首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
The synuclein family and particularly alpha-synuclein takes a central part in etiology and pathogenesis of Parkinson's disease--one of the most common human neurodegenerative diseases. The pathological changes in certain other neurodegenerative diseases are also linked to changes in metabolism and function of alpha-synuclein, hence comprising a new group of diseases--synucleinopathies. The molecular and cellular mechanisms that are involved in the development of neurodegeneration in synucleinopathies are still largely unknown. As a result, the therapeutic approaches to the treatment of synucleinopathies are inadequately tampered. The development of models of neurodegenerative process in laboratory animals plays a crucial role in the study of these molecular mechanisms. Recently a special emphasis was placed on transgenic animal models with modified expression of genes, which mutations are associated with inherited forms of human neurodegenerative diseases. Current review is devoted to the analysis of different models of synucleinopathies as a result of genetic modifications of alpha-synuclein expression.  相似文献   

2.
The discovery of α-synuclein has had profound implications concerning our understanding of Parkinson’s disease (PD) and other neurodegenerative disorders characterized by α-synuclein accumulation. In fact, as compared with pre-α-synuclein times, a “new” PD can now be described as a whole-body disease in which a progressive spreading of α-synuclein pathology underlies a wide spectrum of motor as well as nonmotor clinical manifestations. Not only is α-synuclein accumulation a pathological hallmark of human α-synucleinopathies but increased protein levels are sufficient to trigger neurodegenerative processes. α-Synuclein elevations could also be a mechanism by which disease risk factors (e.g., aging) increase neuronal vulnerability to degeneration. An important corollary to the role of enhanced α-synuclein in PD pathogenesis is the possibility of developing α-synuclein-based biomarkers and new therapeutics aimed at suppressing α-synuclein expression. The use of in vitro and in vivo experimental models, including transgenic mice overexpressing α-synuclein and animals with viral vector-mediated α-synuclein transduction, has helped clarify pathogenetic mechanisms and therapeutic strategies involving α-synuclein. These models are not devoid of significant limitations, however. Therefore, further pursuit of new clues on the cause and treatment of PD in this post-α-synuclein era would benefit substantially from the development of improved research paradigms of α-synuclein elevation.  相似文献   

3.
The synucleinopathies, which include Parkinson’s disease, dementia with Lewy bodies, and multiple system atrophy, are a class of human neurodegenerative disorders unified by the presence of α-synuclein aggregates in the brain. Considerable clinical and pathological heterogeneity exists within and among the individual synucleinopathies. A potential explanation for this variability is the existence of distinct conformational strains of α-synuclein aggregates that cause different disease manifestations. Like prion strains, α-synuclein strains can be delineated based on their structural architecture, with structural differences among α-synuclein aggregates leading to unique biochemical attributes and neuropathological properties in humans and animal models. Bolstered by recent high-resolution structural data from patient brain-derived material, it has now been firmly established that there are conformational differences among α-synuclein aggregates from different human synucleinopathies. Moreover, recombinant α-synuclein can be polymerized into several structurally distinct aggregates that exhibit unique pathological properties. In this review, we outline the evidence supporting the existence of α-synuclein strains and highlight how they can act as drivers of phenotypic heterogeneity in the human synucleinopathies.  相似文献   

4.
Significant evidence has been accumulated linking exposure to heavy metals and/or distortion of metal homeostasis with the development of various neurodegenerative diseases. α-Synuclein is known to be involved in pathogenesis of a subset of neurodegenerative diseases collectively known as synucleinopathies. Therefore the interplay between metals, α-synuclein and neurodegeneration has attracted significant attention of researchers. This review discusses some of the aspects of the α-synuclein metalloproteomics and represents the peculiarities and consequences of α-synuclein interaction with various metal ions. Both non-specific and specific binding of this protein to metals is considered together with the analysis of the effects of such interactions on α-synuclein structure and aggregation propensity.  相似文献   

5.
Aggregation of α-synuclein plays a crucial role in the pathogenesis of synucleinopathies, a group of neurodegenerative diseases including Parkinson disease (PD), dementia with Lewy bodies (DLB), diffuse Lewy body disease (DLBD) and multiple system atrophy (MSA). The common feature of these diseases is a pathological deposition of protein aggregates, known as Lewy bodies (LBs) in the central nervous system. The major component of these aggregates is α-synuclein, a natively unfolded protein, which may undergo dramatic structural changes resulting in the formation of β-sheet rich assemblies. In vitro studies have shown that recombinant α-synuclein protein may polymerize into amyloidogenic fibrils resembling those found in LBs. These aggregates may be uptaken and propagated between cells in a prion-like manner. Here we present the mechanisms and kinetics of α-synuclein aggregation in vitro, as well as crucial factors affecting this process. We also describe how PD-linked α-synuclein mutations and some exogenous factors modulate in vitro aggregation. Furthermore, we present a current knowledge on the mechanisms by which extracellular aggregates may be internalized and propagated between cells, as well as the mechanisms of their toxicity.  相似文献   

6.
Aggregates of the protein α-synuclein are the main component of Lewy bodies, the hallmark of Parkinson's disease. α-Synuclein aggregates are also found in many human neurodegenerative diseases known as synucleinopathies. In vivo, α-synuclein associates with membranes and adopts α-helical conformations. The details of how α-synuclein converts from the functional native state to amyloid aggregates remain unknown. In this study, we use maltose-binding protein (MBP) as a carrier to crystallize segments of α-synuclein. From crystal structures of fusions between MBP and four segments of α-synuclein, we have been able to trace a virtual model of the first 72 residues of α-synuclein. Instead of a mostly α-helical conformation observed in the lipid environment, our crystal structures show α-helices only at residues 1-13 and 20-34. The remaining segments are extended loops or coils. All of the predicted fiber-forming segments based on the 3D profile method are in extended conformations. We further show that the MBP fusion proteins with fiber-forming segments from α-synuclein can also form fiber-like nano-crystals or amyloid-like fibrils. Our structures suggest intermediate states during amyloid formation of α-synuclein.  相似文献   

7.
Protein misfolding and aggregation is a ubiquitous phenomenon associated with a wide range of diseases. The synuclein family comprises three small naturally unfolded proteins implicated in neurodegenerative diseases and some forms of cancer. α-Synuclein is a soluble protein that forms toxic inclusions associated with Parkinson's disease and several other synucleinopathies. However, the triggers inducing its conversion into noxious species are elusive. Here we show that another member of the family, γ-synuclein, can be easily oxidized and form annular oligomers that accumulate in cells in the form of deposits. Importantly, oxidized γ-synuclein can initiate α-synuclein aggregation. Two amino acid residues in γ-synuclein, methionine and tyrosine located in neighboring positions (Met(38) and Tyr(39)), are most easily oxidized. Their oxidation plays a key role in the ability of γ-synuclein to aggregate and seed the aggregation of α-synuclein. γ-Synuclein secreted from neuronal cells into conditioned medium in the form of exosomes can be transmitted to glial cells and cause the aggregation of intracellular proteins. Our data suggest that post-translationally modified γ-synuclein possesses prion-like properties and may induce a cascade of events leading to synucleinopathies.  相似文献   

8.
It has been demonstrated that both oligomerisation and accumulation of α-synuclein (ASN) are the key molecular processes involved in the pathophysiology of neurodegenerative diseases such as Parkinson’s disease, Alzheimer’s disease and other synucleinopathies. Alterations of ASN expression and impairment of its degradation can lead to the formation of intracellular deposits of this protein, called Lewy bodies. Overexpressed or misfolded ASN could be secreted to the extracellular space. Today the prion-like transmission of ASN oligomers to neighbouring cells is believed to be responsible for protein modification and propagation of neurodegeneration in the brain. It was presented that oxidative/nitrosative stress may play a key role in ASN secretion and spread of ASN pathology. Moreover, ASN-evoked protein oxidation, nitration and nitrosylation lead to disturbances in synaptic transmission and cell death. The interaction of secreted ASN with other amyloidogenic proteins and its involvement in irreversible mitochondrial disturbances and oxidative stress were also described. A better understanding of the mechanisms of ASN secretion and dysfunction may help to explain the molecular mechanisms of neurodegeneration and may be the basis for the development of novel therapeutic strategies.  相似文献   

9.
Morris M  Koyama A  Masliah E  Mucke L 《PloS one》2011,6(12):e29257
Many neurodegenerative diseases are increasing in prevalence and cannot be prevented or cured. If they shared common pathogenic mechanisms, treatments targeting such mechanisms might be of benefit in multiple conditions. The tau protein has been implicated in the pathogenesis of diverse neurodegenerative disorders, including Alzheimer's disease (AD) and Parkinson's disease (PD). Tau reduction prevents cognitive deficits, behavioral abnormalities and other pathological changes in multiple AD mouse models. Here we examined whether tau reduction also prevents motor deficits and pathological alterations in two mouse models of PD, generated by unilateral striatal injection of 6-hydroxydopamine (6-OHDA) or transgene-mediated neuronal expression of human wildtype α-synuclein. Both models were evaluated on Tau(+/+), Tau(+/-) and Tau(-/-) backgrounds in a variety of motor tests. Tau reduction did not prevent motor deficits caused by 6-OHDA and slightly worsened one of them. Tau reduction also did not prevent 6-OHDA-induced loss of dopaminergic terminals in the striatum. Similarly, tau reduction did not prevent motor deficits in α-synuclein transgenic mice. Our results suggest that tau has distinct roles in the pathogeneses of AD and PD and that tau reduction may not be of benefit in the latter condition.  相似文献   

10.
Therapeutic efforts in neurodegenerative diseases have been very challenging, particularly due to a lack of validated and mechanism-based therapeutic targets and biomarkers. The basic idea underlying the novel therapeutic approaches reviewed here is that by exploring the molecular basis of neurodegeneration in a rare lysosomal disease such as Gaucher’s disease (GD), new molecular targets will be identified for therapeutic development in common synucleinopathies. Accumulation of α-synuclein plays a key role in the pathogenesis of Parkinson’s disease (PD) and other synucleinopathies, suggesting that improved clearance of α-synuclein may be of therapeutic benefit. To achieve this goal, it is important to identify specific mechanisms and targets involved in the clearance of α-synuclein. Recent discovery of clinical, genetic, and pathological linkage between GD and PD offers a unique opportunity to examine lysosomal glucocerebrosidase, an enzyme mutated in GD, for development of targeted therapies in synucleinopathies. While modulation of glucocerebrosidase and glycolipid metabolism offers a viable approach to treating disorders associated with synuclein accumulation, the compounds described to date either lack the ability to penetrate the CNS or have off-target effects that may counteract or limit their capabilities to mediate the desired pharmacological action. However, recent emergence of selective inhibitors of glycosphingolipid biosynthesis and noninhibitory pharmacological chaperones of glycosphingolipid processing enzymes that gain access to the CNS provide a novel approach that may overcome some of the limitations of compounds reported to date. These new strategies may allow for development of targeted treatments for synucleinopathies that affect both children and adults.  相似文献   

11.
The misfolding and progressive aggregation of specific proteins in selective regions of the nervous system is a seminal occurrence in many neurodegenerative disorders, and the interaction between pathological/toxic proteins to cause neurodegeneration is a hot topic of current neuroscience research. Despite clinical, genetic and experimental differences, increasing evidence indicates considerable overlap between synucleinopathies, tauopathies and other protein-misfolding diseases. Inclusions, often characteristic hallmarks of these disorders, suggest interactions of pathological proteins enganging common downstream pathways. Novel findings that have shifted our understanding in the role of pathologic proteins in the pathogenesis of Alzheimer, Parkinson, Huntington and prion diseases, have confirmed correlations/overlaps between these and other neurodegenerative disorders. Emerging evidence, in addition to synergistic effects of tau protein, amyloid-β, α-synuclein and other pathologic proteins, suggests that prion-like induction and spreading, involving secreted proteins, are major pathogenic mechanisms in various neurodegenerative diseases, depending on genetic backgrounds and environmental factors. The elucidation of the basic molecular mechanisms underlying the interaction and spreading of pathogenic proteins, suggesting a dualism or triad of neurodegeneration in protein-misfolding disorders, is a major challenge for modern neuroscience, to provide a deeper insight into their pathogenesis as a basis of effective diagnosis and treatment.  相似文献   

12.
《Autophagy》2013,9(6):860-861
Gangliosides are abundantly expressed in the nervous system, and deregulated expression or activity of gangliosides is associated with the progression of various disorders, including lysosomal storage diseases, Guillian-Barre syndrome, and Alzheimer disease. By contrast, previous studies show that GM1 ganglioside may act in a protective manner in the drug (e.g., MPTP and 6-OHDA)-induced Parkinsonian models, although the precise mechanisms have not been well addressed. In our recent publication, dementia with Lewy bodies (DLB)-linked neuroblastoma cells were treated with D-Threo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol (PDMP), an inhibitor of glycosyl ceramide synthetase. These PDMP-treated cells develop lysosomal diseases characterized by reduced lysosomal activity, enhanced lysosomal permeability and cytotoxicity. Furthermore, PDMP-mediated inhibition of autophagy-lysosomal pathway result in both accumulation of α-synuclein and mutant β-synuclein. Finally, these phenotypes are reversed by ganglioside treatment. Taken together, our results suggest that endogenous gangliosides may play a protective role against the lysosomal pathology of synucleinopathies.  相似文献   

13.
The conversion of soluble peptides and proteins into amyloid fibrils and/or intermediate oligomers is believed to be the central event in the pathogenesis of most human neurodegenerative diseases. Existing treatments are at best symptomatic. Accordingly, small molecule inhibitors of amyloid fibril formation and their mechanisms are of great interest. Here we report that the conformational changes undergone by α -synuclein as it assembles into amyloid fibrils can be detected by epitope-specific antibodies. We show that the conformations of polyphenol-bound α-synuclein monomers and dimers differ from those of unbound monomers and resemble amyloid fibrils. This strongly suggests that small molecule inhibitors bind and stabilize intermediates of amyloid fibril formation, consistent with the view that inhibitor-bound molecular species are on-pathway intermediates.  相似文献   

14.
Synucleinopathies are a group of neurodegenerative disorders associated with the formation of aberrant amyloid inclusions composed of the normally soluble presynaptic protein α-synuclein (α-syn). Parkinson disease is the most well known of these disorders because it bears α-syn pathological inclusions known as Lewy bodies (LBs). Mutations in the gene for α-syn, including the E46K missense mutation, are sufficient to cause Parkinson disease as well as other synucleinopathies like dementia with LBs. Herein, we describe transgenic mice expressing E46K human α-syn in CNS neurons that develop detrimental age-dependent motor impairments. These animals accumulate age-dependent intracytoplasmic neuronal α-syn inclusions that parallel disease and recapitulate the biochemical, histological, and morphological properties of LBs. Surprisingly, the morphology of α-syn inclusions in E46K human α-syn transgenic mice more closely resemble LBs than the previously described transgenic mice (line M83) that express neuronal A53T human α-syn. E46K human α-syn mice also develop abundant neuronal tau inclusions that resemble neurofibrillary tangles. Subsequent studies on the ability of E46K α-syn to induce tau inclusions in cellular models suggest that both direct and indirect mechanisms of protein aggregation are probably involved in the formation of the tau inclusions observed here in vivo. Re-evaluation of presymptomatic transgenic mice expressing A53T human α-syn reveals that the formation of α-syn inclusions in mice must be synchronized; however, inclusion formation is diffuse within affected areas of the neuroaxis such that there was no clustering of inclusions. Collectively, these findings provide insights in the mechanisms of formation of these aberrant proteinaceous inclusions and support the notion that α-syn aggregates are involved in the pathogenesis of human diseases.  相似文献   

15.
Parkinson's disease (PD), an adult neurodegenerative disorder, has been clinically linked to the lysosomal storage disorder Gaucher disease (GD), but the mechanistic connection is not known. Here, we show that functional loss of GD-linked glucocerebrosidase (GCase) in primary cultures or human iPS neurons compromises lysosomal protein degradation, causes accumulation of α-synuclein (α-syn), and results in neurotoxicity through aggregation-dependent mechanisms. Glucosylceramide (GlcCer), the GCase substrate, directly influenced amyloid formation of purified α-syn by stabilizing soluble oligomeric intermediates. We further demonstrate that α-syn inhibits the lysosomal activity of normal GCase in neurons and idiopathic PD brain, suggesting that GCase depletion contributes to the pathogenesis of sporadic synucleinopathies. These findings suggest that the bidirectional effect of α-syn and GCase forms a positive feedback loop that may lead to a self-propagating disease. Therefore, improved targeting of GCase to lysosomes may represent a specific therapeutic approach for PD and other synucleinopathies.  相似文献   

16.
Neuronal protein α-synuclein (α-syn) is an essential player in the development of neurodegenerative diseases called synucleinopathies. A spontaneous autosomal recessive rat model for neurodegeneration was developed in our laboratory. These rats demonstrate progressive increases in α-syn in the brain mesencephalon followed by loss of dopaminergic terminals in the basal ganglia (BG) and motor impairments. The severity of pathology is directly related to the overexpression of α-syn and parallel decrease in dopamine (DA) level in the striatum (ST) of affected rats. The neurodegeneration in this model is characterized by the presence of perikarya and neurites Lewis bodies (LB) and diffuse marked accumulation of perikaryal α-syn in the substantia nigra (SN), brain stem (BS), and striatum (ST) along with neuronal loss. Light and ultrastructural analyses revealed that the process of neuronal degeneration is a 'dying back' type. The disease process is accompanied by gliosis and release of inflammatory cytokines. This neurodegeneration is a multisystemic disease and implicate α-syn as a major factor in the pathogenesis of this inherited autosomal recessive animal model. Decrease dopamine (DA) and overexpression of α-syn in the brain mesencephalon may provide a naturally occurring animal model for Parkinson's disease (PD) and other synucleinopathies that reproduces significant pathological, neurochemical, and behavioral features of the human disease.  相似文献   

17.
Genetic and biochemical abnormalities of α-synuclein are associated with the pathogenesis of Parkinson's disease. In the present study we investigated the in vivo interaction of mouse and human α-synuclein with the potent parkinsonian neurotoxin, MPTP. We find that while lack of mouse α-synuclein in mice is associated with reduced vulnerability to MPTP, increased levels of human α-synuclein expression is not associated with obvious changes in the vulnerability of dopaminergic neurons to MPTP. However, expressing human α-synuclein variants (human wild type or A53T) in the α-synuclein null mice completely restores the vulnerability of nigral dopaminergic neurons to MPTP. These results indicate that human α-synuclein can functionally replace mouse α-synuclein in regard to vulnerability of dopaminergic neurons to MPTP-toxicity. Significantly, α-synuclein null mice and wild type mice were equally sensitive to neurodegeneration induced by 2'NH(2)-MPTP, a MPTP analog that is selective for serotoninergic and noradrenergic neurons. These results suggest that effects of α-synuclein on MPTP like compounds are selective for nigral dopaminergic neurons. Immunoblot analysis of β-synuclein and Akt levels in the mice reveals selective increases in β-synuclein and phosphorylated Akt levels in ventral midbrain, but not in other brain regions, of α-synuclein null mice, implicating the α-synuclein-level dependent regulation of β-synuclein expression in modulation of MPTP-toxicity by α-synuclein. Together these findings provide new mechanistic insights on the role α-synuclein in modulating neurodegenerative phenotypes by regulation of Akt-mediated cell survival signaling in vivo.  相似文献   

18.
Lysosomes are ubiquitous organelles with a fundamental role in maintaining cellular homeostasis by mediating degradation and recycling processes. Cathepsins are the most abundant lysosomal hydrolyses and are responsible for the bulk degradation of various substrates. A correct autophagic function is essential for neuronal survival, as most neurons are post-mitotic and thus susceptible to accumulate cellular components. Increasing evidence suggests a crucial role of the lysosome in neurodegeneration as a key regulator of aggregation-prone and disease-associated proteins, such as α-synuclein, β-amyloid and huntingtin. Particularly, alterations in lysosomal cathepsins CTSD, CTSB and CTSL can contribute to the pathogenesis of neurodegenerative diseases as seen for neuronal ceroid lipofuscinosis, synucleinopathies (Parkinson's disease, Dementia with Lewy Body and Multiple System Atrophy) as well as Alzheimer's and Huntington's disease. In this review, we provide an overview of recent evidence implicating CTSD, CTSB and CTSL in neurodegeneration, with a special focus on the role of these enzymes in α-synuclein metabolism. In addition, we summarize the potential role of lysosomal cathepsins as clinical biomarkers in neurodegenerative diseases and discuss potential therapeutic approaches by targeting lysosomal function.  相似文献   

19.
Mutations of the leucine-rich repeat kinase 2 (LRRK2) gene are the leading cause of genetically inherited Parkinson’s disease (PD) and its more severe variant diffuse Lewy body disease (DLB). Pathological mutations in Lrrk2 are autosomal dominant, suggesting a gain of function. Mutations in α-synuclein also produce autosomal dominant disease. Here we report an interaction between Lrrk2 and α-synuclein in a series of diffuse Lewy body (DLB) cases and in an oxidative stress cell based assay. All five cases of DLB, but none of five controls, showed co-immunoprecipitation of Lrrk2 and α-synuclein in soluble brain extracts. Colocalization was also found in pathological deposits in DLB postmortem brains by double immunostaining. In HEK cells transfected simultaneously with plasmids expressing Lrrk2 and α-synuclein, co-immunoprecipitation of Lrrk2 and α-synuclein was detected when they were exposed to oxidative stress by H2O2. Taken together, these results suggest the possibility that in PD and related synucleinopathies, oxidative stress upregulates α-syn and Lrrk2 expression, paving the way for pathological interactions. New therapeutic approaches to PD and the synucleinopathies may result from limiting the interaction between Lrrk2 and α-synuclein.  相似文献   

20.
Protein homeostasis, or proteostasis, is the process of maintaining the conformational and functional integrity of the proteome. The failure of proteostasis can result in the accumulation of non-native proteins leading to their aggregation and deposition in cells and in tissues. The amyloid fibrillar aggregation of the protein α-synuclein into Lewy bodies and Lewy neuritis is associated with neurodegenerative diseases classified as α-synucleinopathies, which include Parkinson's disease and dementia with Lewy bodies. The small heat-shock proteins (sHsps) are molecular chaperones that are one of the cell's first lines of defence against protein aggregation. They act to stabilise partially folded protein intermediates, in an ATP-independent manner, to maintain cellular proteostasis under stress conditions. Thus, the sHsps appear ideally suited to protect against α-synuclein aggregation, yet these fail to do so in the context of the α-synucleinopathies. This review discusses how sHsps interact with α-synuclein to prevent its aggregation and, in doing so, highlights the multi-faceted nature of the mechanisms used by sHsps to prevent the fibrillar aggregation of proteins. It also examines what factors may contribute to α-synuclein escaping the sHsp chaperones in the context of the α-synucleinopathies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号