首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The relationship between the xylose induced decrease in hexokinase PII activity and the derepression of invertase synthesis in yeast is described. When xylose was added to cells growing in a chemostat under nitrogen limitation, the catabolic repression was supressed as shown by the large increase on invertase levels even if glucose remained high. The glucose phosphorylating-enzymes were separated by hydroxylapatite chromatography and it is shown that the treatment with xylose is accompanied by a loss of 98% hexokinase PII and a 50% of the PI isoenzyme, whereas the levels of glucokinase as well as those of glucose-6-phosphate, fructose-6-phosphate, pyruvate and ATP remained unaffected.The analysis of the enzymes present in cells grown in ethanol, limiting glucose and high glucose, shows that hexokinase PII predominates in cells under catabolic repression, the opposite is true for glucokinase, whereas hexokinase PI remains unaffected.  相似文献   

2.
Genetic and biochemical analyses showed that hexokinase PII is mainly responsible for glucose repression in Saccharomyces cerevisiae, indicating a regulatory domain mediating glucose repression. Hexokinase PI/PII hybrids were constructed to identify the supposed regulatory domain and the repression behavior was observed in the respective transformants. The hybrid constructs allowed the identification of a domain (amino acid residues 102-246) associated with the fructose/glucose phosphorylation ratio. This ratio is characteristic of each isoenzyme, therefore this domain probably corresponds to the catalytic domain of hexokinases PI and PII. Glucose repression was associated with the C-terminal part of hexokinase PII, but only these constructs had high catalytic activity whereas opposite constructs were less active. Reduction of hexokinase PII activity by promoter deletion was inversely followed by a decrease in the glucose repression of invertase and maltase. These results did not support the hypothesis that a specific regulatory domain of hexokinase PII exists which is independent of the hexokinase PII catalytic domain. Gene disruptions of hexokinases further decreased repression when hexokinase PI was removed in addition to hexokinase PII. This proved that hexokinase PI also has some function in glucose repression. Stable hexokinase PI overproducers were nearly as effective for glucose repression as hexokinase PII. This showed that hexokinase PI is also capable of mediating glucose repression. All these results demonstrated that catalytically active hexokinases are indispensable for glucose repression. To rule out any further glycolytic reactions necessary for glucose repression, phosphoglucoisomerase activity was gradually reduced. Cells with residual phosphoglucoisomerase activities of less than 10% showed reduced growth on glucose. Even 1% residual activity was sufficient for normal glucose repression, which proved that additional glycolytic reactions are not necessary for glucose repression. To verify the role of hexokinases in glucose repression, the third glucose-phosphorylating enzyme, glucokinase, was stably overexpressed in a hexokinase PI/PII double-null mutant. No strong effect on glucose repression was observed, even in strains with 2.6 U/mg glucose-phosphorylating activity, which is threefold increased compared to wild-type cells. This result indicated that glucose repression is only associated with the activity of hexokinases PI and PII and not with that of glucokinase.  相似文献   

3.
The phosphorylation of glucose and fructose is an important step in regulating the supply of hexose sugars for biosynthesis and metabolism. Changes in leaf hexokinase (EC 2.7.1.1) activity and in vivo metabolite levels were examined during drying in desiccation-tolerant Sporobolus stapfianus and Xerophyta viscosa. Leaf hexokinase activity was significantly induced from 85% to 29% relative water content (RWC) in S. stapfianus and from 89% to 55% RWC in X. viscosa. The increase in hexokinase corresponded to the region of sucrose accumulation in both species, with the highest activity levels coinciding with region of net glucose and fructose removal. The decline of hexose sugars and accumulation of sucrose in both plant species was not associated with a decline in acid and neutral invertase. The increase in hexokinase activity may be important to ensure that the phosphorylation and incorporation of glucose and fructose into metabolism exceeded production from potential hydrolytic activity. Total cellular glucose-6-phosphate (Glc-6-P) and fructose-6-phosphate (Fru-6-P) levels were held constant throughout dehydration. In contrast to hexokinase, fructokinase activity was unchanged during dehydration. Hexokinase activity was not fully induced in leaves of S. stapfianus dried detached from the plant, suggesting that the increase in hexokinase may be associated with the acquisition of desiccation-tolerance.  相似文献   

4.
A selection system has been devised for isolating hexokinase PII structural gene mutants that cause defects in carbon catabolite repression, but retain normal catalytic activity. We used diploid parental strains with homozygotic defects in the hexokinase PI structural gene and with only one functional hexokinase PII allele. Of 3,000 colonies tested, 35 mutants (hex1r) did not repress the synthesis of invertase, maltase, malate dehydrogenase, and respiratory enzymes. These mutants had additional hexokinase PII activity. In contrast to hex1 mutants (Entian et al., Mol. Gen. Genet. 156:99-105, 1977; F.K. Zimmermann and I. Scheel, Mol. Gen. Genet. 154:75-82, 1977), which were allelic to structural gene mutants of hexokinase PII and had no catalytic activity (K.-D. Entian, Mol. Gen. Gent. 178:633-637, 1980), the hex1r mutants sporulated hardly at all or formed aberrant cells. Those ascospores obtained were mostly inviable. As the few viable hex1r segregants were sterile, triploid cells were constructed to demonstrate allelism between hex1r mutants and hexokinase PII structural gene mutants. Metabolite concentrations, growth rate, and ethanol production were the same in hex1r mutants and their corresponding wild-type strains. Recombination of hexokinase and glucokinase alleles gave strains with different specific activities. The defect in carbon catabolite repression was strongly associated with the defect in hexokinase PII and was independent of the glucose phosphorylating capacity. Hence, a secondary effect caused by reduced hexose phosphorylation was not responsible for the repression defect in hex1 mutants. These results, and those with the hex1r mutants isolated, strongly supported our earlier hypothesis that hexokinase PII is a bifunctional enzyme with (i) catalytic activity and (ii) a regulatory component triggering carbon catabolite repression (Entian, Mol. Gen. Genet. 178:633-637, 1980; K.-D. Entian and D. Mecke, J. Biol. Chem. 257:870-874, 1982).  相似文献   

5.
Abstract High hexokinase activity was not related to glucose repression in Candida utilis IGC 3092. The addition of Cibacron Blue 3G-A to growing cells in batch culture led to a permanent in vivo hexokinase inactivation, decreased growth rate and inhibited alcohol dehydrogenase. Hexokinase inactivation up to 90% did not alleviate glucose repression of α-glucosidase, as has been described for Saccharomyces cerevisiae and other yeasts. Moreover, when cells were physiologically derepressed by growing them in a chemostat at low glucose concentrations, the highest hexokinase activity was shown by the derepressed cells, and decreased as repression increased. Thus, in our strain of C. utilis , hexokinase activity was inversely proportional to glucose repression.  相似文献   

6.
Mutants of Saccharomyces cerevisiae resistant to carbon catabolite repression.   总被引:26,自引:0,他引:26  
Summary Mutants with defective carbon catabolite repression have been isolated in the yeast Saccharomyces cerevisiae using a selective procedure. This was based on the fact that invertase is a glucose repressible cell wall enzyme which slowly hydrolyses raffinose to yield fructose and that the inhibitory effects of 2-deoxyglucose can be counteracted by fructose. Repressed cells were plated on a raffinose-2-deoxyglucose medium and the resistant cells growing up into colonies were tested for glucose non-repressible invertase and maltase. The yield of regulatory mutants was very high. All were equally derepressed for invertase and maltase, no mutants were obtained with only non-repressible invertase synthesis which was the selected function. A total of 61 mutants isolated in different strains were allele tested and could be attributed to three genes. They were all recessive. Mutants in one gene had reduced hexokinase activities, the other class, located in a centromere linked gene, had elevated hexokinase levels and was inhibited by maltose. Mutants in a third gene were isolated on a 2-deoxyglucose galactose medium and had normal hexokinase levels. A partial derepression was observed for malate dehydrogenase in all mutants. Isocitrate lyase, however, was still fully repressible.  相似文献   

7.
The function of the N-terminal amino acids of Saccharomyces cerevisiae hexokinase II was studied in vivo using strains producing a form of hexokinase II lacking its first 15 amino acids (short form). This short form of hexokinase II was produced from a fusion between the promoter region of the PGK1 gene and the HXK2 coding sequence except the first 15 codons. As expected, the in vitro analysis of the short form protein by gel filtration chromatography indicates that the short protein does not form dimers under conditions where the wild-type protein dimerizes. Kinetic studies show that the enzymatic activities are very similar to wild-type behavior. The physiological experiments performed on the strains containing the fusion allele demonstrate that the short form of the enzyme is similar to the wild-type both in terms of phosphorylation of hexoses and glucose repression. We conclude that the N-terminal amino acids of hexokinase II are not required in vivo either for phosphorylation of hexoses or for glucose repression.  相似文献   

8.
Glucose repression in the yeast Saccharomyces cerevisiae   总被引:50,自引:0,他引:50  
  相似文献   

9.
The HXK2 gene is required for a variety of regulatory effects leading to an adaptation for fermentative metabolism in Saccharomyces cerevisiae. However, the molecular basis of the specific role of Hxk2p in these effects is still unclear. One important feature in order to understand the physiological function of hexokinase PII is that it is a phosphoprotein, since protein phosphorylation is essential in most metabolic signal transductions in eukaryotic cells. Here we show that Hxk2p exists in vivo in a dimeric-monomeric equilibrium which is affected by phosphorylation. Only the monomeric form appears phosphorylated, whereas the dimer does not. The reversible phosphorylation of Hxk2p is carbon source dependent, being more extensive on poor carbon sources such as galactose, raffinose, and ethanol. In vivo dephosphorylation of Hxk2p is promoted after addition of glucose. This effect is absent in glucose repression mutants cat80/grr1, hex2/reg1, and cid1/glc7. Treatment of a glucose crude extract from cid1-226 (glc7-T152K) mutant cells with λ-phosphatase drastically reduces the presence of phosphoprotein, suggesting that CID1/GLC7 phosphatase together with its regulatory HEX2/REG1 subunit are involved in the dephosphorylation of the Hxk2p monomer. An HXK2 mutation encoding a serine-to-alanine change at position 15 [HXK2 (S15A)] was to clarify the in vivo function of the phosphorylation of hexokinase PII. In this mutant, where the Hxk2 protein is unable to undergo phosphorylation, the cells could not provide glucose repression of invertase. Glucose induction of HXT gene expression is also affected in cells expressing the mutated enzyme. Although we cannot rule out a defect in the metabolic state of the cell as the origin of these phenomena, our results suggest that the phosphorylation of hexokinase is essential in vivo for glucose signal transduction.  相似文献   

10.
11.
Abstract Hexose phosphorylation was studied in Aspergillus nidulans wild-type and in a fructose non-utilising mutant ( frA ). The data indicate the presence of at least one hexokinase and one glucokinase in wild-type A. nidulans , while the fr A1 mutant lacks hexokinase activity. The A. nidulans gene encoding hexokinase was isolated by complementation of the fr A1 mutation. The absence of hexokinase activity in the fr A1 mutant did not interfere with glucose repression of the enzymes involved in alcohol and l-arabinose catabolism. This suggests that, unlike the situation in yeast where mutation of hexokinase PII abolishes glucose repression, the A. nidulans hexokinase might not be involved in glucose repression.  相似文献   

12.
13.
14.
Summary Hexokinase isoenzyme PI was cloned using a gene pool obtained from a yeast strain having only one functional hexokinase, isoenzyme PI. The gene was characterized using 20 restriction enzymes and located within a region of 2.0 kbp. The PI plasmid strongly hybridized with the PII plasmids isolated previously (Fröhlich et al. 1984). Hence there was a close relationship between the two genes, one of which must have been derived from the other by gene duplication. In conrrast, glucose repression was restored only in hexokinase PII transformants; PI transformants remained non-repressible. This observation provided additional evidence for the hypothesis of Entian (1980) that only hexokinase PII is necessary for glucose repression. Furthermore, glucose phosphorylating activity in PI transformants exceeded that of wild-type cells, giving clear evidence that the phosphorylating capacity is not important for glucose repression.  相似文献   

15.
Previously, we described a mutation glr1-1 in Saccharomyces carlsbergensis which pleiotropically relieves the synthesis of the following enzymes from glucose repression: maltase, galactokinase, alpha-galactosidase, NADH:cytochrome c reductase, and cytochrome c oxidase (C. A. Michels and A. Romanowski, J. Bacteriol, 143:674-679, 1980.) In this report, we demonstrate that glr1-1 and two other alleles, glr1-3 and glr1-16, are also insensitive to the glucose repression of invertase synthesis. Determinations of the levels of hexokinase activity and the rate of glucose transport in these mutants show that both are reduced as compared with the parent strain. Complementation tests and genetic analysis indicate that the glr1 mutations are allelic to HXK2, the structural gene for hexokinase B. The significance of this result is discussed with regard to the mechanism of glucose repression in S. carlsbergensis.  相似文献   

16.
Manipulation of cellular metabolism to maximize the yield and rate of formation of desired products may be achieved through genetic modification. Batch fermentations utilizing glucose as a carbon source were performed for three recombinant strains of Saccharomyces cerevisiae in which the glucose phosphorylation step was altered by mutation and genetic engineering. The host strain (hxk1 hxk2 glk) is unable to grow on glucose or fructose; the three plasmids investigated expressed hexokinase PI, hexokinase PII, or glucokinase, respectively, enabling more rapid glucose and fructose phosphorylation in vivo than that provided by wild-type yeast.Intracellular metabolic state variables were determined by 31P NMR measurements of in vivo fermentations under nongrowth conditions for high cell density suspensions. Glucose consumption, ethanol and glycerol production, and polysaccharide formation were determined by 13C NMR measurements under the same experimental conditions as used in the 31P NMR measurements. The trends observed in ethanol yields for the strains under growth conditions were mimicked in the nongrowth NMR conditions.Only the strain with hexokinase PI had higher rates of glucose consumption and ethanol production in comparison to healthy diploid strains in the literature. The hexokinase PII strain drastically underutilized its glucose-phosphorylating capacity. A regulation difference in the use of magnesium-free ATP for this strain could be a possible explanation. Differences in ATP levels and cytoplasmic pH values among the strains were observed that could not have been foreseen. However, cytoplasmic pH values do not account for the differences observed among in vivo and in vitro glucose phosphorylation activities of the three recombinant strains.  相似文献   

17.
The regulatory hexokinase PII mutants isolated previously (K.-D. Entian and K.-U. Fröhlich, J. Bacteriol. 158:29-35, 1984) were characterized further. These mutants were defective in glucose repression. The mutation was thought to be in the hexokinase PII structural gene, but it did not affect the catalytic activity of the enzyme. Hence, a regulatory domain for glucose repression was postulated. For further understanding of this regulatory system, the mutationally altered hexokinase PII proteins were isolated from five mutants obtained independently and characterized by their catalytic constants and bisubstrate kinetics. None of these characteristics differed from those of the wild type, so the catalytic center of the mutant enzymes remained unchanged. The only noticeable difference observed was that the in vivo modified form of hexokinase PII, PIIM, which has been described recently (K.-D. Entian and E. Kopetzki, Eur. J. Biochem. 146:657-662, 1985), was absent from one of these mutants. It is possible that the PIIM modification is directly connected with the triggering of glucose repression. To establish with certainty that the mutation is located in the hexokinase PII structural gene, the genes of these mutants were isolated after transforming a hexokinaseless mutant strain and selecting for concomitant complementation of the nuclear function. Unlike hexokinase PII wild-type transformants, glucose repression was not restored in the hexokinase PII mutant transformants. In addition mating experiments with these transformants followed by tetrad analysis of sporulated diploids gave clear evidence of allelism to the hexokinase PII structural gene.  相似文献   

18.
The mechanism of inactivation of hexokinase PII of Saccharomyces cerevisiae by D-xylose was characterized. Inactivation was dependent on the presence of MgATP and was irreversible. Inactivation involved phosphorylation of the protein. Observation of the carbon catabolite repression of selected enzymes showed that invertase and maltase synthesis were not repressed when hexokinase PII was phosphorylated.  相似文献   

19.
Type 2 diabetes is characterized by decreased rates of insulin-stimulated glucose uptake and utilization, reduced hexokinase II mRNA and enzyme production, and low basal levels of glucose 6-phosphate in insulin-sensitive skeletal muscle and adipose tissues. Hexokinase II is primarily expressed in muscle and adipose tissues where it catalyzes the phosphorylation of glucose to glucose 6-phosphate, a possible rate-limiting step for glucose disposal. To investigate the role of hexokinase II in insulin action and in glucose homeostasis as well as in mouse development, we generated a hexokinase II knock-out mouse. Mice homozygous for hexokinase II deficiency (HKII(-/-)) died at approximately 7.5 days post-fertilization, indicating that hexokinase II is vital for mouse embryogenesis after implantation and before organogenesis. HKII(+/-) mice were viable, fertile, and grew normally. Surprisingly, even though HKII(+/-) mice had significantly reduced (by 50%) hexokinase II mRNA and activity levels in skeletal muscle, heart, and adipose tissue, they did not exhibit impaired insulin action or glucose tolerance even when challenged with a high-fat diet.  相似文献   

20.
Several hundred new mutations in the gene (HXK2) encoding hexokinase II of Saccharomyces cerevisiae were isolated, and a subset of them was mapped, resulting in a fine-structure genetic map. Among the mutations that were sequenced, 35 were independent missense mutations. The mutations were obtained by mutagenesis of cloned HXK2 DNA carried on a low-copy-number plasmid vector and screened for a number of different phenotypes in yeast strains bearing chromosomal hxk1 and hxk2 null mutations. Some of these mutants were characterized both in vivo and in vitro; they displayed a wide spectrum of residual hexokinase activities, as indicated by three assays: in vitro enzyme activity, ability to grow on glucose and fructose, and ability to repress invertase production when growing on glucose. Of those that failed to support growth on fructose, only a small minority made normal-size, stable, and inactive protein. Analysis of the amino acid changes in these mutants in light of the crystallographically determined three-dimensional structure of hexokinase II suggests important roles in structure or catalysis for six amino acid residues, only two of which are near the active site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号