首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
2.
A comparative study of the effect of hydrogen peroxide on adult and neonatal red blood cell (RBC) membrane protein composition has been carried out. The results indicate that (a) the native neonatal RBC membranes contain higher levels of membrane-bound hemoglobin (MBHb) than the adult RBC membranes. (b) The content of MBHb increases when RBCs are incubated with increasing concentrations of hydrogen peroxide (H2O2), more so in neonatal than in adult RBCs; however, neonatal RBC membrane proteins are less susceptible to H2O2 oxidation than adult ones. This could be attributed to the fact that Hb F, which is more susceptible to oxidation than Hb A, adds to the reduction potential of neonatal RBC (in which it is present in large amounts) and partially protects neonatal membrane proteins against oxidant stress compared to Hb A in adult RBC. (c) In both neonatal and adult RBCs, Spectrin 1 is relatively more susceptible to oxidant stress than spectrin 2, and spectrins in adult RBC are more labile for peroxidation than the spectrins in neonatal RBC. (d) Based on electrophoretic studies with and without reduction of membranes with mercaptoethanol, we have classified two types of MBHb: Type I is adsorbed to membrane by noncovalent interactions and Type II MBHb is chemically crosslinked to membrane components by disulfide bridges; the content of both these types increases when RBCs are incubated with increasing concentrations of H2O2. (e) Band 6 protein is present in higher amounts in neonatal than in adult RBC membranes. (f) Since the total content of MBHb increases linearly with the level of oxidant stress, we suggest that it could be used as a marker for oxygen radical-induced injury to tissues.  相似文献   

3.
The effect of ozone exposure on the activities of reactive oxygen scavenging enzymes (SOD†, catalase, GSH-Px) in RBC of Japanese charr (Salvelinus leucomaenis) was examined. Ozone (0, 0.4 and 0.7 ppm as initial concentrations) was exposed to Japanese charr for 30 min, which definitely caused serious membrane damage to RBC of fish. Ozone exposure at 0.4 and 0.7 ppm decreased activities of both catalase and GSH-Px by 80 to 57+ of the control. On the other hand, the activities of SOD remained unaffected even by 0.7 ppm ozone exposure. A hypothesis on the RBC membrane damage and participation of SOD and heme-iron was proposed.  相似文献   

4.
We encapsulated a purified and concentrated hemoglobin (Hb) solution with a phospholipid bilayer membrane to form Hb vesicles (particle diameter, ca. 250 nm) for the development of artificial oxygen carriers. Reaction of Hb inside the vesicle with hydrogen peroxide (H(2)O(2)) is one of the important safety issues to be clarified and compared with a free Hb solution. During the reaction of the Hb solution with H(2)O(2), metHb (Fe(III)) and ferrylHb (Fe(IV)=O) are produced, and H(2)O(2) is decomposed by the catalase-like reaction of Hb. The aggregation of discolored Hb products due to heme degradation is accompanied by the release of iron (ferric ion). On the other hand, the concentrated Hb within the Hb vesicle reacts with H(2)O(2) that permeated through the bilayer membrane, and the same products as the Hb solution are formed inside the vesicle. However, there is no turbidity change, no particle diameter change of the Hb vesicles, and no peroxidation of lipids comprising the vesicles after the reaction with H(2)O(2). Furthermore, no free iron is detected outside the vesicle, though ferric ion is released from the denatured Hb inside the vesicle, indicating the barrier effect of the bilayer membrane against the permeation of ferric ion. When vesicles composed of egg york lecithin (EYL) as unsaturated lipids are added to the mixture of Hb and H(2)O(2), the lipid peroxidation is caused by ferrylHb and hydroxyl radical generated from reaction of the ferric iron with H(2)O(2), whereas no lipid peroxidation is observed in the case of the Hb vesicle dispersion because the saturated lipid membrane of the Hb vesicle should prevent the interaction of the ferrylHb or ferric iron with the EYL.  相似文献   

5.
《Free radical research》2013,47(5):327-333
The effect of ozone exposure on the activities of reactive oxygen scavenging enzymes (SOD?, catalase, GSH-Px) in RBC of Japanese charr (Salvelinus leucomaenis) was examined. Ozone (0, 0.4 and 0.7 ppm as initial concentrations) was exposed to Japanese charr for 30 min, which definitely caused serious membrane damage to RBC of fish. Ozone exposure at 0.4 and 0.7 ppm decreased activities of both catalase and GSH-Px by 80 to 57+ of the control. On the other hand, the activities of SOD remained unaffected even by 0.7 ppm ozone exposure. A hypothesis on the RBC membrane damage and participation of SOD and heme-iron was proposed.  相似文献   

6.
The PO(2)-dependent binding of chloride to Hb decreases the Cl(-) concentration of the red blood cell (RBC) intracellular fluid in venous blood to approximately 1-3 mmol/l less than that in arterial blood. This change is physiologically important because 1) Cl(-) is a negative heterotropic allosteric effector of Hb that competes for binding sites with 2,3-bisphosphoglycerate and CO(2) and decreases oxyhemoglobin affinity in several species; 2) it may help reconcile several longstanding problems with measured values of the Donnan ratios for Cl(-), HCO, and H(+) across the RBC membrane that are used to calculate total CO(2) carriage, ion flux rates, and membrane potentials; 3) it is a factor in the change in the dissociation constant for the combined nonvolatile weak acids of Hb associated with the Haldane effect; and 4) it diminishes the decrease in strong ion difference in the RBC intracellular fluid that would otherwise occur from the chloride shift and prevent the known increase of HCO concentration in that compartment.  相似文献   

7.
The role of endosomal/lysosomal redox-active iron in H2O2-induced nuclear DNA damage as well as in cell proliferation was examined using the iron chelator desferrioxamine (DFO). Transient transfections of HeLa cells with vectors encoding dominant proteins involved in the regulation of various routes of endocytosis (dynamin and Rab5) were used to show that DFO (a potent and rather specific iron chelator) enters cells by fluid-phase endocytosis and exerts its effects by chelating redox-active iron present in the endosomal/lysosomal compartment. Endocytosed DFO effectively protected cells against H2O2-induced DNA damage, indicating the importance of endosomal/lysosomal redox-active iron in these processes. Moreover, exposure of cells to DFO in a range of concentrations (0.1 to 100 microM) inhibited cell proliferation in a fluid-phase endocytosis-dependent manner. Flow cytometric analysis of cells exposed to 100 microM DFO for 24 h showed that the cell cycle was transiently interrupted at the G2/M phase, while treatment for 48 h led to permanent cell arrest. Collectively, the above results clearly indicate that DFO has to be endocytosed by the fluid-phase pathway to protect cells against H2O2-induced DNA damage. Moreover, chelation of iron in the endosomal/lysosomal cell compartment leads to cell cycle interruption, indicating that all cellular labile iron is propagated through this compartment before its anabolic use is possible.  相似文献   

8.
BACKGROUND: The oxidative status of cells has been shown to modulate various cell functions and be involved in physiological and pathological conditions, including hereditary chronic anemias, such as thalassemia. It is maintained by the balance between oxidants, such as reactive oxygen species (ROS), and antioxidants, such as reduced glutathione (GSH). METHODS: We studied peripheral RBC derived from normal and thalassemic donors. Flow cytometric methods were used to measure (1) generation of ROS; (2) the content of reduced GSH; and (3) peroxidation of membrane lipids as an indication of membrane damage. RESULTS: ROS and lipid peroxidation were found to be higher, and GSH lower, in thalassemic RBC compared with normal RBC, both at baseline as well as following oxidative stress, such as exposure to hydrogen peroxide. To simulate a state of iron overload, normal RBC were exposed to extracellular ferric ammonium citrate or hemin, or their Hb was denatured by phenylhydrazine. All these treatments increased ROS and lipid peroxidation and decreased GSH. These effects were reversed by N-acetyl cysteine, a known ROS scavenger. CONCLUSIONS: Flow cytometry can be useful for measuring oxidative stress and its effects on RBC in various diseases and for studying various chemical agents as antioxidants.  相似文献   

9.
Here the regulatory role of CO during stomatal movement In Vicla faba L. was surveyed. Results Indicated that, like hydrogen peroxide (H2O2), CO donor Hematin induced stomatal closure in dose- and time-dependent manners. These responses were also proven by the addition of gaseous CO aqueous solution with different concentrations, showing the first time that CO and H2O2 exhibit the similar regulation role in the atomatal movement. Moreover, our data showed that ascorbic acid (ASA, an important reducing substrate for H2O2 removal) and diphenylene iodonium (DPI, an inhibitor of the H2O2-generating enzyme NADPH oxidase) not only reversed stomatal closure by CO, but also suppressed the H2O2 fluorescence induced by CO, implying that CO induced-atomatal closure probably involves H2O2 signal. Additionally, the CO/NO scavenger hemoglobin (Hb) and CO specific synthetic inhibitor ZnPPIX, ASA and DPI reversed the darkness-induced stomatal closure and H2O2 fluorescence. These results show that, perhaps like H2O2, the levels of CO in guard cells of V. faba are higher In the dark than in light, HO-1 and NADPH oxidase are the enzyme systems responsible for generating endogenous CO and H2O2 in darkness respectively, and that CO is involved in darkness-induced H2O2 synthesis in V. faba guard cells.  相似文献   

10.
Reactive oxygen species (ROS) have emerged as important signaling molecules in the regulation of various cellular processes. In our study, we investigated the effect of a wide range of ROS on Chinese hamster lung fibroblast (V79) cell proliferation. Treatment with H2O2 (100 microM), superoxide anion (generated by 1 mM xanthine and 1 mU/ml xanthine oxidase), menadione, and phenazine methosulfate increased the cell proliferation by approximately 50%. Moreover, a similar result was observed after partial inhibition of superoxide dismutase (SOD) and glutathione peroxidase. This upregulation of cell proliferation was suppressed by pretreatment with hydroxyl radical scavengers and iron chelating agents. In addition to ROS, treatment with exogenous catalase and SOD mimic (MnTMPyP) suppressed the normal cell proliferation. Short-term exposure of the cells to 100 microM H2O2 was sufficient to induce proliferation, which indicated that activation of the signaling pathway is important as an early event. Accordingly, we assessed the ability of H2O2 to activate mitogen-activated protein kinases (MAPK). Jun-N-terminal kinase (JNK) and p38 MAPK were both rapidly and transiently activated by 100 microM H2O2, with maximal activation 30 min after treatment. However, the activity of extracellular signal-regulated kinase (ERK) was not changed. Pretreatment with SB203580 and SB202190, specific inhibitors of p38 MAPK, reduced the cell proliferation induced by H2O2. The activation of both JNK and p38 MAPK was also suppressed by pretreatment with hydroxyl radical scavenger and iron chelating agents. Our results suggest that the trace metal-driven Fenton reaction is a central mechanism that underlies cell proliferation and MAPK activation.  相似文献   

11.
Rothfuss A  Speit G 《Mutation research》2002,508(1-2):157-165
Hyperbaric oxygen (HBO) treatment of cell cultures is a well suited model for studying genetic and cellular consequences of oxidative stress. We have previously shown that exposure of isolated human lymphocytes to HBO induces DNA damage and leads to the development of an adaptive response which protects lymphocytes from oxidative DNA damage induced by a repeated HBO exposure or by treatment with H(2)O(2). Our earlier studies also provided evidence for a functional involvement of the inducible enzyme heme oxygenase-1 (HO-1) in this adaptive protection. In contrast, V79 Chinese hamster cells did neither show a comparable adaptive protection nor an induction of HO-1 after HBO exposure. We now investigated possible mechanism(s) by which HO-1 contributes to an enhanced resistance of lymphocytes against oxidative stress. HO-1 catalyzes the rate-limiting step in heme degradation to form carbon monoxide (CO), biliverdin and free iron. We can now show that supplementation with exogenous CO does not protect V79 cells from HBO-induced oxidative DNA damage suggesting that increased generation of CO cannot account for the observed adaptive protection. On the other hand, HBO-exposed lymphocytes showed a small but reproducible increase in cellular ferritin levels, which might indicate that the underlying protective mechanism is based on an induction of ferritin, which may act antioxidatively by preventing the generation of the DNA-damaging hydroxyl radical via Fenton reaction. Our results further show that isolated lymphocytes also induce HO-1 and develop an adaptive protection when the first HBO exposure does not induce DNA damage, indicating that DNA damage is not the trigger for the development of the adaptive protection.  相似文献   

12.
The primary clinical symptom of Japanese bovine theileriosis, caused by the intraerythrocytic protozoan Theileria sergenti, is anemia, but the underlying mechanism of this anemia remains unknown. To elucidate the pathogenesis of anemia developing in bovine theileriosis, we investigated the relationship between oxidative bursts of peripheral blood phagocytes (neutrophils and monocytes) and the oxidation of red blood cells (RBC) to the development of anemia in cattle experimentally infected with T. sergenti. The levels of methemoglobin (MetHb) and malondialdehyde (MDA), as a parameter of intracellular and membrane oxidative damage in RBC and of production of hydrogen peroxide (H2O2) in phagocytes, were low before the onset of anemia; these parameters began to increase remarkably with decreasing packed cell volume and increasing parasitemia during the course of the anemia, which returned to initial levels during convalescence from anemia. A positive correlation between H2O2 production of phagocytes and each of the oxidative indices of MetHb and MDA was also noted during the onset of anemia. The levels of antioxidants, namely reduced glutathione and glucose-6-phosphate dehydrogenase, in RBC also decreased during the progression of anemia. These results suggest that oxidative damage of RBC has a close relationship with the onset of anemia in bovine theileriosis, and that oxidative bursts of phagocytes may play a part in the pathogenesis of anemia in infected cattle.  相似文献   

13.
Previous studies showed that CO/H2O oxidation provides electrons to drive the reduction of oxidized hemoglobin (metHb). We report here that Cu(II) addition accelerates the rate of metHb beta chain reduction by CO by a factor of about 1000. A mechanism whereby electron transfer occurs via an internal pathway coupling CO/H2O oxidation to Fe(III) and Cu(II) reduction is suggested by the observation that the copper-induced rate enhancement is inhibited by blocking Cys-beta93 with N-ethylmaleimide. Furthermore, this internal electron-transfer pathway is more readily established at low Cu(II) concentrations in Hb Deer Lodge (beta2His --> Arg) and other species lacking His-beta2 than in Hb A0. This difference is consistent with preferential binding of Cu(II) in Hb A0 to a high affinity site involving His-beta2, which is ineffective in promoting electron exchange between Cu(II) and the beta heme iron. Effective electron transfer is thus affected by Hb type but is not governed by the R left arrow over right arrow T conformational equilibrium. The beta hemes in Cu(II)-metHb are reduced under CO at rates close to those observed for cytochrome c oxidase, where heme and copper are present together in the oxygen-binding site and where internal electron transfer also occurs.  相似文献   

14.
The role of intracellular iron, copper, and calcium in hydrogen peroxide-induced DNA damage was investigated using cultured Jurkat cells. The cells were exposed to low rates of continuously generated hydrogen peroxide by the glucose/glucose oxidase system, and the formation of single strand breaks in cellular DNA was evaluated by the sensitive method, single cell gel electrophoresis or "comet" assay. Pre-incubation with the specific ferric ion chelator desferrioxamine (0.1-5.0 mM) inhibited DNA damage in a time- and dose-dependent manner. On the other hand, diethylenetriaminepentaacetic acid (DTPA), a membrane impermeable iron chelator, was ineffective. The lipophilic ferrous ion chelator 1,10-phenanthroline also protected against DNA damage, while its nonchelating isomer 1,7-phenanthroline provided no protection. None of the above iron chelators produced DNA damage by themselves. In contrast, the specific cuprous ion chelator neocuproine (2,9-dimethyl-1,10-phenanthroline), as well as other copper-chelating agents, did not protect against H(2)O(2)-induced cellular DNA damage. In fact, membrane permeable copper-chelating agents induced DNA damage in the absence of H(2)O(2). These results indicate that, under normal conditions, intracellular redox-active iron, but not copper, participates in H(2)O(2)-induced single strand break formation in cellular DNA. Since BAPTA/AM (1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid acetoxymethyl ester), an intracellular Ca(2+)-chelator, also protected against H(2)O(2)-induced DNA damage, it is likely that intracellular Ca(2+) changes are involved in this process as well. The exact role of Ca(2+) and its relation to intracellular transition metal ions, in particular iron, needs to be further investigated.  相似文献   

15.
Dietary iron may contribute to colon cancer risk via production of reactive oxygen species (ROS). The aim of the study was to determine whether physiological ferric/ferrous iron induces oxidative DNA damage in human colon cells. Therefore, differentiated human colon tumour cells (HT29 clone 19A) were incubated with ferric-nitrilotriacetate (Fe-NTA) or with haemoglobin and DNA breaks and oxidised bases were determined by microgelelectrophoresis. The effects of Fe-NTA were measured with additional H(2)O(2) (75microM) and quercetin (25-100microM) treatment. Analytic detection of iron in cell cultures, treated with 250microM Fe-NTA for 15 min to 24h, showed that 48.02+/-5.14 to 68.31+/-2.11% were rapidly absorbed and then detectable in the cellular fraction. Fe-NTA (250-1000microM) induced DNA breaks and oxidised bases, which were enhanced by subsequent H(2)O(2) exposure. Simultaneous incubation of HT29 clone 19A cells with Fe-NTA and H(2)O(2) for 15 min, 37 degrees C did not change the effect of H(2)O(2) alone. The impact of Fe-NTA and H(2)O(2)-induced oxidative damage is reduced by the antioxidant quercetin (75-67% of H(2)O(2)-control). Haemoglobin was as effective as Fe-NTA in inducing DNA damage. From these results we can conclude that iron is taken up by human colon cells and participates in the induction of oxidative DNA damage. Thus, iron or its capacity to catalyse ROS-formation, is an important colon cancer risk factor. Inhibition of damage by quercetin reflects the potential of antioxidative compounds to influence this risk factor. Quantitative data on the genotoxic impact of ferrous iron (e.g. from red meat) relative to the concentrations of antioxidants (from plant foods) in the gut are now needed to determine the optimal balance of food intake that will reduce exposure to this type of colon cancer risk factor.  相似文献   

16.
This study examined the impact of season-long exposure to elevated carbon dioxide (CO2) and ozone (O3), individually and in combination, on leaf chlorophyll content and gas exchange characteristics in potato (Solanum tuberosum L. cv. Bintje). Plants grown in open-top chambers were exposed to three CO2 (ambient, 550 and 680 μmol mol-1) and two O3 treatments (ambient and elevated; 25 and 65 nmol mol-1, 8 h day-1 means, respectively) between crop emergence and maturity; plants were also grown in unchambered field plots. Non-destructive measurements of chlorophyll content and visible foliar injury were made for all treatments at 2-week intervals between 43 and 95 days after emergence. Gas exchange measurements were made for all except the intermediate 550 μmol mol-1 CO2 treatment. Season-long exposure to elevated O3 under ambient CO2 reduced chlorophyll content and induced extensive visible foliar damage, but had little effect on net assimilation rate or stomatal conductance. Elevated CO2 had no significant effect on chlorophyll content, but greatly reduced the damaging impact of O3 on chlorophyll content and visible foliar damage. Light-saturated assimilation rates for leaves grown under elevated CO2 were consistently lower when measured under either elevated or ambient CO2 than in equivalent leaves grown under ambient CO2. Analysis of CO2 response curves revealed that CO2-saturated assimilation rate, maximum rates of carboxylation and electron transport and respiration decreased with time. CO2-saturated assimilation rate was reduced by elevated O3 during the early stages of the season, while respiration was significantly greater under elevated CO2 as the crop approached maturity. The physiological origins of these responses and their implications for the performance of potato in a changing climate are discussed.  相似文献   

17.
Patients with increased haemolytic haemoglobin (Hb) have 10-20-times greater incidence of cardiovascular mortality. The objective of this study was to evaluate the role of Hb peroxidase activity in LDL oxidation. The role of Hb in lipid peroxidation, H(2)O(2) generation and intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) was assessed using NaN(3), a peroxidase inhibitor, catalase, a H(2)O(2) decomposing enzyme and human umbilical vein endothelial cells (HUVECs), respectively. Hb induced H(2)O(2) production by reacting with LDL, linoleate and cell membrane lipid extracts. Hb-induced LDL oxidation was inhibited by NaN(3) and catalase. Furthermore, Hb stimulated ICAM-1 and VCAM-1 expression, which was inhibited by the antioxidant, probucol. Thus, the present study suggests that the peroxidase activity of Hb produces atherogenic, oxidized LDL and oxidized polyunsaturated fatty acids (PUFAs) in the cell membrane and reactive oxygen species (ROS) formation mediated Hb-induced ICAM-1 and VCAM-1 expression.  相似文献   

18.
The genotoxic effect of ozone was studied in human leukocytes in vitro, using the single cell gel electrophoresis (SCGE) assay. Cell treatment for 1 h at 37 degrees C with 0.9-5.3 mM O(3) resulted in a dose-dependent increase of DNA damage, comparable to that induced by 4-40 mM of H(2)O(2), used as a positive control. This effect of ozone was reversed by post-treatment incubation of the cells for 45-90 min at 37 degrees C, and prevented by pre-incubation of the cells with catalase (20 microg/ml). These results demonstrate that O(3) induces DNA-damage in primary human leukocytes. The damage is rapidly repaired, and probably mediated by the formation of H(2)O(2).  相似文献   

19.
Acellular hemoglobin (Hb)-based O2 carriers (HBOCs) are being investigated as red blood cell (RBC) substitutes for use in transfusion medicine. However, commercial acellular HBOCs elicit both vasoconstriction and systemic hypertension which hampers their clinical use. In this study, it is hypothesized that encapsulation of Hb inside the aqueous core of liposomes should regulate the rates of NO dioxygenation and O2 release, which should in turn regulate its vasoactivity. To test this hypothesis, poly(ethylene glycol) (PEG) conjugated liposome-encapsulated Hb (PEG-LEHs) dispersions were prepared using human and bovine Hb. In this study, the rate constants for O2 dissociation, CO association, and NO dioxygenation were measured for free Hb and PEG-LEH dispersions using stopped-flow UV-visible spectroscopy, while vasoactivity was assessed in rat aortic ring strips using both endogenous and exogenous sources of NO. It was observed that PEG-LEH dispersions had lower O2 release and NO dioxygenation rate constants compared with acellular Hbs. However, no difference was observed in the CO association rate constants between free Hb and PEG-LEH dispersions. Furthermore, it was observed that Hb encapsulation inside vesicles prevented Hb dependent inhibition of NO-mediated vasodilation. In addition, the magnitude of the vasoconstrictive effects of Hb and PEG-LEH dispersions correlated with their respective rates of NO dioxygenation and O2 release. Overall, this study emphasizes the pivotal role Hb encapsulation plays in regulating gaseous ligand binding/release kinetics and the vasoactivity of Hb.  相似文献   

20.
Many plants invest carbon to form isoprene. The role of isoprene in plants is unclear, but many experiments showed that isoprene may have a role in protecting plants from thermal damage. A more general antioxidant action has been recently hypothesized on the basis of the protection offered by exogenous isoprene in nonemitting plants exposed to acute ozone doses. We inhibited the synthesis of endogenous isoprene by feeding fosmidomycin and observed that Phragmites australis leaves became more sensitive to ozone than those leaves forming isoprene. Photosynthesis, stomatal conductance, and fluorescence parameters were significantly affected by ozone only in leaves on which isoprene was not formed. The protective effect of isoprene was more evident when the leaves were exposed for a long time (8 h) to relatively low (100 nL L(-1)) ozone levels than when the exposure was short and acute (3 h at 300 nL L(-1)). Isoprene quenched the amount of H(2)O(2) formed in leaves and reduced lipid peroxidation of cellular membranes caused by ozone. These results indicate that isoprene may exert its protective action at the membrane level, although a similar effect could be obtained if isoprene reacted with ozone before forming active oxygen species. Irrespective of the mechanism, our results suggest that endogenous isoprene has an important antioxidant role in plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号