首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The surface sediment diatom analysis of 28 Algoma lakes (pH 4.40–8.13) indicates that even though each lake has a widely different aquatic environment and characteristic diatom assemblage, a definite relationship exists between the lake water pH and their diatom assemblages. In the acidic lakes acidobiontic and acidophilous diatom species predominate whereas in circumneutral and alkaline lakes circumneutral and alkaliphilous diatoms were most common. Cluster analysis of the pH indicator diatom assemblages grouped the study lakes into three distinct cluster groups. These groups also closely corresponded to lake water pH. On the basis of published ecological information as well as their presence in our study lakes, the pH indicator status of a number of diatom taxa have been discussed. A detailed listing of the diatom taxa identified and their pH indicator status is provided in order to facilitate their use in future diatom-inferred pH studies.  相似文献   

2.
The benthic fauna was examined in a series of four isolated headwater lakes, displaying a pH gradient of 5.4–7.0. A slight reduction in number of taxa present occurred below pH 6, with the fauna below 3 m dominated by the Diptera. Although epibenthic gastropods were rare, in contrast with European studies, Amphipoda, Ephemeroptera and Pisidium were common in the least buffered lake, which experiences spring pH values as low as 4.7. There were little relation between the pH or alkalinity, and the abundance, and biomass of the fauna at depths greater than 3 m. However, biomass of the littoral fauna increased significantly in the lakes with lower pH, as a result of an increase in large littoral species normally susceptible to fish predation.  相似文献   

3.
The pH history of lakes can be inferred from diatom remains in dated sediment cores. To derive transfer functions for pH inference in acidic lakes, we counted diatoms in surface-sediment from 31 soft-water lakes in n. New England (NE) and 36 in Norway (N), covering pH 4.4–7.1. Cluster analysis of each data set indicates that pH 6 is an upper limit for a group of similar diatom assemblages. For each set, we developed multiple linear regressions to relate three versions of the diatom data to pH of surface-waters: (1) relative frequencies of selected diatom taxa, (2) the first principal component (1 PC) of these frequencies, and (3) the frequencies of Hustedt pH groups. Also, simple linear regressions were developed for two versions: (1) Index B and (2) Index Alpha, both based on pH groups. Regressions were run separately for lakes with pH 6; these are most relevant for pH inference in acidic lakes. The best regressions (N: taxa & 1 PC taxa) have r2 0.69–0.91 and Se 0.24–0.31 pH units, the worst (NE: log alpha) have r2 0.27–0.57 and Se 0.51. In all cases, errors for NE are greater than N, partly due to greater diversity of NE lakes. Regressions based on pH groups (directly & by indices) have smaller r2 and larger Se than those based on taxa and 1 taxa. The Index Alpha is least useful because its requirement for alkaline diatom units is unsatisfied at many acidic lakes. Regressions based on taxa may give erratic pH inferences due to sensitivity to unusual frequencies of individual taxa; this effect is reduced by using 1 PC taxa. Four regressions based on pH 6 lakes were used for inferring pH in a 210Pb dated core from Nedre Målmesvatn, N (now pH 4.6). There is good agreement among three of the four (not for the regression based directly on taxa) that there has been a decrease of ca. 0.6 pH units starting in the late 1800's.  相似文献   

4.
Test fishing with multimesh gillnets was performed in 103 acidified Swedish lakes before and 2–4 years after liming. In a subset of 39 lakes additional test fishing was carried out 5–9 years after liming. Taking into account the sampling biases due to differences between water temperature and number of nets used on different sampling occasions, an increase of the total CPUE, the number of species caught and recruitment of dominating species was evident after liming. Decreased recruitment was found for perch (Perca fluviatilis) at a pH below 5.2 and for roach (Rutilus rutilus) at a pH below 6.1. During the acidification phase and 2–4 years after liming acid-tolerant perch dominated the lakes, but when a longer time had elapsed after liming species dominance shifted and acid-sensitive planktivorous species increased in CPUE while perch decreased.  相似文献   

5.
J. Green 《Hydrobiologia》1993,267(1-3):249-256
Abstract The zooplankton of 38 East African lakes has been analysed in terms of species richness and dominance. The conductivities of the lakes range from 48 to 72 500 µS cm–1 20 °C. The lakes generally contain more species of rotifers than either Copepoda or Cladocera. The number of species of rotifers begins to decline at a conductivity below 1000 µS cm–1, and falls to 2 or 3 species above 3000 µS cm–1. Similar reductions occur in the Copepoda and Cladocera.Many species can be dominant at conductivities below 1000 µS cm–1, but the range is restricted progressively with increasing salinity. The dominant species of Rotifera, Copepoda and Cladocera change independently along the salinity gradient, but there are indications of interactions and modifications of community structure by predation and competition.  相似文献   

6.
In autumn 1986, six small lakes at different stages of acidification were stocked with one-summer-old whitefish, Coregonus pallasi Valenciennes 1848, in order to see whether whitefish stocking would be a suitable method for the mitigation of acidification effects. In two of the lakes the introduction was a complete failure: the whitefish did not survive, evidently due to high acidity and high aluminium concentrations of the lake waters. In one of the most acidified lakes (pH 4.3–4.8, Allab 29–125 g 1–1) and in two less acidic lakes (pH 5.0–5.2 and 5.4–6.4), introduction was successful. Three years after the introduction, the mean weights of the fish in those three lakes were 580, 250 and 360 g respectively, with the weight and also the condition factor of stocked whitefish being highest in the most acidified lake. In that lake there were few or no fish present during the introduction, whereas in the less acid lakes there were dense populations of perch and therefore a potential interspecific competition for food. Different availability of food in the lakes was presumed to be the main reason for the growth differences. Plasma Na+ and Cl concentrations of whitefish were lower in the acidic lakes than in the lake with pH around 6 three years after stocking. This suggests that, despite the good growth and highest condition factor of whitefish in the most acid lake, the fish still experienced some acid stress.  相似文献   

7.
Packroff  Gabriele 《Hydrobiologia》2000,433(1-3):157-166
The planktonic protozoa, especially ciliates, were analysed in five mining lakes of various pH and acidity values in the Lusatian and mid-German mining area. Heliozoa were the main protozoan component in the very low pH (<2.9) lakes. In the lakes with pH >2.9, the ciliate community consisted of Hypotrichida, Prostomatida and Peritrichida. The species diversity of the ciliate community was reduced and typical representatives of plankton ciliates were lacking. During periods when populations were at their peak, the cell numbers and biomass of ciliates were comparable to those neutral lakes, reaching maximum values of 30 000 cells l–1 and 0.3 mg l–1. Cell numbers and biomass peaks appeared without a clear seasonal pattern but in some cases a correlation to phytoplankton dynamics was recognizable.  相似文献   

8.
A 7 year study (1992–1998) of littoral microcrustaceans (Cladocera and Copepoda) in the watercourse of the River Rore, South Norway, illustrates that qualitative data on cladocerans and copepods are well suited to indicate the recovery of lakes following liming. Eight limed, two acid and two circum neutral reference lakes, were sampled twice a year (June/July and September/October). In the limed lakes, species associated with neutral lakes have become more common, whereas apparently acid-tolerant species have become rarer. In Lake Rore and Lake Syndle, the two largest limed lakes which exhibited a gradual increase in pH, the changes in species composition indicated that these lakes were about to recover. Species composition in Lake Røynelandsvatn, which has reacidified after liming, first reflected improved water quality, then reverted to dominance by acid-tolerant species. In the remaining lakes, the species composition reflects a fauna which has recovered compared with the preliming situation. There is strong evidence, however, that temporary fluctuations in pH have a negative influence on the speed of recovery, confirming the importance of keeping pH stable.  相似文献   

9.
The mid-summer phytoplankton communities of more than 100 Adirondack lakes ranging in pH from 4.0 to 7.2 were characterized in relation to 25 physical-chemical parameters. Phytoplankton species richness declined significantly with increasing acidity. Acidic lakes (pH < 5.0) averaged fewer than 20 species while more circumneutral waters (pH > 6.5) averaged more than 33 species. Phytoplankton abundance was not significantly correlated with any of the measured physical-chemical parameters, but standing crop parameters, i.e., chlorophyll a and phytoplankton biovolume, did correlate significantly with several parameters. Midsummer standing crop correlated best with total phosphorus concentration but acidity status affected the standing crop-phosphorus relationship. Circumneutral waters of low phosphorus content, i.e. < 10 µg·1–1 TP, averaged 3.62 µg·1–1 chlorophyll a whereas acidic lakes of the same phosphorus content averaged only 1.96 µg·1–1 chlorophyll a. The midsummer chlorophyll content of lakes of high phosphorus content, i.e. > 10 µg·1–1 TP, was not significantly affected by acidity status.Adirondack phytoplankton community composition changes with increasing acidity. The numbers of species in midsummer collections within all major taxonomic groups of algae are reduced with increasing acidity. The midsummer phytoplankton communities of acidic Adirondack lakes can generally be characterized into four broad types; 1) the depauperate clear water acid lake assemblage dominated by dinoflagellates, 2) the more diverse oligotrophic acid lake community dominated by cryptomonads, green algae, and chrysophytes, 3) the productive acid lake assemblage dominated by green algae, and 4) the chrysophyte dominated community. The major phytoplankton community types of acid lakes are associated with different levels of nutrients, aluminum concentrations, and humic influences.  相似文献   

10.
Spring phytoplankton of 54 small lakes in southern Finland   总被引:4,自引:4,他引:0  
Lauri Arvola 《Hydrobiologia》1986,137(2):125-134
The abundance and species composition of phytoplankton communities were studied rapidly following the spring ice-melt in 54 small Finnish lakes that form a unique mosaic of water bodies. Phytoplankton biomass and cell density varied among the study lakes with a factor 100 between the lowest and highest values. Highest biomass and densities of phytoplankton characterized small ( < 0.05 km2) lakes with moderate or high water colour (> 80 mg Pt l–1). In contrast, biomass was low in clear-water lakes and lakes where water throughflow was strong. Typically one species dominated most phytoplankton communities, and usually comprised up to about 45% of the total phytoplankton biomass. Two-thirds of the 103 taxa observed were Chrysophyceans and Chlorophyceans. The most common taxa wereChlamydomonas spp. (Chlorophyceae) andCryptomonas ovata (Cryptophyceae).  相似文献   

11.
Seasonality of phytoplankton in some South Indian lakes   总被引:2,自引:2,他引:0  
A. R. Zafar 《Hydrobiologia》1986,138(1):177-187
The landscape of South India is dotted with innumerable man-made lakes. They differ vastly in age, physiography, water flow characteristics, chemistry and trophic state, yet maintain a phytoplankton overwhelmingly dominated (43–93%) by blue-green algae; the subdominants are diatoms and/or Chlorococcales and euglenoids. The blue-greens apparently reach them from soils which are known to harbour a rich blue-green flora and several species in common with limnoplankton.South Indian lakes resemble some tropical counterparts in sustaining dense phytoplankton populations all the year round and temperate dimictic ones in showing two annual growth peaks that usually occur in summer (February–May) and the post-monsoon period (October–November), in synchrony with rise in temperature. In the chemically more oligotrophic lakes, the peaks are constituted by Raphidiopsis mediterranea Skuja, Navicula cryptocephala Kütz., Melosira granulata (Ehr.) Ralfs, and others and in hypereutrophic lakes by Microcystis aeruginosa Kütz., Synechocystis aquatilis Sauv., Oscillatoria spp., Burkillia coronata West & West and Euglena acus Ehr. The bimodal seasonality in abundance of phytoplankton reflects in chlorophyll and biomass concentrations although these are not in strict synchrony with each other. At the maxima chlorophyll a and over-dry biomass may rise to 8.5 mg l–1 and 204 mg l–1 respectively in highly productive waters. The highest rate of carbon assimilation recorded in such phases is 10.6 g C m–3 d–1.  相似文献   

12.
Horizontal and temporal patterns in crustacean zooplankton communities were analyzed in two small, oligotrophic lakes which were morphologically and chemically similar, but had contrasting fish communities. Ranger Lake was dominated by two bass species and the planktivores numbered < 25 ind. ha–1. Mouse Lake had no large piscivores and planktivores numbered > 1200 ind. ha–1. There were significant differences in the distribution of zooplankton taxa and size classes between sampling stations. In Ranger Lake, the smallest size classes were more abundant at the deeper stations and the larger individuals were more abundant at the shallower stations. In Mouse Lake, the smaller individuals were more common at the shallow stations and the larger individuals were more common at the deeper stations. These differences suggest medium scale patterns induced by vectorial forces, but modified by species specific migration patterns. We tested the hypothesis that horizontal heterogeneity should be influenced by planktivore density and found that none of the taxa showed significant between-lake differences in the variance-mean regressions. We also tested the hypothesis that larger taxa should be more heterogeneous and we found that cladocerans were more heterogeneous than copepods and nauplii. In terms of sampling methodology our data suggest that the between-station variability was so high that a single mid-lake sample would certainly lead to completely unacceptable errors in the estimation of population densities and biomasses.  相似文献   

13.
Summary The plankton of twelve freshwater and slightly saline lakes in the Vestfold Hills, Antarctica was sampled in February 1991. All of the lakes are oligotrophic. The chlorophyll a concentrations in the lakes ranged from 0.10–2.69 g · 1–1. The majority of the phytoplankton were flagellates or picoplanktonic cyanobacteria with the species composition varying between the lakes. Cyanobacteria were found in five of the lakes. Five to 6 species of ciliated protozoa occurred, among them oligotrichs, including the mixotrophic species Strombidium viride. The concentrations of protists and bacteria were an order to several orders of magnitude lower than reported from lower latitude oligotrophic lakes. Low species diversity and low numbers in the plankton characterise these eastern Antarctica lakes which reflects their low nutrient status and isolation.  相似文献   

14.
Saline lakes of the Paroo,inland New South Wales,Australia   总被引:11,自引:11,他引:0  
B. V. Timms 《Hydrobiologia》1993,267(1-3):269-289
Twenty-five lakes from fresh to crystallizing brine in the semi-desert of northwestern New South Wales, Australia, were studied regularly for 27 months. The lakes are small, shallow and ephemeral. Chemically waters are mainly of the NaCl type. Seventy-four species of invertebrate occur in saline waters (>3 g l–1) with crustaceans such as Parartemia minuta, Apocyclops dengizicus, Daphniopsis queenslandensis, Diacypris spp. and Reticypris spp. dominant, particularly at higher salinities. The insects Tanytarsus barbitarsis and Berosus munitipennis are also important in meso- and hypersaline lakes. They are joined in hypo- and mesosaline waters by many others, including more beetles, odonatans, trichopterans, pyralids, notonectids, and corixids. Species richness declines with increasing salinity. There is a prominent inland faunal component mainly of crustaceans, including P. minuta, D. queenslandensis, R. walbu, Trigonocypris globulosa and Moina baylyi.  相似文献   

15.
In a survey of eight lake systems located in north-central Florida, total zooplankton abundance showed a strong positive correlation (r2=0.87, a=0.01) with trophic state. Zooplankton abundance averaged 1.0 × 105 organisms · m–2 in oligotrophic systems and up to 8.2 × 105 organisms · m–2 in the eutrophic systems. Seasonal variations in total abundance were greatest in the eutrophic lakes where rotifers dominated and periodically produced sharp population peaks (approaching 2.0 × 106· m–2). In contrast, the more oligotrophic systems had relatively stable levels of total abundance and were dominated by copepods. Diversities of the major taxa in the lakes were variable with one to three species of copepods, zero to four species of cladocera, and two to seven species of rotifers dominant at any one time. Planktonic cladoceran communities were often composed of only one or two species. Low cladocera diversity in these subtropical systems was suggestive of increased predation pressure on this group of crustaceans. A comparison of the total crustacean abundance in the Florida systems to those of some of the Great Lakes indicated that lower standing crops of crustacean zooplankton in the Florida lakes may be a response to both predation and temperature.Contribution Number 043, Marine Science Programs Laboratory, Dauphin Island, Alabama, U.S.A.Contribution Number 043, Marine Science Programs Laboratory, Dauphin Island, Alabama, U.S.A.  相似文献   

16.
Cumming  Brian F.  Smol  John P. 《Hydrobiologia》1993,(1):179-196
Diatoms were identified and enumerated from the surface sediments of 65 lakes located on the Cariboo and Chilcotin Plateaux (British Columbia, Canada). These lakes span a large gradient in lakewater ionic concentration (fresh through hypersaline) and composition, as well as other physical/chemical variables. Almost all of the study lakes had higher salinities in the late-summer than in the spring. The lakes with spring salinities >8 g l–1 showed the largest seasonal increases in salinity. Ionic composition was similar in the spring and late-summer for most lakes. Both ionic concentration (i.e. salinity) and composition were important environmental variables that could account for the different diatom floras in the lakes. Diatom assemblages characteristic of carbonate-dominated and sulfate-dominated waters were identified. Other variables such as water depth and phosphorus concentration were also important.The majority (87%) of diatom taxa had estimated salinity optima < 3 g l–1 Halophilic diatom taxa had broader tolerances to salinity when compared to the fresh water taxa, however taxa with narrow and broad tolerances could be identified across the salinity gradient. Species diversity was weakly but significantly correlated to lakewater salinity (r 2 = 0.18 to 0.3, P < 0.05).Salinity inference models were developed based on the relationship between the diatom assemblages and the spring, late-summer and average salinity. The correlations between the measured and diatominferred salinity, based on the spring (r = 0.95), late-summer (r = 0.94) and average (r = 0.95) salinity data, are high because there was an extremely strong correlation (r = 0.98) between the log transformed spring and late-summer measured salinities. These salinity reconstruction models provide a tool that can be used to infer past climatic changes as part of paleolimnological studies from appropriate closed-basin lakes in British Columbia.  相似文献   

17.
Brett  Michael T. 《Hydrobiologia》1989,(1):181-189
The structure of the rotifer community in relation to lake pH, trophic status, the type of planktivore assemblage and the crustacean community was assessed in a survey of 23 lakes ranging in pH from 4.4 to 7.3, and in a study of two lakes — one acidic, the other circumneutral — during two summers. In both investigations the number of rotifer species encountered per sample was strongly reduced with pH. Although the reason for this is not clear acid-stress, the ultraoligotrophic nature of the acidic lakes, and competitive interactions with crustacean zooplankters may all have played a role. More importantly the ecological significance of this relationship is not known. The rotifer Keratella taurocephala was a principle species in the most acidic lakes, while several common rotifers were notably absent from these lakes. Although rotifer abundance was correlated with lake pH, the results of this study indicate that rotifer abundance is not a result of lake pH per se, but of lake trophic status and interactions with the crustacean community.  相似文献   

18.
The benthic communities of the saline lakes Abijata and Shala (Ethiopia)   总被引:1,自引:1,他引:0  
Lake Abijata lies in a shallow depression (maximum depth 8–9.5 m); the water is green with phytoplankton and it supports large fish and bird communities. Lake Shala lies in a deep caldera (maximum depth reputedly 260 m); phytoplankton is sparse and fish and bird communities scanty.Lakes Abijata and Shala, sampled in January, 1985, had conductivities of 14 000 and 21 000 microSiemens cm-1 at 25 °C respectively, mainly due to high sodium, carbonate and chloride ions. Calcium concentrations are very low.The benthic fauna was studied with an Ekman grab to a depth of 8.5 m in Abijata and 15.5 m in Shala and was found to be dense in both lakes but varying greatly in composition at different depths. In Abijata the benthos consisted mainly of Ostracoda and Chironomidae, and in Shala mainly of Tubificidae, Ostracoda and Chironomidae. There were very few Nematoda. No true halophilic species were found but the community consisted of euryhaline forms found also in non-saline waters. Predatory invertebrates were absent and many of the dominant species, notably of the Chironomidae, were different from those of non-saline lakes nearby.  相似文献   

19.
Macrozoobenthos of three Pennsylvania lakes: responses to acidification   总被引:3,自引:3,他引:0  
The littoral macrozoobenthos (MZB) of three northeastern Pennsylvania lakes was sampled seasonally from summer 1981 until summer 1983, to determine if any changes were occurring in response to acid deposition. In the acidified lake (total alkalinity 0.0 eq L–1) the mean pH decreased from 5.5 in 1981 to 4.2 in 1983. Chironomidae comprised 71.30% of the MZB numbers and 19.6% of the wet weight. Over the study period the wet weight of Chironomidae increased (p < 0.04) as did the total numbers of Chironomidae in general (p < 0.01) and Tanytarsini (p < 0.01) in particular. Total numbers of MZB also increased (p < 0.02) in the acidified lake, but there was no significant change in the number of taxa, diversity or total wet weight. In the moderately sensitive lake (total alkalinity 47.4 eq L–1, mean pH 6.1) Chironomidae were numerically (43%) dominant but Odonata (18.6%) and Mollusca (12.7%) dominated wet weight. There were no significant changes in the MZB of the moderately sensitive lake over the study period. In the least sensitive lake (total alkalinity 190 eq L–1, mean pH 6.6) the Amphipoda (31.3%) and Chironomidae (27.3%) together provided 58.6% of the MZB numbers, and the Mollusca formed 55.1% of wet weight. Wet weight at the least sensitive lake was higher (p < 0.01) and there were more Ephemeroptera, Pelecypoda and Gastropoda than at the other two lakes. There were no differences in total numbers, diversity or number of taxa among the three lakes.  相似文献   

20.
Mountain lakes in the Bohemian Forest, on both the Czech and German sides, were atmospherically acidified mainly in the 1960s–1980s and have since been recovering from acidification. In 2007, we performed the first complete study on littoral macroinvertebrates in all eight lakes. The goals of the study were to 1) compare macroinvertebrates in the lakes during the process of recovery and 2) investigate relations between the occurrence of taxa and water chemistry. Lake water pH varied from 4.6 to 5.7, concentrations of dissolved reactive Al and labile Al ranged from 118–601 and 11–470 μg L?1, respectively, and DOC concentrations were < 6 mg L?1. Altogether 73 taxa were identified from all lakes; a positive relationship was found between pH and the number of macroinvertebrate taxa. The highest number of taxa was found in the least acidic lakes Laka and Grosser Arbersee, including the mollusk Pisidium casertanum. In contrast, the lowest diversity was found in the most acidified ?ertovo jezero. Cluster analyses of macroinvertebrates and water chemistry suggested pH as the key factor influencing the occurrence of macroinvertebrate taxa. An interesting finding was the occurrence of the boreo-montane water beetle Nebrioporus assimilis in Prá?ilské record of this species in the Czech Republic since 1960.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号