首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In hybrid breeding the performance of lines in hybrid combinations is more important than their performance per se. Little information is available on the correlation between individual line and testcross (TC) performances for the resistance to European corn borer (ECB, Ostrinia nubilalis Hb.) in maize (Zea mays L.). Marker assisted selection (MAS) will be successful only if quantitative trait loci (QTL) found in F2 derived lines for ECB resistance are still expressed in hybrid combinations. The objectives of our study were: (1) to identify and characterize QTL for ECB resistance as well as agronomic and forage quality traits in a population of testcrossed F2:3 families; (2) to evaluate the consistency of QTL for per se and TC performances; and (3) to determine the association between per se and TC performances of F2:3 lines for these traits. Two hundred and four F2:3 lines were derived from the cross between maize lines D06 (resistant) and D408 (susceptible). These lines were crossed to D171 and the TC progenies were evaluated for ECB resistance and agronomic performance in two locations in 2000 and 2001. Using these TC progenies, six QTL for stalk damage rating (SDR) were found. These QTL explained 27.4% of the genotypic variance in a simultaneous fit. Three QTL for SDR were detected consistently for per se and TC performance. Phenotypic and genotypic correlations were low for per se and TC performance for SDR. Correlations between SDR and quality traits were not significant. Based on these results, we conclude that MAS will not be an efficient method for improving SDR. However, new molecular tools might provide the opportunity to use QTL data as a first step to identify genes involved in ECB resistance. Efficient MAS procedures might then be based on markers designed to trace and to combine specific genes and their alleles in elite maize breeding germplasm.Communicated by G. Wenzel  相似文献   

2.
Midstalk rot, caused by Sclerotinia sclerotiorum (Lib.) de Bary, is an important cause of yield loss in sunflower (Helianthus annuus L.). Objectives of this study were to: (1) estimate the number, genomic positions and genetic effects of quantitative trait loci (QTL) for resistance to midstalk rot in line TUB-5-3234, derived from an interspecific cross; (2) determine congruency of QTL between this line and other sources of resistance; and (3) make inferences about the efficiency of selective genotyping (SG) in detecting QTL conferring midstalk rot resistance in sunflower. Phenotypic data for three resistance (stem lesion, leaf lesion and speed of fungal growth) and two morphological (leaf length and leaf length with petiole) traits were obtained from 434 F3 families from cross CM625 (susceptible) × TUB-5-3234 (resistant) under artificial infection in field experiments across two environments. The SG was applied by choosing the 60 most resistant and the 60 most susceptible F3 families for stem lesion. For genotyping of the respective F2 plants, 78 simple sequence repeat markers were used. Genotypic variances were highly significant for all traits. Heritabilities and genotypic correlations between resistance traits were moderate to high. Three to four putative QTL were detected for each resistance trait explaining between 40.8% and 72.7% of the genotypic variance ( ). Two QTL for stem lesion showed large genetic effects and corroborated earlier findings from the cross NDBLOSsel (resistant) × CM625 (susceptible). Our results suggest that SG can be efficiently used for QTL detection and the analysis of congruency for resistance genes across populations.  相似文献   

3.
Hybrids with low grain moisture (GM) at harvest are specially required in mid- to short-season environments. One of the most important factors determining this trait is field grain drying rate (FDR). To produce hybrids with low GM at harvest, inbred lines can be obtained through selection for either GM or FDR. Thus, a single-cross population (181 F 2:3-generation plants) of two divergent inbred lines was evaluated to locate QTL affecting GM at harvest and FDR as a starting point for marker assisted selection (MAS). Moisture measurements were made with a hand-held moisture meter. Detection of QTL was facilitated with interval mapping in one and two dimensions including an interaction term, and a genetic linkage map of 122 SSR loci covering 1,557.8 cM. The markers were arranged in ten linkage groups. QTL mapping was made for the mean trait performance of the F 2:3 population across years. Ten QTL and an interaction were associated with GM. These QTL accounted for 54.8 and 65.2% of the phenotypic and genotypic variation, respectively. Eight QTL and two interactions were associated with FDR accounting for 35.7 and 45.2% of the phenotypic and genotypic variation, respectively. Two regions were in common between traits. The interaction between QTL for GM at harvest had practical implications for MAS. We conclude that MAS per se will not be an efficient method for reducing GM at harvest and/or increasing FDR. A selection index including both molecular marker information and phenotypic values, each appropriately weighted, would be the best selection strategy.  相似文献   

4.
One hundred and fifty F2–F3 families from a cross between two inbred sunflower lines FU and PAZ2 were used to map quantitative trait loci (QTL) for resistance to white rot (Sclerotinia sclerotiorum) attacks of terminal buds and capitula, and black stem (Phoma macdonaldii). A genetic linkage map of 18 linkage groups with 216 molecular markers spanning 1,937 cM was constructed. Disease resistances were measured in field experiments for S. sclerotiorum and under controlled conditions for P. macdonaldii. For resistance to S. sclerotiorum terminal bud attack, seven QTL were identified, each explaining less than 10% of phenotypic variance. For capitulum attack by this parasite, there were four QTL (each explaining up to 20% of variation) and for P. macdonaldii resistance, four QTL were identified, each having effects of up to 16%. The S. sclerotiorum capitulum resistance QTL were compared with those reported previously and it was concluded that resistance to this disease is governed by a considerable number of QTL, located on almost all the sunflower linkage groups.  相似文献   

5.
Midstalk rot caused by Sclerotinia sclerotiorum is an important disease of sunflower in its main areas of cultivation. The objectives of this study were to (1) verify quantitative trait loci (QTL) for midstalk-rot resistance found in F3 families of the NDBLOSsel × CM625 population in recombinant inbred lines (RIL) derived from the same cross; (2) re-estimate their position and genetic effects; (3) draw inferences about the predictive quality of QTL for midstalk-rot resistance identified in the F3 families as compared to those in the RIL. Phenotypic data for three resistance (leaf lesion, stem lesion, and speed of fungal growth) and two morphological traits (leaf length and leaf length with petiole) were obtained from 317 RIL following artificial infection in field experiments across two environments. For genotyping the 248 RIL, we selected 41 simple sequence repeat (SSR) markers based on their association with QTL for Sclerotinia midstalk-rot resistance in an earlier study. The resistance traits showed intermediate to high heritabilities and were significantly correlated with each other Genotypic correlations between F3 families and the RIL were highly significant and ranged between 0.50 for leaf length and 0.64 for stem lesion. For stem lesion, two genomic regions on linkage group (LG) 8 and LG16 explaining 26.5% of the genotypic variance for Sclerotinia midstalk-rot resistance were consistent across generations. For this trait, the genotypic correlation between the observed performance and its prediction based on QTL positions and effects in F3 families was surprisingly high The genetic effects and predictive quality of these two QTL are promising for application in marker-assisted selection to Sclerotinia midstalk-rot resistance.  相似文献   

6.
A marker-assisted selection (MAS) study was conducted on two recombinant inbred line (RIL) populations of common bean (Phaseolus vulgaris) to test the effectiveness of MAS for resistance to white mold (Sclerotinia sclerotiorum). Markers for quantitative trait loci (QTL) on linkage groups B2 and B7 that were previously associated with resistance and plant architectural avoidance traits in the resistant parent Bunsi were chosen. In the Bunsi/Midland population 10 RILs included in the MAS selected group developed significantly less disease than the control group based on two years of field evaluation under white mold pressure. Growth habit had no significant effect on disease severity or incidence. In the Bunsi/Raven RIL population, disease scores in the MAS selected group were significantly lower than scores in the control group over two years. Additional progress in enhancing resistance to white mold was detected when yield and plant architecture were included in the selection process. Lower disease scores among RILs were observed when comparisons were made to RILs selected using MAS alone. Yield is an important trait that should be considered when selecting for resistance to white mold. Finally the potential of Bunsi as a genetic donor of QTL for white mold resistance was confirmed in both populations studied. This study supported the effectiveness of MAS to enhance selection for a complexly inherited trait such as resistance to white mold in common bean.  相似文献   

7.
The European corn borer (ECB, Ostrinia nubilalis Hübner) is a major pest of maize in Central Europe. We mapped and characterized quantitative trait loci (QTLs) involved in resistance of maize against ECB damage, compared them with QTLs for agronomic traits, and evaluated the usefulness of marker-assisted selection (MAS) for improving ECB resistance in early maturing European maize germplasm. A total 226 F3 families from the cross D06 (resistant) × D408 (susceptible), together with 93 RFLP and two SSR markers were used for the QTL analyses. For each F3 family we measured the length of tunnels produced by larval stalk mining (TL), stalk damage ratings (SDR), and relative grain yield (RGY) in field experiments, with two replications in two environments in 1 year. The agronomic traits comprised grain yield under insecticide protection (GYP) and manual ECB larval infestation (GYI), the date of anthesis (ANT), and the in vitro digestibility of organic matter (IVDOM) of stover. Estimates of genotypic variance (σ2 g) were highly significant for all traits. Six QTLs for TL and five QTLs for SDR were detected, explaining about 50.0% of σ2 g. Most QTLs showed additive gene action for TL and dominance for SDR. No QTL was found for RGY. The number of QTLs detected for the agronomic traits ranged from two for GYI to 12 for ANT, explaining 12.5 to 57.3% of σ2 g, respectively. Only a single QTL was in common between the two resistance traits, as expected from the moderate trait correlation and the moderate proportions of σ2 g explained. Based on these results, MAS for improving ECB resistance can be competitive when cost-effective PCR-based marker systems are applied. However, it remains to be established whether the putative QTL regions for ECB resistance detected in the population D06 × D408 are consistent across other early maturing European maize germplasms. Received: 20 December 1999 / Accepted: 6 June 2000  相似文献   

8.
White mold, caused by the fungus Sclerotinia sclerotiorum (Lib.) de Bary, is a devastating disease in common bean (Phaseolus vulgaris L.). Resistance to this pathogen can be due to physiological or avoidance mechanisms. We sought to characterize the partial physiological resistance exhibited by Xana dry bean in the greenhouse straw test using quantitative trait locus (QTL) analysis. A population of 104 F7 recombinant inbred lines (RILs) derived from an inter-gene pool cross between Xana and the susceptible black bean Cornell 49242 was evaluated against five local isolates of Sclerotinia. The effect of morphological traits (plant height, first internode length, and first internode width) on response to white mold was examined. The level of resistance exhibited by Xana to five isolates of S. sclerotiorum was similar to that of the well-known resistant lines PC50, A195, and G122. Eighteen QTL, involving the linkage groups (LG) 1, 3, 6, 7, 8, and 11, were found to be significant in at least one evaluation and in the mean of the two evaluations. The number of significant QTL identified per trait ranged from one to five. Four major regions on LG 1, 6, and 7 were associated with partial resistance to white mold, confirming the results obtained in other populations. A relative specificity in the number and the position of the identified QTL was found depending on the isolate used. QTL involved in the control of morphological traits and in the response to white mold were co-located at the same relative position on LG 1, 6, and 7. The role of these genomic regions in physiological resistance or avoidance mechanisms to white mold is discussed.  相似文献   

9.
Two-trait selection response with marker-based assortative mating   总被引:1,自引:1,他引:0  
 Marker-based assortative mating (MAM) – the mating of individuals that have similar genotypes at random marker loci – can increase selection response for a single trait by 3–8% over random mating (RM). Genetic gain is usually desired for multiple traits rather than for a single trait. My objectives in this study were to (1) compare MAM, phenotypic assortative mating (PAM), and RM of selected individuals for improving two traits and (2) determine when MAM will be most useful for improving two traits. I simulated 20 generations of selecting 32 out of 200 individuals in an F2 population. The individuals were selected based on an index (SI) of two traits and were intermated by MAM, PAM, or RM. I studied eight genetic models that differed in three contrasts: (1) weight, number of quantitative trait loci (QTL), and heritability (h 2) for each trait; (2) linkage of QTL for each trait; and (3) trait means of the inbred parents of the F2. For SI and the two component traits, MAM increased short-term selection response by 5–8% in six out of the eight genetic models. The MAM procedure was least effective in two genetic models, wherein the QTL for one trait were unlinked to the QTL for the other trait and the parents of the F2 had divergent means for each trait. The loss of QTL heterozygosity was much greater with MAM than with PAM or RM. Consequently, the advantage of MAM over RM dissipated after 5–7 generations. Differences were small between selection responses with PAM and RM. The MAM procedure can enhance short-term selection response for two traits when selection is not stringent, h 2 is low, and the means of the parents of the F2 are equal for each trait. Received: 10 June 1998 / Accepted: 5 August 1998  相似文献   

10.
Plant breeders simultaneously select for qualitative traits controlled by one or a small number of major genes, as well as for polygenic traits controlled by multiple genes that may be detected as quantitative trait loci (QTL). In this study, we applied computer simulation to investigate simultaneous selection for alleles at both major and minor gene (as QTL) loci in breeding populations of two wheat parental lines, HM14BS and Sunstate. Loci targeted for selection included six major genes affecting plant height, disease resistance, and grain quality, plus 6 known and 11 “unidentified” QTL affecting coleoptile length (CL). Parental line HM14BS contributed the target alleles at two of the major gene loci, while parental line Sunstate contributed target alleles at four loci. The parents have similar plant height, but HM14BS has a longer coleoptile, a desirable attribute for deep sowing in rainfed environments. Including the wild-type allele at the major reduced-height locus Rht-D1, HM14BS was assumed to have 13 QTL for increased CL, and Sunstate four; these assumptions being derived from mapping studies and empirical data from an actual HM14BS/Sunstate population. Simulation indicated that compared to backcross populations, a single biparental F1 cross produced the highest frequency of target genotypes (six desired alleles at major genes plus desired QTL alleles for long CL). From 1,000 simulation runs, an average of 2.4 individuals with the target genotype were present in unselected F1-derived doubled haploid (DH) or recombinant inbred line (RIL) populations of size 200. A selection scheme for the six major genes increased the number of target individuals to 19.1, and additional marker-assisted selection (MAS) for CL increased the number to 23.0. Phenotypic selection (PS) of CL outperformed MAS in this study due to the high heritability of CL, incompletely linked markers for known QTL, and the existence of unidentified QTL. However, a selection scheme combining MAS and PS was equally as efficient as PS and would result in net savings in production and time to delivery of long coleoptile wheats containing the six favorable alleles.  相似文献   

11.
Two decades of investigations on maize resistance to Mediterranean corn borer (Sesamia nonagrioides Lefebvre; MCB) have shown that breeding for increased resistance to stem tunnelling by MCB often resulted in reduced yield because significant genetic correlation between both traits exists in some backgrounds. Unlike phenotypic selection, marker‐assisted selection (MAS) could differentiate markers linked only to one trait from those linked simultaneously to yield potential and susceptibility to the pest. In the current study, the suitability of MAS for improving resistance to stem tunnelling without adverse effects on yield has been tested. The unfavourable genetic relationship between yield potential and susceptibility could be overcome using MAS. Gains obtained using MAS were weak, because genetic variance explained by the quantitative trait loci (QTL) was low but results encourage us to persevere in using marker information for simultaneous improvement of resistance and yield especially if genome‐wide approaches are applied. Approaches to detect QTL are widely used, but studies on the suitability of markers linked to QTL for performing MAS have been mostly neglected.  相似文献   

12.
The sibling species Drosophila simulans and D. mauritiana differ significantly in a number of male secondary sexual traits, providing an ideal system for genetic analysis of interspecific morphological divergence. In the experiment reported here, F1 hybrids from a cross of two inbred lines were backcrossed in both directions and about 200 flies from each backcross were scored for several traits (bristle numbers and cuticle areas), as well as 18 markers distributed throughout the genome. Each trait was analyzed by composite interval mapping to identify quantitative trait loci (QTL) and estimate their effects. For each trait, from one to eight loci were detected, with more divergent traits showing evidence for greater numbers of QTL. Estimates of additive effects varied widely, with a range of 0.4 to 4.1 environmental standard deviation units and an average of 2.2 units. There was substantial evidence for nonadditive effects, since the magnitude of estimates often differed significantly between the two backcrosses. The sign of the estimated effect differed among QTL for bristle traits, but not for cuticle area traits, suggesting that these two types of trait may have undergone different types of selection. Finally, several similarities were found between different traits in the estimated positions of QTL, suggesting that pleiotropy and/or linkage of QTL may have been important in the evolution of these traits.  相似文献   

13.
Lycopersicon peruvianum LA2157 originates from 1650 m above sea level and harbours several beneficial traits for cultivated tomatoes such as cold tolerance, nematode resistance and resistance to bacterial canker (Clavibacter michiganensis ssp. michiganensis). In order to identify quantitative trait loci (QTLs) for bacterial canker resistance, a QTL mapping approach was carried out in an F2 population derived from the interspecific F1 between Lycopersicon esculentum cv Solentos and L. peruvianum LA2157. Three QTLs for resistance mapped to chromosomes 5, 7 and 9 respectively. The resistance loci were additive and co-dominant with the QTL on chromosome 7 explaining the largest part of the variation for resistance in the F2 population. The combination of this QTL with either of the other two QTLs conferred a resistance similar to the level in the resistant parent L. peruvianum. Some RFLP markers flanking this QTL on chromosome 7 were converted into SCAR markers allowing efficient marker-assisted selection of plants with high resistance to bacterial canker. Received: 26 February 1999 / Accepted: 12 March 1999  相似文献   

14.
The majority of agronomically important crop traits are quantitative, meaning that they are controlled by multiple genes each with a small effect (quantitative trait loci, QTLs). Mapping and isolation of QTLs is important for efficient crop breeding by marker‐assisted selection (MAS) and for a better understanding of the molecular mechanisms underlying the traits. However, since it requires the development and selection of DNA markers for linkage analysis, QTL analysis has been time‐consuming and labor‐intensive. Here we report the rapid identification of plant QTLs by whole‐genome resequencing of DNAs from two populations each composed of 20–50 individuals showing extreme opposite trait values for a given phenotype in a segregating progeny. We propose to name this approach QTL‐seq as applied to plant species. We applied QTL‐seq to rice recombinant inbred lines and F2 populations and successfully identified QTLs for important agronomic traits, such as partial resistance to the fungal rice blast disease and seedling vigor. Simulation study showed that QTL‐seq is able to detect QTLs over wide ranges of experimental variables, and the method can be generally applied in population genomics studies to rapidly identify genomic regions that underwent artificial or natural selective sweeps.  相似文献   

15.
Specific traits are an important consideration in plant breeding. In popcorn, inferior agronomic traits could be improved using dent or flint corn backcrossed with popcorn. In this study, we used advanced backcross quantitative trait locus (AB-QTL) analysis to identify trait-improving QTL alleles from a dent maize inbred Dan232, and compared the detection of QTL in the BC2S1 population with QTL results using F2:3 families of the same population. Two hundred and twenty BC2S1 families developed from a cross between Dan232 and an elite popcorn inbred N04 were evaluated for nine plant traits in replicated field trials under two environments. Using composite interval mapping (CIM), a total of 28 significant QTL were detected, and of these, 23 (82.14%) had favorable alleles contributed by the dent corn parent Dan232. Nine QTL (32.14%) detected in the BC2S1 population were also located in or near the same chromosome intervals in the F2:3 population. All of the favorable QTL alleles from Dan232 could be used in marker-assisted selection (MAS) to improve the respective plant traits in popcorn breeding. In addition, their near isogenic lines (QTL-NILs) could be obtained through selfing or another 1–2 backcross with N04. Also, N04 improved for the studied plant traits could be developed from the BC2S1 families used in this study. This study demonstrated that the AB-QTL method can be applied to identify favorable QTL from dent corn inbred in popcorn breeding and, once identified, the alleles could be used in marker-assisted selection to improve the respective plant traits.  相似文献   

16.
Sorghum [Sorghum bicolor (L.) Moench] landraces from China generally exhibit excellent emergence and seedling vigor under cool conditions, and are being used as sources of genes for improvement of seedling cold tolerance in other cultivars. Marker-assisted selection (MAS) could expedite the introgression of genes from landraces into elite lines, however, only a few studies have empirically demonstrated efficacy of MAS for quantitatively inherited agronomic traits. In a preceding study we identified quantitative trait loci (QTL) for early-season performance in a recombinant inbred (RI) population, one parent of which was a cold-tolerant Chinese line, ‘Shan Qui Red’ (SQR). In this study, three SSR markers (Xtxp43, Xtxp51, and Xtxp211), each representing a QTL, were tested in two new populations: (Tx2794 × SQR F3) and (Wheatland × SQR BC1F3). Individual families were genotyped, and early-season field performance was measured for two years. Statistical analyses showed that the SQR allele of Xtxp43 had favorable effects on seedling vigor in both populations, and on emergence in the Tx2794 population. A large positive effect of the SQR allele of Xtxp51 was observed in the Tx2794 population for vigor and emergence. Slight genotype by environment interaction was observed for Xtxp51 in the Wheatland population. Marker Xtxp211 had small but significant effects on seedling vigor and emergence in both populations. Various interactions between loci were also significant. This study validated QTL markers in various genetic backgrounds, and demonstrated the utility of MAS for a quantitative trait, early-season cold tolerance, evaluated in the field.  相似文献   

17.
Summer mortality is a phenomenon severely affecting the aquaculture production of the Pacific oyster (Crassostrea gigas). Although its causal factors are complex, resistance to mortality has been described as a highly heritable trait, and several pathogens including the virus Ostreid Herpes virus type 1 (OsHV‐1) have been associated with this phenomenon. A QTL analysis for survival of summer mortality and OsHV‐1 load, estimated using real‐time PCR, was performed using five F2 full‐sib families resulting from a divergent selection experiment for resistance to summer mortality. A consensus linkage map was built using 29 SNPs and 51 microsatellite markers. Five significant QTL were identified and assigned to linkage groups V, VI, VII and IX. Analysis of single full‐sib families revealed differential QTL segregation between families. QTL for the two‐recorded traits presented very similar locations, highlighting the interest of further study of their respective genetic controls. These QTL show substantial genetic variation in resistance to summer mortality, and present new opportunities for selection for resistance to OsHV‐1.  相似文献   

18.
To construct a molecular-marker-assisted selection (MAS) system, research was done on identifying molecular markers linking to longer frond length, a crucial selection index in the breeding of the commercially important seaweed Saccharina japonica. An F2-segregant population of 92 individuals was obtained by crossing two prominent S. japonica strains. Genomic DNA from ten individuals with the longest frond and ten individuals with the shortest frond in the F2-segregant population were mixed to create two DNA pools for screening polymorphic markers. In bulked-segregant analysis (BSA), out of 100 random amplified polymorphic DNA (RAPD) primers only two produced three polymorphic RAPD markers between the two DNA pools. In conversion of the three RAPD markers into sequence-characterized amplified region (SCAR) markers, only one was successfully converted into a SCAR marker FL-569 linking to the trait of longer frond. Test of the marker FL-569 showed that 80% of the individuals with longest fronds in a wild population and 87.5% of individuals with the longest fronds in an inbred line “Zhongke No. 2” could be detected by FL-569. Additionally, genetic linkage analysis showed that the SCAR marker could be integrated into the reported genetic map and QTL mapping showed that FL-569 linking to qL1-1. The obtained marker FL-569 will be beneficial to MAS in S. japonica breeding.  相似文献   

19.
Blackmold, caused by the fungus Alternaria alternata, is a major ripe fruit disease of processing tomatoes. Previously, we found blackmold resistance in a wild tomato (Lycopersicon cheesmanii) and quantitative trait loci (QTL) for resistance were mapped in an interspecific population. Five QTLs were selected for introgression from L. cheesmanii into cultivated tomato using marker-assisted selection (MAS). Restriction fragment length polymorphism and PCR-based markers flanking, and within, the chromosomal regions containing QTLs were used for MAS during backcross and selfing generations. BC1 plants heterozygous at the QTLs, and subsequent BC1S1 and BC1S2 lines possessing different homozygous combinations of alleles at the target QTLs, were identified using DNA markers. Field experiments were conducted in 1998 (with 80 marker-selected BC1S2 lines) and 1999 (with 151 marker-selected BC1S2 and BC1S3 lines) at three California locations. Blackmold resistance was assessed during both years, and horticultural traits were evaluated in 1999. The BC1S2 and BC1S3 lines containing L. cheesmanii alleles at the QTLs were associated with a large genetic variance for resistance to blackmold and moderate heritability, suggesting that significant genetic gain may be achieved by selection in this genetic material. L. cheesmanii alleles at three of the five introgressed QTLs showed a significant, positive effect on blackmold resistance. A QTL on chromosome 2 had the largest positive effect on blackmold resistance, alone and in combination with other QTLs, and was also associated with earliness, a positive horticultural trait. The other four QTLs were associated primarily with negative horticultural traits. Fine mapping QTLs using near isogenic lines could help determine if such trait associations are due to linkage drag or pleiotropy.  相似文献   

20.
Restriction fragment length polymorphisms (RFLPs) and one morphological marker were used to investigate quantitative trait loci (QTL) for morphological and physiological traits evaluated on 150 F23 maize (Zea mays L.) lines derived from the cross of elite U.S. Corn Belt inbreds Mo17 and H99. F23 lines were grown in a replicated experiment and evaluated for plant and ear heights and flowering traits. QTL were identified for each trait, and genetic effects were determined. Estimated gene action for the flowering traits was predominantly overdominance. Both parents contributed toward increased values for anthesis and silk emergence. QTL for increased plant and ear heights were usually contributed by the taller parent, Mo17. Estimated gene action for these traits was mainly partial to overdominance. QTL for plant height were located in the vicinity of loci defined by alleles with qualitative effects on plant height.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号