首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Carvedilol, a β-adrenoreceptor antagonist with strong antioxidant activity, produces a high degree of cardioprotection in a variety of experimental models of ischemic cardiac injury. Although growing evidences suggest specific effects on mitochondrial metabolism, how carvedilol would exert its overall activity has not been completely disclosed. In the present work we have investigated the impact of carvedilol-treatment on mitochondrial bioenergetic functions and ROS metabolism in H9C2 cells. This analysis has revealed a dose-dependent decrease in respiratory fluxes by NAD-dependent substrates associated with a consistent decline of mitochondrial complex I activity. These changes were associated with an increase in mitochondrial H2O2 production, total glutathione and protein thiols content. To evaluate the antioxidant activity of carvedilol, the effect of the exposure of control and carvedilol-pretreated H9C2 cells to H2O2 were investigated. The H2O2-mediated oxidative insult resulted in a significant decrease of mitochondrial respiration, glutathione and protein thiol content and in an increased level of GSSG. These changes were prevented by carvedilol-pretreatment. A similar protective effect on mitochondrial respiration could be obtained by pre-treatment of the cells with a sub-saturating amount of rotenone, a complex I inhibitor.We therefore suggest that carvedilol exerts its protective antioxidant action both by a direct antioxidant effect and by a preconditioning-like mechanism, via inhibition of mitochondrial complex I.  相似文献   

2.
3.
Exposure of cells to mild temperatures (40 °C) induces thermotolerance, which renders cells resistant to subsequent toxic insults. Thermotolerance is usually associated with accumulation of heat shock proteins. This study determines whether mild thermotolerance (40 °C, 3 h) can induce other defense proteins (e.g. antioxidants, anti-apoptosis proteins), and protect HeLa cells against apoptosis triggered by H2O2. Protein expression and enzymatic activity of MnSOD and catalase were increased in thermotolerant cells, as well as intracellular glutathione levels and γ-glutamylcysteine synthetase expression. Furthermore, levels of reactive oxygen species (ROS) were increased in thermotolerant cells, which caused mitochondrial membrane hyperpolarisation. Mild thermotolerance inhibited activation of the mitochondrial cascade of apoptosis by H2O2. This entailed inhibition of mitochondrial Bax translocation, mitochondrial membrane depolarisation, cytochrome c release, activation of caspases-9/-3 and chromatin condensation. Thermotolerance inhibited H2O2-induced caspase-independent apoptosis involving apoptosis-inducing factor, and activation of p53 and increased expression of its target protein PUMA. Thermotolerance induced at mild physiological temperatures protects cells against both caspase-dependent and caspase-independent apoptosis triggered by oxidative stress.  相似文献   

4.
Reactive oxygen species (ROS) are important intracellular signaling molecules and are implicated in cardioprotective pathways including ischemic preconditioning. Statins have been shown to have cardioprotective effects against ischemia/reperfusion injury, however, the precise mechanisms remain to be elucidated. We hypothesized that ROS-mediated signaling cascade may be involved in pravastatin-induced cardioprotection. Cultured rat cardiomyocytes were exposed to H2O2 for 30 min to induce cell injury. Pravastatin significantly suppressed H2O2-induced cell death evaluated by propidium iodide staining and the MTT assay. Incubation with pravastatin activated catalase, and prevented a ROS burst induced by H2O2, which preserved mitochondrial membrane potential. Protective effects were induced very rapidly within 10 min, which was concordant with the up-regulation of phosphorylated ERK1/2. L-NAME, 5HD, N-acetylcysteine (NAC) and staurosporine inhibited ERK1/2 phosphorylation and also reduced pravastatin-induced cardioprotection, suggesting NO, mitochondrial KATP (mitoKATP) channels, ROS and PKC should be involved in the cardioprotective signaling. We also demonstrated that pravastatin moderately up-regulated ROS generation in a 5HD-inhibitable manner. In isolated perfused rat heart experiments, pravastatin administered 10 min prior to no-flow global ischemia significantly improved left ventricular functional recovery, and also reduced infarct size, which were attenuated by the treatment with NAC, 5HD, L-NAME or staurosporine. Administration of pravastatin from the beginning of reperfusion also conferred cardioprotection. Pravastatin protected the cardiomyocytes against oxidative stress by preventing the ROS burst and preserving mitochondrial function. Moderately up-regulated ROS production by mitoKATP channels opening is involved in the pro-survival signaling cascade activated by pravastatin.  相似文献   

5.
Mitochondrial reactive oxygen species (ROS) play an important role in both physiological cell signaling processes and numerous pathological states, including neurodegenerative disorders such as Parkinson disease. While mitochondria are considered the major cellular source of ROS, their role in ROS removal remains largely unknown. Using polarographic methods for real-time detection of steady-state H2O2 levels, we were able to quantitatively measure the contributions of potential systems toward H2O2 removal by brain mitochondria. Isolated rat brain mitochondria showed significant rates of exogenous H2O2 removal (9–12 nmol/min/mg of protein) in the presence of substrates, indicating a respiration-dependent process. Glutathione systems showed only minimal contributions: 25% decrease with glutathione reductase inhibition and no effect by glutathione peroxidase inhibition. In contrast, inhibitors of thioredoxin reductase, including auranofin and 1-chloro-2,4-dinitrobenzene, attenuated H2O2 removal rates in mitochondria by 80%. Furthermore, a 50% decrease in H2O2 removal was observed following oxidation of peroxiredoxin. Differential oxidation of glutathione or thioredoxin proteins by copper (II) or arsenite, respectively, provided further support for the thioredoxin/peroxiredoxin system as the major contributor to mitochondrial H2O2 removal. Inhibition of the thioredoxin system exacerbated mitochondrial H2O2 production by the redox cycling agent, paraquat. Additionally, decreases in H2O2 removal were observed in intact dopaminergic neurons with thioredoxin reductase inhibition, implicating this mechanism in whole cell systems. Therefore, in addition to their recognized role in ROS production, mitochondria also remove ROS. These findings implicate respiration- and thioredoxin-dependent ROS removal as a potentially important mitochondrial function that may contribute to physiological and pathological processes in the brain.  相似文献   

6.
Neurodegenerative disorders are a class of diseases that have been linked to apoptosis induced by elevated levels of reactive oxygen species (ROS). ROS activates the apoptotic cascade through mitochondrial dysfunction and damage to lipids, proteins and DNA. Recently, fruit and tea-derived polyphenols have been found to be beneficial in decreasing oxidative stress and increasing overall health. Further, polyphenols including epigallocatechin gallate (EGCG) have been reported to inhibit apoptotic signaling and increase neural cell survival. In an effort to better understand the beneficial properties associated with polyphenol consumption, the aim of this study was to explore the neuroprotective effects of EGCG, methyl gallate (MG), gallic acid (GA) and N-acetylcysteine (NAC) on H2O2-induced apoptosis in PC12 cells and elucidate potential protective mechanisms. Cell viability data demonstrates that MG and NAC pre-treatments significantly increase viability of H2O2-stressed cells, while pre-treatments with EGCG and GA exacerbates stress. Quantitation of apoptosis and mitochondrial membrane potential shows that MG pre-treatment prevents mitochondria depolarization, however does not inhibit apoptosis and is thus evidence that MG can inhibit mitochondria-mediated apoptosis. Subsequent analysis of DNA degradation and caspase activation reveals that MG inhibits activation of caspase 9 and has a partial inhibitory effect on DNA degradation. These findings confirm the involvement of both intrinsic and extrinsic apoptotic pathways in H2O2-induced apoptosis and suggest that MG may have potential therapeutic properties against mitochondria-mediated apoptosis.  相似文献   

7.
ABSTRACT

Honokiol is one of the main active components of Magnolia officinalis, and has been demonstrated to have multiple pharmacological activities against a variety of diseases. Recently, this phenolic compound is known to have antioxidant activity, but its mechanism of action remains unclear. The purpose of the current study was to evaluate the preventive effects of honokiol against oxidative stress-induced DNA damage and apoptosis in C2C12 myoblasts. The present study found that honokiol inhibited hydrogen peroxide (H2O2)-induced DNA damage and mitochondrial dysfunction, while reducing reactive oxygen species (ROS) formation. The inhibitory effect of honokiol on H2O2-induced apoptosis was associated with the up-regulation of Bcl-2 and down-regulation of Bax, thus reducing the Bax/Bcl-2 ratio that in turn protected the activation of caspase-9 and -3, and inhibition of poly (ADP-ribose) polymerase cleavage, which was associated with the blocking of cytochrome c release to the cytoplasm. Collectively, these results demonstrate that honokiol defends C2C12 myoblasts against H2O2-induced DNA damage and apoptosis, at least in part, by preventing mitochondrial-dependent pathway through scavenging excessive ROS.  相似文献   

8.
Hydrogen peroxide (H2O2) is a key reactive oxygen species (ROS) in signal transduction pathways leading to activation of plant defenses against biotic and abiotic stresses. In this study, we investigated the effects of H2O2 pretreatment on aluminum (Al) induced antioxidant responses in root tips of two wheat (Triticum aestivum L.) genotypes, Yangmai‐5 (Al‐sensitive) and Jian‐864 (Al‐tolerant). Al increased accumulation of H2O2 and O2?? leading to more predominant lipid peroxidation, programmed cell death and root elongation inhibition in Yangmai‐5 than in Jian‐864. However, H2O2 pretreatment alleviated Al‐induced deleterious effects in both genotypes. Under Al stress, H2O2 pretreatment increased the activities of superoxide dismutase, catalase, peroxidase, ascorbate peroxidase and monodehydroascorbate reductase, glutathione reductase and glutathione peroxidase as well as the levels of ascorbate and glutathione more significantly in Yangmai‐5 than in Jian‐864. Furthermore, H2O2 pretreatment also increased the total antioxidant capacity evaluated as the 2, 2‐diphenyl‐1‐picrylhydrazyl‐radical scavenging activity and the ferric reducing/antioxidant power more significantly in Yangmai‐5 than in Jian‐864. Therefore, we conclude that H2O2 pretreatment improves wheat Al acclimation during subsequent Al exposure by enhancing the antioxidant defense capacity, which prevents ROS accumulation, and that the enhancement is greater in the Al‐sensitive genotype than in the Al‐tolerant genotype.  相似文献   

9.
Mammalian spermatozoa are highly susceptible to reactive oxygen species (ROS) stress. The aim of the present study was to investigate whether and how melatonin protects rabbit spermatozoa against ROS stress during cryopreservation. Semen was diluted with Tris-citrate-glucose extender in presence of different concentrations of melatonin. It was observed that addition of 0.1 mM melatonin significantly improved spermatozoa motility, membrane integrity, acrosome integrity, mitochondrial membrane potential as well as AMP-activated protein kinase (AMPK) phosphorylation. Meanwhile, the lipid peroxidation (LPO), ROS levels and apoptosis of post-thaw spermatozoa were reduced in presence of melatonin. Interestingly, when fresh spermatozoa were incubated with 100 μM H2O2, addition of 0.1 mM melatonin significantly decreased the oxidative damage compared to the H2O2 treatment, whereas addition of luzindole, an MT1 receptor inhibitor, decrease the effect of melatonin in spermatozoa. It was observed that the glutathione (GSH) content and activities of glutathione peroxidase (GPx), superoxide dismutase (SOD) and catalase (CAT) were significantly increased with addition of melatonin during cryopreservation. In conclusion, addition of melatonin to the freezing extender protects rabbit spermatozoa against ROS attack by enhancing AMPK phosphorylation for increasing the antioxidative defense.  相似文献   

10.
Brassica juncea annexin-3 (BjAnn3) was functionally characterized for its ability to modulate H2O2-mediated oxidative stress in Saccharomyces cerevisiae. BjAnn3 showed a significant protective role in cellular-defense against oxidative stress and partially alleviated inhibition of mitochondrial respiration in presence of exogenously applied H2O2. Heterologous expression of BjAnn3 protected membranes from oxidative stress-mediated damage and positively regulated antioxidant gene expression for ROS detoxification. We conclude that, BjAnn3 partially counteracts the effects of thioredoxin peroxidase 1 (TSA1) deficiency and aids in cellular-protection across kingdoms. Despite partial compensation of TSA1 by BjAnn3 in cell-viability tests, the over-complementation in ROS-related features suggests the existence of both redundant (e.g. ROS detoxification) and distinct features (e.g. membrane protection versus proximity-based redox regulator) of both proteins.  相似文献   

11.
Molecular dynamics simulations on hydrogen peroxide complex with wild-type (WT) and Arg38Leu mutated (R38L) Horseradish Peroxidase (HRP) were carried out over nanoseconds timescale in water solution at 300 K. Comparison of the results provides interesting insights about the role of highly conserved Arg38 and His42 residues in the chemical features of HRP, underlying its biological activity which initiates with Compound0 (Cpd0). In the WT-HRP enzyme current molecular dynamics simulations show, for the first time, that Arg38 residue: i) prevents the entrance of water inside the reaction cavity, hence providing a hydrophobic reactive scenario, ii) it maintains the distance between His42 and heme–H2O2 complex suitable for the occurrence of proton transfer reaction leading, thereafter, to heme–H2O2 disruption according to Poulos-Kraut mechanism. On the other hand, R38L mutant can be considered as a “wet enzyme” where the presence of water solvent molecules in the heme reaction pocket, unfavoring the initial heme–H2O2 complex formation, decreases the catalytic efficiency in agreement with experimental kinetics measurements. Furthermore, we note that Arg38Leu mutation pushes the His42 residue far from the heme–H2O2 complex, making unlikely a direct proton transfer and suggesting that, in the mutant, a solvent water molecule could be involved in the first step of the Poulos-Kraut mechanism.  相似文献   

12.
There is increasing interest in the effect of energy metabolism on oxidative stress, but much ambiguity over the relationship between the rate of oxygen consumption and the generation of reactive oxygen species (ROS). Production of ROS (such as hydrogen peroxide, H2O2) in the mitochondria is primarily inferred indirectly from measurements in vitro, which may not reflect actual ROS production in living animals. Here, we measured in vivo H2O2 content using the recently developed MitoB probe that becomes concentrated in the mitochondria of living organisms, where it is converted by H2O2 into an alternative form termed MitoP; the ratio of MitoP/MitoB indicates the level of mitochondrial H2O2 in vivo. Using the brown trout Salmo trutta, we tested whether this measurement of in vivo H2O2 content over a 24 h-period was related to interindividual variation in standard metabolic rate (SMR). We showed that the H2O2 content varied up to 26-fold among fish of the same age and under identical environmental conditions and nutritional states. Interindividual variation in H2O2 content was unrelated to mitochondrial density but was significantly associated with SMR: fish with a higher mass-independent SMR had a lower level of H2O2. The mechanism underlying this observed relationship between SMR and in vivo H2O2 content requires further investigation, but may implicate mitochondrial uncoupling which can simultaneously increase SMR but reduce ROS production. To our knowledge, this is the first study in living organisms to show that individuals with higher oxygen consumption rates can actually have lower levels of H2O2.  相似文献   

13.
Reactive oxygen (ROS) and nitrogen (RNS) species play a signaling role in seed dormancy alleviation and germination. Their action may be described by the oxidative/nitrosative “window/door”. ROS accumulation in embryos could lead to oxidative modification of protein through carbonylation. Mature apple (Malus domestica Borkh.) seeds are dormant and do not germinate. Their dormancy may be overcome by 70–90 days long cold stratification. The aim of this work was to analyze the relationship between germinability of embryos isolated from cold (5 °C) or warm (25 °C) stratified apple seeds and ROS or nitric oxide (NO) production and accumulation of protein carbonyl groups. A biphasic pattern of variation in H2O2 concentration in the embryos during cold stratification was detected. H2O2 content increased markedly after 7 days of seeds imbibition at 5 °C. After an additional two months of cold stratification, the H2O2 concentration in embryos reached the maximum. NO production by the embryos was low during entire period of stratification, but increased significantly in germination sensu stricto (i.e. phase II of the germination process). The highest content of protein carbonyl groups was detected after 6 weeks of cold stratification treatment. Fluctuation of H2O2 and protein carbonylation seems to play a pivotal role in seed dormancy alleviation by cold stratification, while NO appears to be necessary for seed germination.  相似文献   

14.
15.
Exogenous oxidative stress induces cell death, but the upstream molecular mechanisms involved of the process remain relatively unknown. We determined the instant dynamic reactions of intracellular reactive oxygen species (ROS, including hydrogen peroxide (H2O2), superoxide radical (O2), and nitric oxide (NO)) in cells exposed to exogenous oxidative stress by using a confocal laser scanning microscope. Stimulation with extracellular H2O2 significantly increased the production of intracellular H2O2, O2, and NO (P < 0.01) through certain mechanisms. Increased levels of intracellular ROS resulted in mitochondrial dysfunction, involving the impairment of mitochondrial activity and the depolarization of mitochondrial membrane potential. Mitochondrial dysfunction significantly inhibited the proliferation of human hepatoblastoma G2 (HepG2) cells and resulted in mitochondrial cytochrome c (cyt c) release. The results indicate that upstream ROS signals play a potential role in exogenous oxidative stress-induced cell death through mitochondrial dysfunction and cyt c release.  相似文献   

16.
Reactive oxygen species play a dual role in host-pathogen interaction. They impede the spread of biotrophic pathogens via stimulating cell death and hypersensitive response (HR), and, on the other hand, they provide access to nutrients for necrotrophic pathogens feeding on dead tissues and facilitate their colonizing the host. The participation of ROS in defending plants from pathogens with a combined lifestyle (hemibiotrophs) is not yet understood, and it varies in its dependence on the particular host-pathogen combination. In the present study, we inoculated rapeseed plants (Brassica napus) with a hemibiotrophic fungus, Leptosphaeria maculans, and manipulated the H2O2 content in cotyledons by infiltrating catalase and/or H2O2 into tissues. The action of catalase resulted in a significant decrease in lesions development, but when H2O2 was applied instead, lesion formation was only moderately stimulated compared to the untreated control. When H2O2 toxicity to L. maculans was tested in vitro, concentrations above 5 mM and 10 mM H2O2 were lethal for germinating conidia and growing mycelia of L. maculans, respectively. We can assume that L. maculans behaves as a necrotroph during this early stage of infection even though its resistance to H2O2 does not exceed standard concentrations. To investigate antioxidant mechanisms implicated in the response of B. napus to L. maculans, the cotyledons were both inoculated with conidia and treated with L. maculans elicitor. Increased activities of guaiacol peroxidase, ascorbate peroxidase, glutathione reductase and superoxide dismutase were recorded both in L. maculans-infected and elicitor-treated cotyledons. The results indicate the importance of these enzymes for ROS scavenging in B. napus-L. maculans interaction.  相似文献   

17.
Engagement of membrane immunoglobulin (mIg) on WEHI-231 mouse B lymphoma cells results in growth arrest at the G1 phase of the cell cycle, followed by a reduction of mitochondrial membrane potential (ΔΨm) and apoptosis. WEHI-231 cells resemble immature B cells in terms of the cell surface phenotype and sensitivity to mIg engagement. However, the molecular mechanisms underlying mIg-induced loss of ΔΨm and apoptosis have not yet been established. In this study, we show that apoptosis signal-regulating kinase 1 (ASK1)-c-Jun N-terminal kinase 1 (JNK1) signaling pathway participates in mIg-induced apoptosis through the generation of reactive oxygen species (ROS). Stimulation of WEHI-231 cells with anti-IgM induces phosphorylation and subsequent activation of ASK1, leading to JNK activation. Anti-IgM stimulation immediately (5 min) induces hydrogen peroxide (H2O2) production with a substantial increase during later time points (36-48 h), accompanied by loss of ΔΨm and an increase in cells with sub-G1 DNA content. The anti-IgM-induced late-phase H2O2 production, loss of ΔΨm, and increase in the sub-G1 fraction were all reduced substantially in WEHI-231 cells overexpressing a dominant-negative form of ASK1, compared with control vector alone, but enhanced substantially in cells overexpressing a constitutively active form of ASK1. These mIg-mediated events were also partially abrogated by ROS scavenger N-acetyl-l-cysteine (NAC). Taken together, these results suggest that mIg engagement induces H2O2 production leading to activation of ASK1-JNK1 pathway, creating a feedback amplification loop of ROS-ASK/JNK that leads to loss of ΔΨm and finally apoptosis.  相似文献   

18.
In the present study, we aimed to elucidate how strategies of reactive oxygen species (ROS) regulation and the antioxidant defense system changed during transition from C3 to C4 photosynthesis, by using the model genus Flaveria, which contains species belonging to different steps in C4 evolution. For this reason, four Flaveria species that have different carboxylation mechanisms, Flaveria robusta (C3), Flaveria anomala (C3–C4), Flaveria brownii (C4-like) and Flaveria bidentis (C4), were used. Physiological (growth, relative water content (RWC), osmotic potential), and photosynthetical parameters (stomatal conductance (gs), assimilation rate (A), electron transport rate (ETR)), antioxidant defense enzymes (superoxide dismutase (SOD), catalase (CAT), peroxidase (POX), ascorbate peroxidase (APX), glutathione reductases(GR)) and their isoenzymes, non-enzymatic antioxidant contents (ascorbate, glutathione), NADPH oxidase (NOX) activity, hydrogen peroxide (H2O2) content and lipid peroxidation levels (TBARS) were measured comparatively under polyethylene glycol (PEG 6000) induced osmotic stress. Under non-stressed conditions, there was a correlation only between CAT (decreasing), APX and GR (both increasing) and the type of carboxylation pathways through C3 to C4 in Flaveria species. However, they responded differently to PEG-induced osmotic stress in regards to antioxidant defense. The greatest increase in H2O2 and TBARS content was observed in C3F. robusta, while the least substantial increase was detected in C4-like F. brownii and C4F. bidentis, suggesting that oxidative stress is more effectively countered in C4-like and C4 species. This was achieved by a better induced enzymatic defense in F. bidentis (increased SOD, CAT, POX, and APX activity) and non-enzymatic antioxidants in F. brownii. As a response to PEG-induced oxidative stress, changes in activities of isoenzymes and also isoenzymatic patterns were observed in all Flaveria species, which might be related to ROS produced in different compartments of cells.  相似文献   

19.
It has been observed experimentally that cells from failing hearts exhibit elevated levels of reactive oxygen species (ROS) upon increases in energetic workload. One proposed mechanism for this behavior is mitochondrial Ca2+ mismanagement that leads to depletion of ROS scavengers. Here, we present a computational model to test this hypothesis. Previously published models of ROS production and scavenging were combined and reparameterized to describe ROS regulation in the cellular environment. Extramitochondrial Ca2+ pulses were applied to simulate frequency-dependent changes in cytosolic Ca2+. Model results show that decreased mitochondrial Ca2+uptake due to mitochondrial Ca2+ uniporter inhibition (simulating Ru360) or elevated cytosolic Na+, as in heart failure, leads to a decreased supply of NADH and NADPH upon increasing cellular workload. Oxidation of NADPH leads to oxidation of glutathione (GSH) and increased mitochondrial ROS levels, validating the Ca2+ mismanagement hypothesis. The model goes on to predict that the ratio of steady-state [H2O2]m during 3Hz pacing to [H2O2]m at rest is highly sensitive to the size of the GSH pool. The largest relative increase in [H2O2]m in response to pacing is shown to occur when the total GSH and GSSG is close to 1 mM, whereas pool sizes below 0.9 mM result in high resting H2O2 levels, a quantitative prediction only possible with a computational model.  相似文献   

20.
During plant-pathogen interactions, the plant may mount several types of defense responses to either block the pathogen completely or ameliorate the amount of disease. Such responses include release of reactive oxygen species (ROS) to attack the pathogen, as well as formation of cell wall appositions (CWAs) to physically block pathogen penetration. A successful pathogen will likely have its own ROS detoxification mechanisms to cope with this inhospitable environment. Here, we report one such candidate mechanism in the rice blast fungus, Magnaporthe oryzae, governed by a gene we refer to as MoHYR1. This gene (MGG_07460) encodes a glutathione peroxidase (GSHPx) domain, and its homologue in yeast was reported to specifically detoxify phospholipid peroxides. To characterize this gene in M. oryzae, we generated a deletion mutantΔhyr1 which showed growth inhibition with increased amounts of hydrogen peroxide (H2O2). Moreover, we observed that the fungal mutants had a decreased ability to tolerate ROS generated by a susceptible plant, including ROS found associated with CWAs. Ultimately, this resulted in significantly smaller lesion sizes on both barley and rice. In order to determine how this gene interacts with other (ROS) scavenging-related genes in M. oryzae, we compared expression levels of ten genes in mutant versus wild type with and without H2O2. Our results indicated that the HYR1 gene was important for allowing the fungus to tolerate H2O2 in vitro and in planta and that this ability was directly related to fungal virulence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号