首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
7.
Chang J  Taylor JM 《Journal of virology》2003,77(17):9728-9731
In animal cells, small interfering RNAs (siRNA), when exogenously provided, have been reported to be capable of inhibiting replication of several different viruses. In preliminary studies, siRNA species were designed and tested for their ability to act on the protein expressed in Huh7 cells transfected with DNA-directed mRNA constructs containing hepatitis delta virus (HDV) target sequences. The aim was to achieve siRNA specific for each of the three RNAs of HDV replication: (i) the 1,679-nucleotide circular RNA genome, (ii) its exact complement, the antigenome, and (iii) the less abundant polyadenylated mRNA for the small delta protein. Many of the 16 siRNA tested gave >80% inhibition in this assay. Next, these three classes of siRNA were tested for their ability to act during HDV genome replication. It was found that only siRNA targeted against HDV mRNA sequences could interfere with HDV genome replication. In contrast, siRNA targeted against genomic and antigenomic RNA sequences had no detectable effect on the accumulation of these RNAs. Reconstruction experiments with nonreplicating HDV RNA sequences support the interpretation that neither the potential for intramolecular rod-like RNA folding nor the presence of the delta protein conferred resistance to siRNA. In terms of replicating HDV RNAs, it is considered more likely that the genomic and antigenomic RNAs are resistant because their location within the nucleus makes them inaccessible to siRNA-mediated degradation.  相似文献   

8.
RNA editing at adenosine 1012 (amber/W site) in the antigenomic RNA of hepatitis delta virus (HDV) allows two essential forms of the viral protein, hepatitis delta antigen (HDAg), to be synthesized from a single open reading frame. Editing at the amber/W site is thought to be catalyzed by one of the cellular enzymes known as adenosine deaminases that act on RNA (ADARs). In vitro, the enzymes ADAR1 and ADAR2 deaminate adenosines within many different sequences of base-paired RNA. Since promiscuous deamination could compromise the viability of HDV, we wondered if additional deamination events occurred within the highly base paired HDV RNA. By sequencing cDNAs derived from HDV RNA from transfected Huh-7 cells, we determined that the RNA was not extensively modified at other adenosines. Approximately 0.16 to 0.32 adenosines were modified per antigenome during 6 to 13 days posttransfection. Interestingly, all observed non-amber/W adenosine modifications, which occurred mostly at positions that are highly conserved among naturally occurring HDV isolates, were found in RNAs that were also modified at the amber/W site. Such coordinate modification likely limits potential deleterious effects of promiscuous editing. Neither viral replication nor HDAg was required for the highly specific editing observed in cells. However, HDAg was found to suppress editing at the amber/W site when expressed at levels similar to those found during HDV replication. These data suggest HDAg may regulate amber/W site editing during virus replication.  相似文献   

9.
10.
Hepatitis delta virus (HDV) contains a viroid-like circular RNA that replicates via a double rolling circle replication mechanism. It is generally assumed that HDV RNA is synthesized and remains exclusively in the nucleus until being exported to the cytoplasm for virion assembly. Using a [32P]orthophosphate metabolic labeling procedure to study HDV RNA replication (T. B. Macnaughton, S. T. Shi, L. E. Modahl, and M. M. C. Lai. J. Virol. 76:3920-3927, 2002), we unexpectedly found that a significant amount of newly synthesized HDV RNA was detected in the cytoplasm. Surprisingly, Northern blot analysis revealed that the genomic-sense HDV RNA is present almost equally in both the nucleus and cytoplasm, whereas antigenomic HDV RNA was mostly retained in the nucleus, suggesting the specific and highly selective export of genomic HDV RNA. Kinetic studies showed that genomic HDV RNA was exported soon after synthesis. However, only the monomer and, to a lesser extent, the dimer HDV RNAs were exported to the cytoplasm; very little higher-molecular-weight HDV RNA species were detected in the cytoplasm. These results suggest that the cleavage and processing of HDV RNA may facilitate RNA export. The export of genomic HDV RNA was resistant to leptomycin B, indicating that a cell region maintenance 1 (Crm1)-independent pathway was involved. The large form of hepatitis delta antigen (L-HDAg), which is responsible for virus packaging, was not required for RNA export, as a mutant HDV RNA genome unable to synthesize L-HDAg was still exported. The proportions of genomic HDV RNA in the nucleus and cytoplasm remained relatively constant throughout replication, indicating that export of genomic HDV RNA occurred continuously. In contrast, while antigenomic HDV RNA was predominantly in the nucleus, there was a proportionally large fraction of antigenomic HDV RNA in the cytoplasm at early time points of RNA replication. These findings uncover a previously unrecognized presence of HDV RNA in the cytoplasm, which may have implications for viral RNA synthesis and packaging.  相似文献   

11.
12.
M Chao  S Y Hsieh    J Taylor 《Journal of virology》1991,65(8):4057-4062
The only known protein of hepatitis delta virus (HDV), the delta antigen, is found both within virus particles and within the nucleus of the infected cell, where it has one or more roles essential for RNA genome replication. Others have demonstrated that the antigen has the ability, in vitro, to specifically bind HDV RNA species. We report a further examination of this phenomenon, using partially purified recombinant protein, expressed as a fusion with the staphylococcal protein A. From Northwestern (RNA-immunoblot) analyses with both complete and various subdomains of HDV genomic and antigenomic RNAs, we found that a necessary feature for specific binding was that the RNA be able to fold to some extent into the so-called rodlike structure; this structure is a predicted intramolecular partial base-pairing of the circular RNA, with about 70% of all bases involved, so as to produce an unbranched rodlike structure. Six different subregions of the HDV rodlike structure, three on the genomic RNA and three on its complement, the antigenomic RNA, were tested and found to be sufficient for antigen binding. However, features in addition to the rodlike structure may also be necessary for specific binding, because we found that a similar structure present in the RNA of the potato spindle tuber viroid did not allow binding.  相似文献   

13.
14.
Editing on the genomic RNA of human hepatitis delta virus.   总被引:5,自引:2,他引:3       下载免费PDF全文
H Zheng  T B Fu  D Lazinski    J Taylor 《Journal of virology》1992,66(8):4693-4697
It has been shown previously that during replication of the genome of human hepatitis delta virus (HDV), a specific nucleotide change occurs to eliminate the termination codon for the small delta antigen (G. Luo, M. Chao, S.-Y. Hsieh, C. Sureau, K. Nishikura, and J. Taylor, J. Virol. 64:1021-1027, 1990). This change creates an extension in the length of the open reading frame for the delta antigen from 195 to 214 amino acids. These two proteins, the small and large delta antigens, have important and distinct roles in the life cycle of HDV. To further investigate the mechanism of this specific nucleotide alteration, we developed a sensitive assay involving the polymerase chain reaction to monitor changes on HDV RNA sequences as they occurred in transfected cells. We found that the substrate for the sequence change was the viral genomic RNA rather than the antigenomic RNA. This sequence change occurred independently of genome replication or the presence of the delta antigen. Less than full-length genomic RNA could act as a substrate, but only if it also contained a corresponding RNA sequences from the other side of the rodlike structure, which is characteristic of HDV. We were also able to reproduce the HDV base change in vitro, by addition of purified viral RNA to nuclear extracts of cells from a variety of species.  相似文献   

15.
We obtained two lines of evidence that monolayer cultures of primary woodchuck hepatocytes support replication of the genome of human hepatitis delta virus (HDV). (i) From a Northern (RNA blot) analysis of the HDV-related RNA in infected cultures, both genomic and antigenomic 1.7-kilobase RNA species were detected at 11 days after infection. The ratio of genomic RNA to antigenomic RNA was 2:1 to 10:1, comparable to that previously reported in studies of experimentally infected chimpanzees and woodchucks. (ii) Replication in culture was also demonstrated by in situ hybridization with a strand-specific probe. Such studies showed that only a small fraction of the cultured cells supported replication and that in such cells the relative and absolute levels of the HDV RNAs were comparable to those in liver cells infected in vivo. Furthermore, as with the in vivo studies, the HDV RNAs were predominantly localized to the nucleus. In summary, we demonstrated that cultured cells supported both the early events of HDV adsorption and penetration and the intermediate events of genome replication.  相似文献   

16.
The hepatitis delta virus (HDV) genome is a circular, single-stranded, rod-shaped, 1.7-kb RNA that replicates via a rolling-circle mechanism. Viral ribozymes function to cleave replication intermediates which are then ligated to generate the circular product. HDV expresses two forms of a single protein, the small and large delta antigens (delta Ag-S and delta Ag-L), which associate with viral RNA in a ribonucleoprotein (RNP) structure. While delta Ag-S is required for RNA replication, delta Ag-L inhibits this process but promotes the assembly of the RNP into mature virions. In this study, we have expressed full-length and deleted HDV RNA inside cells to determine the minimal RNA sequences required for self-cleavage, ligation, RNP packaging, and virion assembly and to assess the role of either delta antigen in each of these processes. We report the following findings. (i) The cleavage and ligation reactions did not require either delta antigen and were not inhibited in their presence. (ii) delta Ag-L, in the absence of delta Ag-S, formed an RNP with HDV RNA which could be assembled into secreted virus-like particles. (iii) Full-length HDV RNAs were stabilized in the presence of either delta antigen and accumulated to much higher levels than in their absence. (iv) As few as 348 nucleotides of HDV RNA were competent for circle formation, RNP assembly, and incorporation into virus-like particles. (v) An HDV RNA incapable of folding into the rod-like structure was not packaged by delta Ag-L.  相似文献   

17.
18.
Self-cleaving transcripts of satellite DNA from the newt   总被引:28,自引:0,他引:28  
L M Epstein  J G Gall 《Cell》1987,48(3):535-543
  相似文献   

19.
Human hepatitis delta virus (HDV) RNA has been shown to contain a self-catalyzed cleavage activity. The sequence requirement for its catalytic activity appears to be different from that of other known ribozymes. In this paper, we define the minimum contiguous sequence and secondary structure of the HDV genomic RNA required for the catalytic activity. By using nested-set deletion mutants, we have determined that the essential sequence for the catalytic activity is contained within no more than 85 nucleotides of HDV RNA. These results are in close agreement with the previous determinations and confirmed the relative insignificance of the sequence at the 5' side of the cleavage site. The smallest catalytic RNA, representing HDV genomic RNA nucleotide positions 683 to 770, was used as the basis for studying the secondary structure requirements for catalytic activity. Analysis of the RNA structure, using RNase V1, nuclease S1 and diethylpyrocarbonate treatments showed that this RNA contains at least two stem-and-loop structures. Other larger HDV RNA subfragments containing the catalytic activity also have a very similar secondary structure. By performing site-specific mutagenesis studies, it was shown that one of the stem-and-loop structures could be deleted to half of its original size without affecting the catalytic activity. In addition, the other stem-and-loop contained a six base-pair helix, and the structure, rather than the sequence, of this helix was required for the catalytic activity. However, the structure of a portion of the stem-and-loop remains uncertain. We also report that this RNA can be divided into two separate molecules, which alone did not have cleavage activity but, when mixed, one of the RNAs could be cleaved in trans. This study thus reveals some features of the secondary structure of the HDV genomic RNA involved in self-catalyzed cleavage. A model of this RNA structure is presented.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号