首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 60 毫秒
1.
The interaction between lanthanum ion (La3+) and horseradish peroxidase (HRP) in vitro was investigated using a combination of biophysical and biochemical methods. When the molar ratio of La3+ and HRP is low, it was found that the interaction between La3+ and HRP mainly depends on the electrostatic attraction, van der waals force and hydrogen bond etc. Thus, the interaction is weak and the La–HRP complex cannot be formed in vitro. As expected, the interaction can change the conformation of HRP molecule, leading to the increase in the non-planarity of the porphyrin ring in the heme group of HRP molecule, and then in the exposure degree of the active center, Fe(III) of the porphyrin ring of HRP molecule. Therefore, the catalytic activity of HRP for the H2O2 reduction is improved. When the molar ratio of La3+ and HRP is high, La3+ can strongly coordinate with O and/or N in the amide group of the polypeptide chain of HRP molecule, forming the La–HRP complex. The formation of the La–HRP complex causes the change in the conformation of HRP molecule, leading to the decrease in the non-planarity of the porphyrin ring in the heme group of HRP molecule, and then in the exposure degree of the active center, Fe(III) of the porphyrin ring of HRP molecule. Thus, the catalytic activity of HRP for the H2O2 reduction is decreased comparing with that of HRP in the absence of La3+. The results can provide some references for understanding the interaction mechanism between trace elements ions and peroxidase in living organisms.  相似文献   

2.
《Luminescence》2003,18(4):203-206
A method for reactivation of inactivated horseradish peroxidase (HRP) was studied and exploited in an assay for hydrogen peroxide (H2O2). Addition of imidazole into a mobile phase made continuous determination of hydrogen peroxide (H2O2) possible by micro?ow injection based on horseradish‐catalysed luminol chemiluminescence. For reproducible determination of H2O2 with HRP, the inactivation of HRP via protonation of the active sites of HRP caused by reaction with H2O2 must be avoided. We successfully reactivated protonated HRP (inactive HRP) with exogenous imidazole in the mobile phase of the micro?ow injection system. The imidazole successfully removed the attached proton from the inactive sites of the HRP. This assay was reproducible (within‐run reproducibility, CV = 4.0%) and the detection limit for H2O2 was 5 pmol. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

3.
Aromatic substrate binding to peroxidases is mediated through hydrophobic and hydrogen bonding interactions between residues on the distal side of the heme and the substrate molecule. The effects of perturbing these interactions are investigated by an electronic absorption and resonance Raman study of benzohydroxamic acid (BHA) binding to a series of mutants of horseradish peroxidase isoenzyme C (HRPC). In particular, the Phe179 --> Ala, His42 --> Glu variants and the double mutant His42 --> Glu:Arg38 --> Leu are studied in their ferric state at pH 7 with and without BHA. A comparison of the data with those previously reported for wild-type HRPC and other distal site mutants reaffirms that in the resting state mutation of His42 leads to an increase of 6-coordinate aquo heme forms at the expense of the 5-coordinate heme state, which is the dominant species in wild-type HRPC. The His42Glu:Arg38Leu double mutant displays an enhanced proportion of the pentacoordinate heme state, similar to the single Arg38Leu mutant. The heme spin states are insensitive to mutation of the Phe179 residue. The BHA complexes of all mutants are found to have a greater amount of unbound form compared to the wild-type HRPC complex. It is apparent from the spectral changes induced on complexation with BHA that, although Phe179 provides an important hydrophobic interaction with BHA, the hydrogen bonds formed between His42 and, in particular, Arg38 and BHA assume a more critical role in the binding of BHA to the resting state.  相似文献   

4.
The sequence of 96 amino acid residues from the COOH-terminus of the active subunit of cholera toxin, A1, has been determined as PheAsnValAsnAspVal LeuGlyAlaTyrAlaProHisProAsxGluGlu GluValSerAlaLeuGlyGly IleProTyrSerGluIleTyrGlyTrpTyrArg ValHisPheGlyValLeuAsp GluGluLeuHisArgGlyTyrArgAspArgTyr TyrSerAsnLeuAspIleAla ProAlaAlaAspGlyTyrGlyLeuAlaGlyPhe ProProGluHisArgAlaTrp ArgGluGluProTrpIleHisHisAlaPro ProGlyCysGlyAsnAlaProArg(OH). This is the largest fragment obtained by BrCN cleavage of the subunit A1 (Mr 23,000), and has previously been indicated to contain the active site for the adenylate cyclase-stimulating activity. Unequivocal identification of the COOH-terminal structure was achieved by separation and analysis of the terminal peptide after the specific chemical cleavage at the only cysteine residue in A1 polypeptide. The site of self ADP-ribosylation in the A1 subunit [C. Y. Lai, Q.-C. Xia, and P. T. Salotra (1983) Biochem. Biophys. Res. Commun.116, 341–348] has now been identified as Arg-50 of this peptide, 46 residues removed from the COOH-terminus. The cysteine that forms disulfide bridge to A2 subunit in the holotoxin is at position 91.  相似文献   

5.
6.
Hemin [Fe(III)-protoporphyrin IX] is known to bind tightly to single-stranded DNA and RNA molecules that fold into G-quadruplexes (GQ). Such complexes are strongly activated for oxidative catalysis. These heme•DNAzymes and ribozymes have found broad utility in bioanalytical and medicinal chemistry and have also been shown to occur within living cells. However, how a GQ is able to activate hemin is poorly understood. Herein, we report fast kinetic measurements (using stopped-flow UV–vis spectrophotometry) to identify the H2O2-generated activated heme species within a heme•DNAzyme that is active for the oxidation of a thioether substrate, dibenzothiophene (DBT). Singular value decomposition and global fitting analysis was used to analyze the kinetic data, with the results being consistent with the heme•DNAzyme''s DBT oxidation being catalyzed by the initial Fe(III)heme–H2O2 complex. Such a complex has been predicted computationally to be a powerful oxidant for thioether substrates. In the heme•DNAzyme, the DNA GQ enhances both the kinetics of formation of the active intermediate as well as the oxidation step of DBT by the active intermediate. We show, using both stopped flow spectrophotometry and EPR measurements, that a classic Compound I is not observable during the catalytic cycle for thioether sulfoxidation.  相似文献   

7.
Cytochrome bd is a prokaryotic respiratory quinol:O2 oxidoreductase, phylogenetically unrelated to the extensively studied heme–copper oxidases (HCOs). The enzyme contributes to energy conservation by generating a proton motive force, though working with a lower energetic efficiency as compared to HCOs. Relevant to patho-physiology, members of the bd-family were shown to promote virulence in some pathogenic bacteria, which makes these enzymes of interest also as potential drug targets. Beyond its role in cell bioenergetics, cytochrome bd accomplishes several additional physiological functions, being apparently implicated in the response of the bacterial cell to a number of stress conditions. Compelling experimental evidence suggests that the enzyme enhances bacterial tolerance to oxidative and nitrosative stress conditions, owing to its unusually high nitric oxide (NO) dissociation rate and a notable catalase activity; the latter has been recently documented in one of the two bd-type oxidases of Escherichia coli. Current knowledge on cytochrome bd and its reactivity with O2, NO and H2O2 is summarized in this review in the light of the hypothesis that the preferential (over HCOs) expression of cytochrome bd in pathogenic bacteria may represent a strategy to evade the host immune attack based on production of NO and reactive oxygen species (ROS). This article is part of a Special Issue entitled: 18th European Bioenergetic Conference.  相似文献   

8.
Cytochrome c oxidase is a multisubunit membrane-bound enzyme, which catalyzes oxidation of four molecules of cytochrome c2+ and reduction of molecular oxygen to water. The electrons are taken from one side of the membrane while the protons are taken from the other side. This topographical arrangement results in a charge separation that is equivalent to moving one positive charge across the membrane for each electron transferred to O2. In this reaction part of the free energy available from O2 reduction is conserved in the form of an electrochemical proton gradient. In addition, part of the free energy is used to pump on average one proton across the membrane per electron transferred to O2. Our understanding of the molecular design of the machinery that couples O2 reduction to proton pumping in oxidases has greatly benefited from studies of so called “uncoupled” structural variants of the oxidases. In these uncoupled oxidases the catalytic O2-reduction reaction may display the same rates as in the wild-type CytcO, yet the electron/proton transfer to O2 is not linked to proton pumping. One striking feature of all uncoupled variants studied to date is that the (apparent) pKa of a Glu residue, located deeply within a proton pathway, is either increased or decreased (from 9.4 in the wild-type oxidase). The altered pKa presumably reflects changes in the local structural environment of the residue and because the Glu residue is found near the catalytic site as well as near a putative exit pathway for pumped protons these changes are presumably important for controlling the rates and trajectories of the proton transfer. In this paper we summarize data obtained from studies of uncoupled structural oxidase variants and present a hypothesis that in quantitative terms offers a link between structural changes, modulation of the apparent pKa and uncoupling of proton pumping from O2 reduction.  相似文献   

9.
Cytochrome c Oxidase (CcO) reduces O2, the terminal electron acceptor, to water in the aerobic, respiratory electron transport chain. The energy released by O2 reductions is stored by removing eight protons from the high pH, N-side, of the membrane with four used for chemistry in the active site and four pumped to the low pH, P-side. The proton transfers must occur along controllable proton pathways that prevent energy dissipating movement towards the N-side. The CcO N-side has well established D- and K-channels to deliver protons to the protein interior. The P-side has a buried core of hydrogen-bonded protonatable residues designated the Proton Loading Site cluster (PLS cluster) and many protonatable residues on the P-side surface, providing no obvious unique exit. Hydrogen bond pathways were identified in Molecular Dynamics (MD) trajectories of Rb. sphaeroides CcO prepared in the PR state with the heme a3 propionate and Glu286 in different protonation states. Grand Canonical Monte Carlo sampling of water locations, polar proton positions and residue protonation states in trajectory snapshots identify a limited number of water mediated, proton paths from PLS cluster to the surface via a (P-exit) cluster of residues. Key P-exit residues include His93, Ser168, Thr100 and Asn96. The hydrogen bonds between PLS cluster and P-exit clusters are mediated by a water wire in a cavity centered near Thr100, whose hydration can be interrupted by a hydrophobic pair, Leu255B (near CuA) and Ile99. Connections between the D channel and PLS via Glu286 are controlled by a second, variably hydrated cavity.

Significance statement

Cytochrome C oxidase plays a crucial role in cellular respiration and energy generation. It reduces O2 to water and uses the released free energy to move protons across mitochondrial and bacterial cell membranes adding to the essential electrochemical gradient. Energy storage requires that protons are taken up from the high pH, N-side and released to the low pH, P-side of the membrane. We identify a potential proton exit from a buried cluster of polar residues (the proton loading site) to the P-side of CcO via paths made up of waters and conserved residues. Two water cavities connect the proton exit pathway to the surface only when hydrated. Changing the degree of hydration may control otherwise energetically favorable proton backflow from the P-side.  相似文献   

10.
AimsTo clarify the mechanism of the protective effect of non-steroidal anti-inflammatory drugs (NSAIDs) on Alzheimer's disease, inactivation of cholinesterase (ChE) induced by NSAIDs was examined.Main methodsEquine ChE and rat brain homogenate were incubated with NSAIDs and horseradish peroxidase (HRP) and H2O2 (HRP–H2O2). ChE activity was measured by using 5,5'-dithiobis(nitrobenzoic acid). By using electron spin resonance, NSAID radicals induced by reaction with HRP–H2O2 were detected in the presence of spin trap agents.Key findingsEquine ChE was inactivated by mefenamic acid with HRP–H2O2. ChE activity in rat brain homogenate decreased dependent on the concentration of mefenamic acid in the presence of HRP–H2O2. NSAIDs diclofenac, indomethacin, phenylbutazone, piroxicam and salicylic acid inactivated ChE. Oxygen radical scavengers did not prevent inactivation of ChE induced by mefenamic acid with HRP–H2O2. However, spin trap agents 5,5-dimethyl-1-pyrroline-l-oxide and N-methyl-nitrosopropane, reduced glutathione and ascorbic acid strongly inhibited inactivation of ChE, indicating participation of mefenamic acid radicals. Fluorescent emission of ChE peaked at 400 nm, and the Vmax value of ChE changed during interaction of mefenamic acid with HRP–H2O2, indicating that ChE may be inactivated through modification of tyrosine residues by mefenamic radicals.SignificanceThe protective effect of NSAIDs on Alzheimer's disease seems to occur through inactivation of ChE induced by NSAIDs radicals.  相似文献   

11.
A potent analog (HNG) of the endogenous peptide humanin protects against myocardial ischemia–reperfusion (MI–R) injury in vivo, decreasing infarct size and improving cardiac function. Since oxidative stress contributes to the damage from MI–R we tested the hypotheses that: (1) HNG offers cardioprotection through activation of antioxidant defense mechanisms leading to preservation of mitochondrial structure and that, (2) the activity of either of a pair of non-receptor tyrosine kinases, c-Abl and Arg is required for this protection. Rat cardiac myoblasts (H9C2 cells) were exposed to nanomolar concentrations of HNG and to hydrogen peroxide (H2O2). Cells treated with HNG in the presence of H2O2 demonstrated reduced intracellular reactive oxygen species (ROS), preserved mitochondrial membrane potential, ATP levels and mitochondrial structure. HNG induced activation of catalase and glutathione peroxidase (GPx) within 5 min and decreased the ratio of oxidized to reduced glutathione within 30 min. siRNA knockdown of both Abl and Arg, but neither alone, abolished the HNG-mediated reduction of ROS in myoblasts exposed to H2O2. These findings demonstrate an HNG-mediated, Abl- and Arg-dependent, rapid and sustained activation of critical cellular defense systems and attenuation of oxidative stress, providing mechanistic insights into the observed HNG-mediated cardioprotection in vivo.  相似文献   

12.
A new procedure for fluorescent detection of intracellular H2O2 in cells transiently expressing the catalyst Horseradish Peroxidase (HRP) is setup and validated. More specific reaction with HRP largely amplifies oxidation of the redox probes used (2′,7′-dichlorodihydrofluorescein and dihydrorhodamine). Expression of HRP does not affect cell viability. The procedure reveals MAO activity, a primary intracellular H2O2 source, in monolayers of intact transfected cells. The probes oxidation rate responds specifically to the MAO activation/inhibition. Their oxidation by MAO-derived H2O2 is sensitive to intracellular H2O2 competitors: it decreases when H2O2 is removed by pyruvate and it increases when the GSH-dependent removal systems are impaired. Specific response was also measured after addition of extracellular H2O2. Oxidation of the fluorescent probes following reaction of H2O2 with endogenous HRP overcomes most criticisms in their use for intracellular H2O2 detection. The method can be applied for direct determination in plate reader and is proposed to detect H2O2 generation in physio-pathological cell models.  相似文献   

13.
Flavo-diiron proteins (FDPs) contain non-heme diiron and proximal flavin mononucleotide (FMN) active sites and function as terminal components of a nitric oxide reductase (NOR) and/or a four-electron dioxygen reductase (O2R). While most FDPs show similar structural, spectroscopic, and redox properties, O2R and NOR activities vary significantly among FDPs. A potential source of this variability is the iron ligation status of a conserved His residue that provides an iron ligand in all known FDP structures but one, where this His residue is rotated away from iron and replaced by a solvent ligand. In order to test the effect of this His ligation status, we changed this ligating His residue (H90) in Thermotoga maritima (Tm) FDP to either Asn or Ala. The wild-type Tm FDP shows significantly higher O2R than NOR activity. Single crystal X-ray crystallography revealed a remarkably conserved diiron site structure in the H90N and ?A variants, differing mainly by either Asn or solvent coordination, respectively, in place of H90. The steady-state activities were minimally affected by the H90 substitutions, remaining significantly higher for O2R versus NOR. The pre-steady-state kinetics of the fully reduced FDP with O2 were also minimally affected by the H90 substitutions. The results indicate that the coordination status of this His ligand does not significantly modulate the O2R or NOR activities, and that FDPs can retain these activities when the individual iron centers are differentiated by His ligand substitution. This differentiation may have implications for the O2R and NOR mechanisms of FDPs.  相似文献   

14.
The heme–copper oxidases (HCOs) catalyze the reduction of O2 to water, and couple the free energy to proton pumping across the membrane. HCOs are divided into three sub-classes, A, B and C, whose order of emergence in evolution has been controversial. Here we have analyzed recent structural and functional data on HCOs and their homologues, the nitric oxide reductases (NORs). We suggest that the C-type oxidases are ancient enzymes that emerged from the NORs. In contrast, the A-type oxidases are the most advanced from both structural and functional viewpoints, which we interpret as evidence for having evolved later.  相似文献   

15.
Digestion of the native pig kidney fructose 1,6-bisphosphatase tetramer with subtilisin cleaves each of the 35,000-molecular-weight subunits to yield two major fragments: the S-subunit (Mr ca. 29,000), and the S-peptide (Mr 6,500). The following amino acid sequence has been determined for the S peptide: AcThrAspGlnAlaAlaPheAspThrAsnIle Val ThrLeuThrArgPheValMetGluGlnGlyArgLysAla ArgGlyThrGlyGlu MetThrGlnLeuLeuAsnSerLeuCysThrAlaValLys AlaIleSerThrAla z.sbnd;ValArgLysAlaGlyIleAlaHisLeuTyrGlyIleAla. Comparison of this sequence with that of the NH2-terminal 60 residues of the enzyme from rabbit liver (El-Dorry et al., 1977, Arch. Biochem. Biophys.182, 763) reveals strong homology with 52 identical positions and absolute identity in sequence from residues 26 to 60.Although subtilisin cleavage of fructose 1,6-bisphosphatase results in diminished sensitivity of the enzyme to AMP inhibition, we have found no AMP inhibition-related amino acid residues in the sequenced S-peptide. The loss of AMP sensitivity that occurs upon pyridoxal-P modification of the enzyme does not result in the modification of lysyl residues in the S-peptide. Neither photoaffinity labeling of fructose 1,6-bisphosphatase with 8-azido-AMP nor modification of the cysteinyl residue proximal to the AMP allosteric site resulted in the modification of residues located in the NH2-terminal 60-amino acid peptide.  相似文献   

16.
BackgroundHorseradish peroxidase (HRP) catalyzes H2O2 dismutation while undergoing heme inactivation. The mechanism underlying this process has not been fully elucidated. The effects of nitroxides, which protect metmyoglobin and methemoglobin against H2O2-induced inactivation, have been investigated.MethodsHRP reaction with H2O2 was studied by following H2O2 depletion, O2 evolution and heme spectral changes. Nitroxide concentration was followed by EPR spectroscopy, and its reactions with the oxidized heme species were studied using stopped-flow.ResultsNitroxide protects HRP against H2O2-induced inactivation. The rate of H2O2 dismutation in the presence of nitroxide obeys zero-order kinetics and increases as [nitroxide] increases. Nitroxide acts catalytically since its oxidized form is readily reduced to the nitroxide mainly by H2O2. The nitroxide efficacy follows the order 2,2,6,6-tetramethyl-piperidine-N-oxyl (TPO) > 4-OH-TPO > 3-carbamoyl proxyl > 4-oxo-TPO, which correlates with the order of the rate constants of nitroxide reactions with compounds I, II, and III.ConclusionsNitroxide catalytically protects HRP against inactivation induced by H2O2 while modulating its catalase-like activity. The protective role of nitroxide at μM concentrations is attributed to its efficient oxidation by P940, which is the precursor of the inactivated form P670. Modeling the dismutation kinetics in the presence of nitroxide adequately fits the experimental data. In the absence of nitroxide the simulation fits the observed kinetics only if it does not include the formation of a Michaelis-Menten complex.General SignificanceNitroxides catalytically protect heme proteins against inactivation induced by H2O2 revealing an additional role played by nitroxide antioxidants in vivo.  相似文献   

17.
Ferryl compounds [Fe(IV)=O] in living organisms play an essential role in the radical catalytic cycle and degradation processes of hemeproteins. We studied the reactions between H2O2 and hemoglobin II (HbII) (GlnE7, TyrB10, PheCD1, PheE11), recombinant hemoglobin I (HbI) (GlnE7, PheB10, PheCD1, PheE11), and the HbI PheB10Tyr mutant of L. pectinata. We found that the tyrosine residue in the B10 position tailors, in two very distinct ways, the reactivity of the ferryl species, compounds I and II. First, increasing the reaction pH from 4.86 to 7.50, and then to 11.2, caused the the second-order rate constant for HbII to decrease from 141.60 to 77.78 M−1 s−1, and to 2.96 M−1 s−1, respectively. This pH dependence is associated with the disruption of the heme–tyrosine (603 nm) protein moiety, which controls the access of the H2O2 to the hemeprotein active center, thus regulating the formation of the ferryl species. Second, the presence of compound I was evident in the UV–vis spectra (648-nm band) in the reactions of HbI and recombinant HbI with H2O2, This band, however, is completely absent in the analogous reaction with HbII and the HbI PheB10Tyr mutant. Therefore, the existence of a hydrogen-bonding network between the heme pocket amino acids (i.e., TyrB10) and the ferryl compound I created a path much faster than 3.0×10−2 s−1 for the decay of compound I to compound II. Furthermore, the decay of the heme ferryl compound I to compound II was independent of the proximal HisF8 trans-ligand strength. Thus, the pH dependence of the heme–tyrosine moiety complex determined the overall reaction rate of the oxidative reaction limiting the interaction with H2O2 at neutral pH. The hydrogen-bonding strength between the TyrB10 and the heme ferryl species suggests the presence of a cycle where the ferryl consumption by the ferric heme increases significantly the pseudoperoxidase activity of these hemeproteins.  相似文献   

18.
Lignosulfonates(LSs), by-products from chemical pulping processes, are low-value products with limited dispersion properties. The ability of commercially available horseradish peroxidase (HRP) to polymerize LS macromolecules and improve the dispersion properties of LSs was investigated. The polymerization of LSs proceeded efficiently under mild reaction conditions in an aqueous solution with HRP/H2O2. Gel permeation chromatography showed a significant increase in weight-average molecular weight (M w ) of sulfonated kraft lignin and sodium lignosulfonate (NaLS) by 8.5-fold and 4.7-fold, respectively. The mechanism of polymerization was investigated by elemental analysis, surface charge measurement, headspace gas chromatography, infrared spectroscopy (IR), and hydrogen nuclear magnetic resonance spectrometry (1H-NMR). The functional group measurements indicated that HRP incubation did not reduce the sulfonic group content. However, it decreased the phenolic and methoxyl group contents. As the phenolic group content decreased, M w increased as a power function. The polymerization was proposed to involve the random coupling of phenoxy radical intermediates. The radicals coupled with each other to form different inter-unit linkages, most of which were the β-O-4’ type, as the 1H-NMR spectra indicated. Moreover, the HRP/H2O2 incubation induced a significant improvement in the adsorption and dispersion properties of LSs. Therefore, the HRP/H2O2 incubation is a promising approach for industrial applications of LSs.  相似文献   

19.
Electrically active magnetic nanocomposites (EAMNCs), Au nanoparticles/self-doped polyaniline@Fe3O4 (AuNPs/SPAN@Fe3O4) with well-defined core/shell structure, were first synthesized by a simple method. The morphology and composition of the as-synthesized AuNPs/SPAN@Fe3O4 nanocomposite have been characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), Fourier transform infrared (FT–IR), ultraviolet–visible (UV–Vis), X-ray powder diffraction (XRD), and thermogravimetric analysis (TGA). Horseradish peroxidase (HRP)–AuNPs/SPAN@Fe3O4 biocomposites were immobilized onto the surface of indium tin oxide (ITO) electrode to construct an amperometric hydrogen peroxide (H2O2) biosensor. The effects of HRP dosage, solution pH, and the working potential on the current response toward H2O2 reduction were optimized to obtain the maximal sensitivity. Under the optimal conditions, the proposed biosensor exhibited a linear calibration response in the range of 0.05 to 0.35 mM and 0.35 to 1.85 mM, with a detection limit of 0.01 mM (signal-to-noise ratio = 3). The modified electrode could virtually eliminate the interference of ascorbic acid (AA) and uric acid (UA) during the detection of H2O2. Furthermore, the biosensor was applied to detect H2O2 concentration in real samples, which showed acceptable accuracy with the traditional potassium permanganate titration.  相似文献   

20.
This article describes the employment of a novel p-phenol derivative, 4-(1,2,4-triazol-1-yl)phenol (TRP), as a highly potent signal enhancer of the luminol-hydrogen peroxide (H2O2)-horseradish peroxidase (HRP) chemiluminescence (CL) system. The CL reaction conditions were optimized, and the enhancement characteristics of TRP were compared with those of p-iodophenol (PIP). TRP produced a strong enhancement of the CL with the effect of prolonging the light emission. The developed system was then applied to the determination of H2O2 with immobilized HRP using magnetic beads as a solid support. The linear range for H2O2 was 2.0 × 10−6 to 1.0 × 10−3 M. The detection limit for H2O2 was 2.0 × 10−6 M. The proposed sensor was applied successfully to the determination of H2O2 in rainwater.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号