首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Photoactivated riboflavin in the presence of Cu(II) generates reactive oxygen species (ROS) which can hemolyze human red blood cells (RBC). In the present work we examined the effect of sodium azide (NaN3) on RBC in the presence of riboflavin and Cu(II). The addition of NaN3 to the riboflavin-Cu(II) system enhanced K+ loss and hemolysis. The extent of K+ loss and hemolysis were time and concentration dependent. Bathocuproine, a Cu(I)-sequestering agent, inhibited the hemolysis completely. Among various free radical scavengers used to identify the major ROS involved in the reaction, thiourea was found to be the most effective scavenger. Thiourea caused almost 85% inhibition of hemolysis suggesting that *OH is the major ROS involved in the reaction. Using spectral studies and other observations, we propose that when NaN3 is added to the riboflavin-Cu(II) system, it inhibits the photodegradation of riboflavin resulting in increased *OH generation. Also, the possibility of azide radical formation and its involvement in the reaction could not be ruled out.  相似文献   

2.
The photodynamic action of riboflavin is generally considered to involve the generation of reactive oxygen species, whose production is enhanced when Cu(II) is present in the reaction. In the present study we report that photoactivated riboflavin causes K(+) loss from fresh human red blood cells (RBC) in a time dependent manner. Addition of Cu(II) further enhances the K(+) loss and also leads to significant hemolysis. Riboflavin in a 2:1 stoichiometry with Cu(II) leads to maximum K(+) loss and up to 45% hemolysis. Bathocuproine, a specific Cu(I)-sequestering agent, when present in the reaction, inhibits the hemolysis completely. Free radical scavengers like superoxide dismutase, potassium iodide and mannitol inhibited the hemolysis up to 55% or more. However, thiourea was the most effective scavenger showing 90% inhibition. These results suggest that K(+) leakage and hemolysis of human RBC are basically free radical mediated reactions.  相似文献   

3.
We have previously shown that thawed RBC concentrate can be stored at +4 degrees C during 9 days if resuspended in a synthetic medium: ESOC. We now report the in vitro evolution of thawed RBC stored with or without protective medium during the 24 hours legal time-limit. (Formula: see text) We show that without protection, the ATP and 2,3-DPG levels remain acceptable, but spontaneous or caused hemolysis is high. The level of free Hb is soon over the legal limit. The addition of our protective medium enhances ATP and hemolysis is strongly reduced. We conclude that a protective medium should be added to all thawed RBC concentrates.  相似文献   

4.
Physiological concept for a blood based CFTR test.   总被引:2,自引:0,他引:2  
We tested the hypothesis that the cystic fibrosis transmembrane conductance regulator (CFTR) could be involved in the volume regulation of human red blood cells (RBC). Experiments were based on two gadolinium (Gd(3+)) sensitive mechanisms, i.e. inhibition of ATP release (thetaATP(i)) and membrane destabilization. RBC of either cystic fibrosis (CF) patients or healthy donors (non-CF) were exposed to KCl buffer containing Gd(3+). A significantly larger quantity of non-CF RBC (2.55 %) hemolyzed as compared to CF RBC (0.89 %). It was found that both of the Gd(3+) mechanisms simultaneously are needed to achieve hemolysis, since either overriding thetaATP(i) by exogenous ATP addition prevented Gd(3+) induced hemolysis, or mimicking thetaATP(i) by apyrase in absence of Gd(3+) could not trigger hemolysis. Additionally, ion driven volume uptake was found to be a prerequisite for Gd3+ induced hemolysis as chloride and potassium channel blockers reduced the Gd(3+) response. The results show that in non-CF RBC Gd(3+) exerts its dual effect leading to hemolysis. On the contrary, in CF RBC, lacking CFTR dependent ATP release, the sole Gd(3+) effect of membrane destabilization is not sufficient to induce hemolysis similar to non-CF. This concept could form the basis of a novel method suitable for testing CFTR function in a blood sample.  相似文献   

5.
It is generally assumed that mild pressure of a few atmospheres, such as that applied to blood cells during routine centrifugation, does not affect cell function. The results of the present study refute this notion. To explore the effect of mild pressure on cell function we examined its effect on the susceptibility of red blood cells (RBC) to hemolysis by snake venom phospholipase A2 (PLA2). Rat RBC were subjected to pressure of up to five atmospheres, returned to ambient pressure and interacted with PLA2 to induce hemolysis. The hemolysis was markedly decreased with increasing the pressure applied before induction of hemolysis. Application of such a pressure induces the shedding of a chemical factor, as yet uncharacterized, which facilitates the action of PLA2 on RBC.  相似文献   

6.
The oxidation of rat red blood cells (RBC) by molecular oxygen was performed in an aqueous suspension with an azo compound as a free-radical initiator. The RBC were oxidized at a constant rate by a free-radical chain mechanism, resulting in hemolysis. The extent of hemolysis was proportional to the concentration of free radical. alpha-Tocopherol in RBC membranes suppressed the oxidation and hemolysis to produce an induction period. Tocopherol was constantly consumed during the induction period, and hemolysis developed when tocopherol concentrations fell below a critically low level. Among the membrane lipids, phosphatidylethanolamine, phosphatidylserine, and arachidonic acids were predominantly oxidized in the absence of tocopherol. In the presence of tocopherol, however, such lipid changes were suppressed during a 120-min incubation even when hemolysis started. Membrane proteins as well as lipids were oxidized. The formation of proteins with high molecular weight and concomitant decrease of the low-molecular-weight proteins were observed on gel electrophoresis with the onset of hemolysis. This study clearly showed the damage of RBC membranes caused by oxygen radical attack from outside of the membranes, and suggested that membrane tocopherol even below a critically low level could suppress lipid oxidation but that it could not prevent protein oxidation and hemolysis.  相似文献   

7.
Many aspects of the pathology in beta-hemoglobinopathies (beta-thalassemia and sickle cell anemia) are mediated by oxidative stress. In the present study we tested a novel thiol compound, N-acetylcysteine amide (AD4), the amide form of N-acetyl cysteine (NAC) for its antioxidant effects. Using flow-cytometry, we showed that in vitro treatment of blood cells from beta-thalassemic patients with AD4 elevated the reduced glutathione (GSH) content of red blood cells (RBC), platelets and polymorphonuclear (PMN) leukocytes, and reduced their ROS. These effects resulted in a significant reduced sensitivity of thalassemic RBC to hemolysis and phagocytosis by macrophages. Intra-peritoneal injection of AD4 to beta-thalassemic mice (150 mg/kg) reduced the parameters of oxidative stress (p<0.001). Our results show the superiority of AD4, compared to NAC, in reducing oxidative stress markers in thalassemic cells both in vitro and in vivo.  相似文献   

8.
The anemia in beta-thalassemia major is caused by a combination of hemolysis and ineffective erythropoiesis, with the latter being more important. Studies of the underlying cause of the hemolysis have indicated that oxidant injury to circulating red blood cells (RBCs) was of critical importance, with evidence of oxidant damage to RBC membrane proteins 4.1 and band 3. Therefore, it seemed reasonable that oxidant damage to thalassemic erythroid precursors would cause their accelerated apoptosis and ineffective erythropoiesis. However, direct analysis showed that the apoptotic programs turned on in thalassemics were not those triggered by oxidative damage but were dependent on activation of FAS/FAS-Ligand interaction. Thus, destruction of thalassemic erythroid precursors may involve different mechanisms from those that cause RBC hemolysis.  相似文献   

9.
Mechanism of oxidative damage to fish red blood cells by ozone   总被引:1,自引:0,他引:1  
The present study was conducted to elucidate the adverse effects of ozone exposure on rainbow trout (Oncorhynchus mykiss) red blood cells (RBCs). We evaluated whether hemoglobin (Hb) or Hb-derived free iron could participate in the RBC damage using an in vitro ozone exposure system. Ozone exposure induced hemolysis, formation of methemoglobin, and RBC membrane lipid peroxidation. This RBC damage was not suppressed by the addition of a specific iron chelator (deferoxamine mesilate) to the medium but was suppressed by carbon monoxide (CO) treatment before ozone exposure. Generation of hydrogen peroxide (H2O2) in RBC was observed upon ozone exposure but was significantly suppressed by CO treatment before ozone exposure. Thus the Hb status (i.e., Hb redox condition) and H2O2 generation in RBC should play important roles in mediating RBC damage by ozone exposure. In other words, neither ozone nor its derivative directly attacked from the outside of the cell, but ozone that penetrated through the membrane derived the reactive oxygen species from Hb inside of the cell.  相似文献   

10.
Abstract

The anemia in β-thalassemia major is caused by a combination of hemolysis and ineffective erythropoiesis, with the latter being more important. Studies of the underlying cause of the hemolysis have indicated that oxidant injury to circulating red blood cells (RBCs) was of critical importance, with evidence of oxidant damage to RBC membrane proteins 4.1 and band 3. Therefore, it seemed reasonable that oxidant damage to thalassemic erythroid precursors would cause their accelerated apoptosis and ineffective erythropoiesis. However, direct analysis showed that the apoptotic programs turned on in thalassemics were not those triggered by oxidative damage but were dependent on activation of FAS/FAS-Ligand interaction. Thus, destruction of thalassemic erythroid precursors may involve different mechanisms from those that cause RBC hemolysis.  相似文献   

11.
The binding of the ceruloplasmin (CP) from the healthy donor blood and of ceruloplasmin-like protein (p-CP) isolated from the Wilson patients' blood with erythrocytes (RBC) of healthy donors and with RBC of Wilson's patients (p-RBC) was investigated. It was shown, that the number of CP binding sites both on the RBC and p-RBC was significantly lower than that for p-CP, but Kd value for p-CP binding with both types of erythrocytes was approximately ten times higher than Kd value for CP. The protective action of CP on copper stimulated hemolysis is significantly higher than that of p-CP. The protective action of CP on ferrous ion stimulated hemolysis does not correlate with its ferroxidase activity. Contrariwise, the protective effect of p-CP which has no ferroxidase activity is more powerful than that of CP.  相似文献   

12.
The binding of the ceruloplasmin (CP) from the healthy donor's blood and of ceruloplasmin--like protein (p-CP) isolated from the Wilson disease patient's blood with erythrocytes (RBC) of healthy donors and with RBC of Wilson's patients (p-RBC) was investigated. It was shown, that the CP number of binding sites both on the RBC and p-RBC was significantly lower than that for p-CP, but Kd value for p-CP binding of the both types of erythrocytes was approximately 10 times higher than Kd value for CP. The protective action of CP on copper stimulated hemolysis is almost 3 times higher than that of p-CP. The protective action of CP on ferrous ion stimulated hemolysis doesn't correlate with its ferroxidase activity. On the contrary the protective effect of p-CP which has no ferroxidase activity is more powerful than that of CP.  相似文献   

13.
The purpose of this study was to determine if differences in antioxidant status between the red blood cells (RBCs) of sickle cell anemia (SCA) patients and controls are responsible for the differential responses to oxidative and osmotic stress-induced hemolysis. Susceptibility to hemolysis was examined by incubating oxygenated and deoxygenated RBCs at 37°C with 73 mM 2,2' azobis (2-amidinopropane) HC1 (AAPH), a peroxyl radical generator, for up to 3.5 hours. The ability of RBCs to maintain membrane integrity under osmotic stress was determined over a range of diluted saline-phosphate buffer. Sickled RBCs showed a lesser degree of AAPH-induced hemolysis than control groups and were more resistant to osmotic stress-induced hemolysis. SCA patients had higher levels of RBC vitamin E and RBC lipids, but lower RBC GSH, plasma lipids and plasma carotenes than those of the hospital controls. No significant differences were observed in the levels of retinol, vitamin C, vitamin E, MDA and conjugated dienes in plasma, or the levels of MDA and conjugated dienes in RBCs. The results obtained suggest that the differences in antioxidant status between sickled RBCs and controls do not appear to be responsible for their different susceptibility to oxidative or osmotic stress-induced hemolysis observed.  相似文献   

14.
The present study is designed to test our hypothesis that the ingestion of Uncaria sinensis (US), the main medicinal plant of Choto-san (Diao-teng-san, CS), would protect red blood cell (RBC) membrane from free radical-induced oxidation if polyphenolics in US could be absorbed and circulated in blood. When incubated with RBC suspension, Choto-san extract (CSE) and Uncaria sinensis extract (USE) exhibited strong protection for RBC membrane against hemolysis induced by 2,2-azo-bis (2-amidinopropane) dihydrochloride (AAPH), an azo free-radical initiator. The inhibitory effect was dose-dependent at concentrations of 50 to 1000 microg/mL. Ingestion of 200 mg of USE was associated with a significant decrease in susceptibility of RBC to hemolysis in rats. Furthermore, caffeic acid, an antioxidative hydroxycinnamic acid, was identified in rat plasma after administration of URE.  相似文献   

15.
Red blood cells (RBC) from normal and vitamin E-deficient rats were incubated in a hypertonic solution of reduced glutathione adjusted to pH 8. Methemoglobin formation occurred in intact RBC from both normal and vitamin E-deficient rats. Hemolysis was significantly greater in RBC from vitamin E-deficient rats. Experiments with catalase, superoxide dismutase, and methional showed that H(2)O(2) was the primary extracellular source of oxidant stress. Extracellular superoxide and hydroxyl radical were not involved in oxidant stress. Experiments with dimethyl sulfoxide showed that intracellular hydroxyl radical, generated from H(2)O(2), was the hemolytic agent. Neither methemoglobin formation nor lipid peroxidation involved hydroxyl radical. Indeed, lipid peroxidation and hemolysis in RBC from vitamin E-deficient rats were concurrent rather than consecutive events. Phase contrast microscopy showed that rigid, crenated RBC with a precipitate around the interior periphery formed during glutathione-induced oxidant stress. The precipitate dissolved slowly as the crenated RBC were converted to smooth ghosts. It appeared that protein precipitates involving mixed disulfide bonds were reduced and solubilized when extracellular glutathione penetrated the ruptured cell. Comparisons between normal RBC and vitamin E-deficient RBC suggest that vitamin E has little effect on the inward diffusion of extra-cellular H(2)O(2). Vitamin E apparently interacts with different oxidant species derived from intracellular H(2)O(2) in preventing lipid peroxidation and the sulfhydryl group oxidation leading to hemolysis.  相似文献   

16.
The objective of the present communication is to describe the role played by combinations between diethydithiocarbamate (DDC) and divalent metals in hemolysis of human RBC. RBC which had been treated with DDC (10-50 microM) were moderately hemolyzed (about 50%) upon the addition of subtoxic amounts of Cu2+ (50 microM). However, a much stronger and a faster hemolysis occurred either if mixtures of RBC-DDC were immediately treated either by Co2+ (50 microM) or by a premixture of Cu2+ and Co2+ (Cu:Co) (50 microM). While Fe2+ and Ni2+, at 50 microM, initiated 30-50% hemolysis when combined with DDC (50 microM), on a molar basis, Cd2+ was at least 50 fold more efficient than any of the other metals in the initiation of hemolysis by DDC. On the other hand, neither Mn2+ nor Zn2+, had any hemolysis-initiating effects. Co2+ was the only metal which totally blocked hemolysis if added to DDC prior to the addition of the other metals. Hemolysis by mixtures of DDC + (Cu:Co) was strongly inhibited by anaerobiosis (flushing with nitrogen gas), by the reducing agents glutathione, N-acetyl cysteine, mercaptosuccinate, ascorbate, TEMPO, and alpha-tocopherol, by the PLA2 inhibitorbromophenacylbromide (BrPACBr), by tetracycline as well as by phosphatidyl choline, cholesterol and by trypan blue. However, TEMPO, BrPACBr and PC were the only agents which inhibited hemolysis induced by DDC: Cd2+ complexes. On the other hand, none of the classical scavengers of reactive oxygen species (ROS) employed e.g dimethylthiourea, catalase, histidine, mannitol, sodium benzoate, nor the metal chelators desferal and phenanthroline, had any appreciable inhibitory effects on hemolysis induced by DDC + (Cu:Co). DDC oxidized by H2O2 lost its capacity to act in concert either with Cu2+ or with Cd2+ to hemolyze RBC. While either heating RBC to temperatures greater than 37 degrees C or exposure of the cells to glucose-oxidase-generated peroxide diminished their susceptibility to hemolysis, exposure to the peroxyl radical from AAPH, enhanced hemolysis by DDC + (Cu:Co). The cyclovoltammetry patterns of DDC were drastically changed either by Cu2+, Co2+ or by Cd2+ suggesting a strong interaction of the metals with DDC. Also, while the absorbance spectrum of DDC at 280 nm was decreased by 50% either by Co2+, Cd2+ or by H2O2, a 90% reduction in absorbance occurred if DDC + H2O2 mixtures were treated either by Cu2+ or by Co2+, but not by Cd2+. Taken together, it is suggested that DDC-metal chelates can induce hemolysis by affecting the stability and the integrity of the RBC membrane, and possibly also of the cytoskeleton and the role played by reducing agents as inhibitors might be related to their ability to deplete oxygen which is also supported by the inhibitory effects of anaeobiosis.  相似文献   

17.
《Free radical research》2013,47(5):291-298
An excess of copper is the cause of hemolysis in a number of clinical conditions. Incubation of human erythrocyte (RBC) suspensions with copper (II) causes the formation of methemoglobin, lipid peroxidation and hemolysis.

A new variant of the thiobarbituric acid (TBA) method, which minimizes the formation of interfering chromophores, was used to detect lipid peroxidation. Lipid peroxidation precedes hemolysis and the antioxidant vitamins C and E, which inhibit lipid peroxidation, also inhibit hemolysis. Consequently lipid peroxidation appears to be the cause of RBC destruction. Lipid peroxidation arises mostly from the oxidation of oxyhemoglobin by copper as it is inhibited in RBCs with carbon monoxyhemoglobin or methemoglobin. A direct interaction of copper with the red cell membrane seems to play only a minor role. Copper effects depend on the presence of free SH groups. Lipid peroxidation is probably initiated by activated forms of oxygen as it is increased by an inhibitor of catalase and reduced by hydroxyl radical scavengers. With higher copper concentrations hemolysis is greater: its mechanism appears different as lipid peroxidation is smaller but hemoglobin alterations, namely precipitation, are more pronounced.  相似文献   

18.
E Hovav  D Halle  S Yedgar 《Biorheology》1987,24(4):377-384
The effect of medium viscosity on lysis of red blood cells (RBC) induced by snake venom phospholipase A2 (PLA2) was examined. The medium viscosity was modified by the addition of various macromolecules which differ in their chemical nature and in their capacity to increase fluid viscosity. PLA2 and Ca++ were applied to cells suspended in viscous medium to induce hemolysis. It was found that the hemolysis is inhibited in direct proportion to increasing viscosity of the extracellular fluid. This phenomenon was observed with aggregated as well as disaggregated RBC. To examine whether the viscosity interferes with the accessibility of the enzyme to the cell, the medium viscosity was modified after binding of the enzyme to the cells; PLA2 was added to a RBC suspension in the presence of Ba++ which binds the enzyme to the cell membrane but does not activate it. The cell-enzyme complex was separated by gel filtration and suspended in viscous medium in the presence of Ca++ which activates the reaction. Also in this case RBC lysis was inhibited as the medium viscosity was increased. It is proposed that the action of PLA2 on RBC membrane is regulated by the viscosity of the cell surface aqueous environment.  相似文献   

19.
An excess of copper is the cause of hemolysis in a number of clinical conditions. Incubation of human erythrocyte (RBC) suspensions with copper (II) causes the formation of methemoglobin, lipid peroxidation and hemolysis.

A new variant of the thiobarbituric acid (TBA) method, which minimizes the formation of interfering chromophores, was used to detect lipid peroxidation. Lipid peroxidation precedes hemolysis and the antioxidant vitamins C and E, which inhibit lipid peroxidation, also inhibit hemolysis. Consequently lipid peroxidation appears to be the cause of RBC destruction. Lipid peroxidation arises mostly from the oxidation of oxyhemoglobin by copper as it is inhibited in RBCs with carbon monoxyhemoglobin or methemoglobin. A direct interaction of copper with the red cell membrane seems to play only a minor role. Copper effects depend on the presence of free SH groups. Lipid peroxidation is probably initiated by activated forms of oxygen as it is increased by an inhibitor of catalase and reduced by hydroxyl radical scavengers. With higher copper concentrations hemolysis is greater: its mechanism appears different as lipid peroxidation is smaller but hemoglobin alterations, namely precipitation, are more pronounced.  相似文献   

20.
The hemolysis of red blood cells (RBC) induced by Cu(II) is modified by ceruloplasmin (Cp) and albumin. The time course of hemolysis for rabbit RBC by Cu(II) consisted of two parts, an induction period followed by a catastrophic lysis period. The induction period decreased and the lysis rate increased with increasing Cu(II) concentration. Cp or albumin, modified Cu(II) induced hemolysis, by increasing the duration of the induction period and decreasing the overall rate of hemolysis of RBC. The catastrophic lysis period coincided with a sharp increase in the formation of metHb within the cell and in a rapid uptake of Cu(II). The presence of Cp led to an increase in the induction period prior to the rapid increase in metHb formation and in Cu(II) uptake. Porcine Cp was prepared with either two or three nonprosthetic copper binding sites (sites where Cu(II) is easily removed by passing over Chelex-100). Cp with three nonprosthetic binding sites gave more protection than Cp with two. Likewise, albumin can be prepared with three and five nonprosthetic copper binding sites. The albumin with five sites gave more protection than the albumin with three sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号