontrol of S. frugiperda may lead to substantial mortality of immature parasitoids, although field experiments have not yet demonstrated such an effect.  相似文献   

2.
The effects of parasitism by the ArgentinianTrichopoda giacomellii(Blanchard) on reproduction and longevity of its host,Nezara viridula(L.) are reported. Parasitoid larvae suppress egg maturation, reducing by 70% the fecundity of mature female hosts during the period of larval development. Egg viability was not affected, but mating frequency was reduced by approximately 50%. When parasitized as newly eclosed adults, 84% of females fail to reproduce. In male hosts, fertility and mating frequency were not affected during the period of larval parasitoid development. In male and reproductively immature female hosts, death was coincident with, or occurred shortly after parasitoid emergence (2–4 days); in mature females, death occurred on average 2 weeks after larval parasitoid emergence. Host mortality occurred as a consequence of tissue damage incurred as the parasitoid larvae emerged from the host. Some individuals survived parasitism though no further reproductive activity (mating or oviposition) occurred. The effectiveness ofT. giacomelliias a biological control agent is discussed in relation to its impact on reproduction and survival of its host and contrasted with the action of otherTrichopodaspecies.  相似文献   

3.
Host manipulation is a strategy used by some parasites to enhance their transmission. These parasites use a combination of neuropharmacological, psychoneuroimmunological, genomic/proteomic, or symbiont-mediated mechanisms to manipulate their hosts. Bodyguard manipulation occurs when parasitized hosts guard parasitoid pupae to protect them from their natural enemies. Bodyguard-manipulated hosts exhibit altered behaviours only after the egression of parasitoid prepupae. Behavioural changes in post-parasitoid egressed hosts could have resulted from their altered physiology. Previous studies have shown that gregarious manipulative parasitoids induce multiple physiological changes in their host, but the physiological changes induced by solitary manipulative parasitoids are unknown. Microplitis pennatulae Ranjith & Rajesh (Hymenoptera: Braconidae) is a larval parasitoid of Psalis pennatula Fabricius (Lepidoptera: Erebidae). After the egression of parasitoid prepupae, P. pennatula stops its routine activities and protects the parasitoid pupa from hyperparasitoids by body thrashes. In this study, we looked into the physiological changes induced by the solitary manipulative parasitoid, M. pennatulae, in its host, P. pennatula, during various stages of parasitization. We considered octopamine concentration and phenoloxidase (PO) activity as biomarkers of physiological change. We also examined whether M. pennatulae has a symbiotic virus and whether the wasp transfers it to the host during parasitization. We found that octopamine concentration was low in the pre-parasitoid egressed host, but it was elevated after the parasitoid egressed. Phenoloxidase activity was lower in the pre- and post-parasitoid egressed host than in the unparasitized host. We also detected symbiotic bracovirus (BV) in the wasp ovaries and isolated the BV virulence gene from the parasitised host. Our study suggests that solitary parasitoids also induce multiple physiological changes to influence the host behaviour to their advantage, as is the case with the gregarious parasitoids.  相似文献   

4.
Herbivore fitness can be altered by a combination of interacting organisms, such as its food plant, conspecifics, and predators/parasitoids. Here, we tested relative effects of plant species, herbivore intraspecific competition type, and spatial distribution of the herbivore among plant units on herbivore survival and whether parasitoids modified these effects. We used an endophagous bruchine seed predator Callosobruchus maculatus for the herbivore, and a braconid wasp Heterospilus prosopidis for the parasitoid. The survival rate of C. maculatus was measured for each of 16 combinations of two plants (bean species, Vigna unguiculata and V. radiata), two competition types of C. maculatus larvae (contest and scramble), two spatial distributions of hosts [sparse (1 C. maculatus larva per seed over 20 seeds) and dense (2 C. maculatus larvae per seed over ten seeds)], and with/without a parasitoid pair. In the absence of the parasitoid, C. maculatus survival rate was lower with V. radiata and in the contest type. With the parasitoid, the proportion parasitized hosts was independent of total host density. Neither the proportion of parasitized hosts nor host survival rate was affected by plant species or host strain, but they were affected by host spatial distribution. When host distribution was dense, a higher proportion of hosts were parasitized, and C. maculatus survival rate was lower. Here we discuss parasitoid potential as a selective agent for the sparse within-pod distribution of its hosts in the field.  相似文献   

5.
1. The study reported here examined growth and developmental interactions between the gregarious larval koinobiont endoparasitoid Cotesia glomerata (Hymenoptera: Braconidae) and two of its hosts that vary considerably in growth potential: Pieris rapae and the larger P. brassicae (Lepidoptera: Pieridae). At pupation, healthy larvae of P. brassicae are over twice as large, in terms of fresh body mass, as those of P. rapae. 2. Clutch size of C. glomerata was manipulated artificially, and the relationship between parasitoid burden and the maximum weight of the parasitised host (= host–parasitoid complex) was measured. In both hosts, the maximum complex weight was correlated positively with parasitoid burden. Compared with unparasitised hosts, however, the growth of P. rapae was increased at significantly lower parasitoid burdens than in P. brassicae. Emerging wasp size was correlated negatively with parasitoid burden in both host species, whereas development time was less affected. 3. After larval parasitoid egress, the weight of the host carcass increased slightly, but not significantly, with parasitoid burden, although there was a strong correlation between the proportion of host mass consumed by C. glomerata larvae during development and parasitoid burden. 4. Clutch size was generally correlated positively with instar parasitised in both hosts, and greater in P. brassicae than in P. rapae. Sex ratios were much more female biased in L1 and L2 P. rapae than in all other host classes. Adult parasitoid size was correlated inversely with host instar at parasitism, and wasps emerging from P. brassicae were larger, and completed development faster, than conspecifics emerging from P. rapae. 5. The data reveal that parasitism by C. glomerata has profound species‐specific effects on the growth of both host species. Consequently, optimality models in which host quality is often based on host size at parasitism or unparasitised growth potential may have little utility in describing the development of gregarious koinobiont endoparasitoids. The results of this investigation are discussed in relation to the potential effectiveness of gregarious koinobionts in biological control programmes.  相似文献   

6.
Studies on interactions between a larval parasitoid, Pteromalus cerealellae (Boucek) and one of its hosts, Callosobruchus maculatus (F.) were carried out in the laboratory. The number of host larvae parasitized by P. cerealellae increased with host larvae at low densities and tended to a plateau at a density of 25 larvae per female parasitoid. Each parasitoid was able to parasitize more hosts and produced more offspring at 20 and 25 °C than at 30 °C. The number of non-infested seeds mixed with seeds infested with the last instar of C. maculatus did not preclude P. cerealellae from identifying infested seeds and attacking larvae inside them. When infested seeds were tightly packed, several host larvae escaped parasitism. P. cerealellae may be a useful biological control agent in newly harvested cowpea with low C. maculatus infestation, and lowering the temperature of the storage system may enhance the effectiveness of this parasitoid.  相似文献   

7.
The functional response of a biocontrol agent has been classically pointed out as a quantitative evaluation criterion to understand its killing capacity to an arthropod pest. In this paper, we revisited the functional response of the internal larval parasitoid Pseudapanteles dignus (Muesebeck) (Hymenoptera: Braconidae), a candidate for biocontrol of the South American tomato leafminer, Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae), measured as the daily egg oviposition of single parasitoid females at increasing densities of T. absoluta larvae through dissection of hosts. The functional response curve of the number of parasitized hosts was fitted out taking into account the number of eggs laid and their distribution among hosts at each T. absoluta larval density. The data also allowed us to discuss the self-superparasitism strategy of this parasitoid as an adaptive trait. Pseudapanteles dignus showed a sigmoid shape functional response and a contagious distribution of eggs among hosts, favouring self-superparasitism and laying a similar number of eggs in each superparasitized host at each T. absoluta density. This research is firstly intended to ascertain about the oviposition behaviour of P. dignus and additionally to provide information on its reproduction to be applied in mass rearing procedures and augmentative releases against T. absoluta.  相似文献   

8.
In natural populations of insect herbivores, genetic differentiation is likely to occur due to variation in host plant utilization and selection by the local community of organisms with which they interact. In parasitoids, engaging in intimate associations with their host during immature development, local variation may exist in host quality for parasitoid development. We compared the development of a gregarious endoparasitoid, Cotesia glomerata L. (Hymenoptera: Braconidae), collected in The Netherlands, in three strains and three caterpillar instars (L1–L3) of its main host, Pieris brassicae L. (Lepidoptera: Pieridae). Hosts had been collected in The Netherlands and France, and were reared in the laboratory for one generation. We also used an established Dutch laboratory strain that had not been exposed to parasitoids for at least 24 generations. Parasitoid survival to adulthood was inversely correlated with host instar at parasitism. Adult parasitoid body mass was largest when hosts were parasitized as L1 and smallest when hosts were parasitized as L3, whereas egg‐to‐adult development time was quickest on L3 hosts and slowest on L1 hosts. Higher survival and faster development of C. glomerata on French L2 hosts also showed that there is variation in host‐instar‐related suitability. Many L2 and most L3 caterpillars that were parasitized exhibited signs of pathogen infection and perished within a few days of parasitism, whereas this never happened when hosts were parasitized as L1 or in non‐parasitized control caterpillars. Our results reveal that, irrespective of the host strain, L1 hosts are optimally synchronized with C. glomerata development. By contrast, the high precocious mortality of L3 larvae may be due to stress‐induced regulation by the parasitoid in order to ‘force’ its developmental program into synchrony with the developing parasitoid larvae. Our results underscore a potentially important role played by pathogens in mediating herbivore–parasitoid interactions that are host‐instar‐dependent in their expression.  相似文献   

9.
To assess the potential of the hymenopteran ectoparasitoid, Habrobracon hebetor Say as a biological control agent, we evaluated its response to different larval densities of two pyralid hosts, Palpita unionalis Hbn. and Galleria mellonella L. The former host is a serious pest of olive trees, whereas the latter is used as a factitious host in parasitoid mass rearing. In order to study the functional response of the parasitoid, five host densities (1, 2, 3, 5, 7) of either late instar larva per Petri dish were used. The shape of the functional response curve was determined using logistic regression and could be described as a type II response for both hosts, characterised by a monotonic decelerating increase in the number of hosts attacked with increasing host density. Female parasitoids allocated more eggs to the first larva attacked than all the remaining larvae. Aggregated dispersion patterns for parasitoid egg distribution at different host densities were estimated using the Green index. Multiple visits and ovipositions by females did not significantly affect the total number of progeny produced or their sex ratio. This study has generated novel information on egg laying, egg distribution and sex ratio of H. hebetor when reared on G. mellonella and has the potential to be used in the development of sustainable biological control programmes aimed at P. unionalis in olive orchards.  相似文献   

10.
The development of the embryonic and larval stages of the internal gregarious parsitoid, Glyptapanteles (=Apanteles) militaris, is adversely affected by the hypertrophy strain of a nuclear polyhedrosis virus in the armyworm, Pseudaletia unipuncta. The initial effects are cessation of parasitoid growth and general tissue disruption, followed by the melanization of parasitoid tissues. Melanization spreads from the parasitoids' caudal vesicle throughout the body, culminating in eventual encapsulation in virus-infected hosts. Parasitoids in armyworm hosts infected with the typical strain of nuclear polyhedrosis virus exhibited no abnormal development.  相似文献   

11.
The survival of a braconid parasitoid Habrobracon hebetor was investigated on nucleopolyhedrovirus (NPV)-infected Spodoptera exigua larvae. The second-instar larvae were exposed to 30, 51.4 and 180 PIB/mm2 of Mamestra brassicae NPV (MbMNPV) as under-LD50, LD50 and over-LD50 values, respectively. They were accessible to be parasitized by H. hebetor after 24, 48 and 72 h post-treatment. Infection of the larvae with MbNPV was deleterious to the survival and parasitism of H. hebetor. The survival of H. hebetor in MbNPV-infected S. exigua larvae was dependent on the interval between viral infection and parasitization, as well as on the treatment dose of MbMNPV; very few adults of parasitoid emerged from infected hosts when host larvae were exposed to 180 PIB/mm2 of MbNPV on 72-h interval treatment. The inoculation dose of MbNPV and the timing of parasitoid release had significant effect on the development of H. hebetor on virus-infected hosts. Field applications of virus for biocontrol of S. exigua may lead to substantial mortality of immature parasitoids.  相似文献   

12.
R. Singh  M. Srivastava 《BioControl》1989,34(4):581-586
The influence of kairomones on the numerical response of the parasitoidTrioxys indicus against its hostAphis craccivora at its varying density was studied. The kairomones (applied as aqueous extract of the host) significantly enhanced the rate of parasitisation and multiplication and the area of discovery of the parasitoid and also the K-values of mortality of the host at all parasitoid densities introduced (1, 2, 4, 8, 12 and 16 parasitoids) into troughs having about 200 hosts. The sex-ratio of F1 offspring decreased at lower parasitoid densities and remained more or less unchanged at higher parasitoid densities after the application of kairomones. The present findings indicate that if kairomones are applied properly, the number of hosts destroyed by a stimulated parasitoid will be about 200, twice the number reported earlier, thus fewer parasitoids will be needed to regulate an estimated population of the hosts.   相似文献   

13.
Successful parasitism of a host partly depends on a female's assessment of its quality, including whether the host has already been parasitised or not. We conducted experiments to elucidate host discrimination by Dolichogenidea tasmanica (Hymenoptera: Braconidae). It is the most commonly collected parasitoid of light brown apple moth, Epiphyas postvittana (Lepidoptera: Tortricidae). To assess the rate of superparasitism avoidance by D. tasmanica, female wasps were given choices between (1) unparasitised hosts versus freshly self-parasitised hosts, (2) unparasitised hosts versus hosts at 24 h post-self-parasitisation and (3) freshly self-parasitised hosts versus hosts freshly parasitised by a conspecific female. Results confirm that host discrimination occurs in D. tasmanica. Females avoid laying eggs in hosts that have been parasitised by themselves or conspecifics, even though the frequency of first encounter with either an unparasitised or a parasitised host was the same for all choices. Thus, it appears that females are not able to discriminate the host parasitisation status prior to contacting a host, but host acceptance is not random. Host discrimination is time-dependent, with greater avoidance of superparasitism after 24 h. The ability of female D. tasmanica to distinguish healthy from parasitised hosts suggests that it could be an effective biological control agent in regulation of host populations. It should also ensure production efficiency in parasitoid mass-rearing.  相似文献   

14.
Antagonistic coevolution between hosts and parasites can result in negative frequency‐dependent selection and may thus be an important mechanism maintaining genetic variation in populations. Negative frequency‐dependence emerges readily if interactions between hosts and parasites are genotype‐specific such that no host genotype is most resistant to all parasite genotypes, and no parasite genotype is most infective on all hosts. Although there is increasing evidence for genotype specificity in interactions between hosts and pathogens or microparasites, the picture is less clear for insect host–parasitoid interactions. Here, we addressed this question in the black bean aphid (Aphis fabae) and its most important parasitoid Lysiphlebus fabarum. Because both antagonists are capable of parthenogenetic reproduction, this system allows for powerful tests of genotype × genotype interactions. Our test consisted of exposing multiple host clones to different parthenogenetic lines of parasitoids in all combinations, and this experiment was repeated with animals from four different sites. All aphids were free of endosymbiotic bacteria known to increase resistance to parasitoids. We observed ample genetic variation for host resistance and parasitoid infectivity, but there was no significant host clone × parasitoid line interaction, and this result was consistent across the four sites. Thus, there is no evidence for genotype specificity in the interaction between A. fabae and L. fabarum, suggesting that the observed variation is based on rather general mechanisms of defence and attack.  相似文献   

15.
16.
  • 1 The fate of Nemeritis canescens has been studied in 36 species or, counting different stages, in 51 kinds of insects, in order to discover the causes of its success or failure in each.
  • 2 The parasitoid was able to develop to the adult stage in 14 of the species studied.
  • 3 A defence reaction of the host, cellular encapsulation, was by far the most frequent cause of the death of canescens in species in which it could not develop.
  • 4 Deposition of melanin over its mouth probably caused the death of canescens in two species; in other species the role of melanisation was subordinate to encapsulation.
  • 5 Very few species, if any, were unsuitable as food; larvae of the parasitoid ingested and assimilated the blood of a wide variety of insects.
  • 6 Some individuals of a few species were unsuitable as a habitat for the parasitoid larva.
  • 7 The survival of canescens in suitable hosts is discussed with reference to the means by which this parasitoid resists defence reactions.
  • 8 Attention is drawn to incidental results of the research: (i) a state of diapause in some hosts was transmitted to first-instar larvae of canescens and delayed their development; (ii) evidence was found that the teratocytes formed by braconid parasitoids function as a means of preventing cellular defence reactions, that they act by attrition of the host, and that they protect a larva of canescens present in the same host; (iii) observations concerning the behaviour of adult canescens in attacking some species, and the survival of supernumerary larvae after competing for the host, are mentioned.
  相似文献   

17.
This study quantitatively describes the host-searching behavior of Fopius arisanus (Sonan) (Hymenoptera: Braconidae), an important egg-larval parasitoid of tephritid fruit fly pests, on coffee berries infested with host eggs of the Mediterranean fruit fly, Ceratitis capitata (Wiedemann) (Diptera: Tephritidae). We also investigate the parasitoid's response to local variation in host patch quality. The temporal pattern of behavioral organisation was examined by constructing an ethogram. The parasitoid spent over 90% of its foraging time in detecting and locating hosts after arriving on a host-infested fruit, and displayed a relatively fixed behavioral pattern leading to oviposition. Patch residence time increased in the presence of host-associated cues, following successful ovipositions, and with increasing size of host clutches per fruit, but decreased with each successive visit to the same host patch and with increasing availability of alternative host patches. The parasitoid females discriminated against previously parasitized hosts and spent significantly less time and searching effort on patches previously exploited by herself or by conspecific females. The effective host-searching behavior, perfect host discrimination ability, and success-motivated searching strategy shown by F. arisanus ensured a thorough exploitation of host resources by this parasitoid.  相似文献   

18.
The coffee berry borer (CBB) Hypothenemus hampei (Ferrari) (Coleoptera: Curculionidae: Scolytinae) was accidentally introduced into México in 1978, and rapidly became the main pest of coffee. As an exotic pest, its management has been mainly based on biological control methods through the introduction of parasitoids from Africa. In this context, at the beginning of the present decade, the parasitoid Phymastichus coffea LaSalle (Hymenoptera: Eulophidae) was imported to Mexico. Since then, several studies have been carried out as part of the post introduction evaluation of this parasitoid. In this paper, information concerning the parasitism and life-cycle of P. coffea in coffee farms is presented with the objective of providing information that elucidates its role as a biological control agent. P. coffea showed highly significant preferences for allocation of two eggs per host, usually one female and one male. Both offspring are able to develop and reach the adult stage successfully. Lifespan of adults is 2–3 days only. The degree of parasitism by P. coffea was more than 95% at the three altitudes tested, when releases consisted of a ratio of 10 CBB:1 parasitoid. The median survivorship of CBB parasitized by this wasp was 13, 15 and 19 days at the low, medium and high altitude coffee zones, respectively. The parasitism by P. coffea was higher when parasitoid releases were carried out simultaneously with the CBB, and decreased with the time between host and parasitoid releases. We showed that using P. coffea at a density of 1 parasitoid per 10 hosts resulted in a 3- to 5.6-fold decrease in CBB damage to the coffee seeds when compared to the control. The importance and value of these results are discussed in terms of the use of P. coffea as a biological control agent of the CBB in Latin America.  相似文献   

19.
The effects of host age on parasitoid reproductive capacity are studied using the pteromalid parasitoid Lariophagus distinguendusFörster and its bruchid hosts, Callosobruchus chinensis (L.) and C. maculatus (F.). A series of experiments were performed to investigate relationships between age and size of host parasitized and the developmental period of pre-imaginal progeny, sex ratio, female size, longevity, fecundity and oviposition rate. There was no effect of host size on preimaginal parasitoid developmental period. Sex ratio varied from less than 5% females from young (small) hosts to 60% females from mature (large) hosts. Adult size, female longevity, fecundity, and oviposition rate were also positively related to host age. Females provided mature hosts lived longer than those provided either young hosts or no hosts, possibly because of an increased ability to host-feed from the larger hosts. The implications of these findings to parasitoid population reproductive capacity and host-parasitoid synchrony are discussed.  相似文献   

20.
1 The braconid parasitoid Bracon hylobii Ratz. is one of the few specialist natural enemies of the large pine weevil, Hylobius abietis L., a destructive pest of conifer transplants. An assessment of its role as an agent of biological control requires a detailed knowledge of the allocation of its reproductive effort. 2 Parasitoid females were continuously observed in laboratory culture with individually reared host larvae in bark discs. The outcome of sequential parasitoid–host encounters was recorded by subsequent examination of hosts and by rearing all parasitoids. 3 Parasitoids avoided ovipositing on host larvae < 100 mg fresh weight, even though such larvae represented sufficient biomass for complete parasitoid development. All larger larvae were vulnerable to attack, which leaves a window of vulnerability for parasitoids of about 90% of weevil larval life. 4 Parasitoids presented with a range of host sizes showed no preference above 100 mg for the size of host first attacked, but allocated more eggs and a greater total handling time to larger hosts. 5 Most eggs were deposited on the first host attacked, with progressively fewer allocated to subsequent hosts. However, oviposition experience did not affect the time spent on the next host. 6 From these results it is anticipated that when weevil larval size is reduced by less favourable feeding substrates, fewer parasitoid eggs will be allocated to each but more host larvae will ultimately be attacked. 7 Generation time, host finding, oviposition rate, clutch size, life expectancy and diapause induction are strongly affected by temperature. Life expectancy is substantially shorter for parasitoids deprived of non‐host food supplement. At 15 and 20 °C the number of hosts attacked and the number of eggs deposited decreased with female age. 8 Bracon hylobii is inevitably poorly synchronized with a variable life‐cycle host; it is egg‐limited and can enter diapause at a relatively high field temperature. None of these characteristics suggest that it could stabilize the abundance of its host below an economically acceptable threshold density. However, the reproductive potential of the parasitoid suggests that it could make a significant contribution to larval mortality and suppress adult recruitment, thus complementing other control strategies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号