首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
S Hjorth  T Sharp 《Life sciences》1991,48(18):1779-1786
Recent electrophysiological studies, measurements of 5-HT synthesis and in vivo voltammetry recordings of 5-HT metabolism have suggested that serotoninergic neurones in the median raphe (MR) are less sensitive to 5-HT1A autoreceptor stimulation relative to those in the dorsal raphe (DR). To further study the putative differences in regulation between ascending 5-HT projections from the raphe nuclei we have used microdialysis to measure the release of 5-HT in ventral hippocampus, globus pallidus, dorsal hippocampus, frontal cortex, nucleus accumbens and medial septum, following systemic administration of the specific 5-HT1A agonist 8-OH-DPAT. The results show that the baseline output of 5-HT was similar in each of the areas studied. While 8-OH-DPAT decreased dialysate levels of 5-HT in all areas, the inhibition of 5-HT release seen in globus pallidus was significantly less marked compared to that observed in the other five regions. The results indicate that 5-HT1A autoreceptor-mediated control of 5-HT release is functional in all of the brain areas studied, including those receiving a preferential 5-HT innervation from the DR and MR. We find little evidence in support of the idea that brain 5-HT neuronal projections are heterogenous with respect to 5-HT1A autoreceptor regulation of 5-HT release; the globus pallidus, however representing a possible exception to this.  相似文献   

2.
Abstract: The contribution of NMDA receptors to regulation of serotonin (5-HT) release was assessed by in vivo microdialysis in freely behaving rats. During infusion of NMDA (30, 100, and 300 µ M ) into the dorsal raphe nucleus (DRN), 5-HT was increased by ∼25, 100, and 280%, respectively. Competitive and noncompetitive NMDA-receptor antagonists blocked this effect on DRN 5-HT. Infusion of NMDA (300 µ M ) into the DRN also produced an 80% increase in extracellular 5-HT in the nucleus accumbens. During infusion of NMDA (100 and 300 µ M ) into the median raphe nucleus (MRN), 5-HT was increased by ∼15 and 80%, respectively. NMDA-receptor antagonists blocked this effect on MRN 5-HT. Infusion of NMDA into the MRN also produced a significant increase in hippocampal 5-HT. In contrast, infusion of NMDA into the nucleus accumbens, frontal cortex, or hippocampus produced small decreases in 5-HT in these forebrain sites. Taken together, these results suggest that NMDA receptors in the midbrain raphe, but not the forebrain, can have an excitatory influence on 5-HT neurons and, thus, produce increased 5-HT release in the forebrain. Furthermore, in comparison with the MRN, DRN 5-HT neurons were more sensitive to the excitatory effect of NMDA.  相似文献   

3.
The effect of reserpine on the activity of dopamine beta-hydroxylase (DBH) in the adrenal gland of the rat was determined following electrolytic lesion of the dorsal raphe nucleus (DRN) or medial raphe nucleus (MRN). In sham-operated rats, as well as in those with a lesion of the DRN, there was no significant modification of the action of reserpine on this enzyme. However, a lesion of MRN potentiated the inducing action of the drug. A specific role of MRN in the serotonergic regulation of adrenal DBH is suggested by this work.  相似文献   

4.
The release of 5-HT in terminal areas of the rodent brain is regulated by 5-HT1B receptors. Here we examined the role of 5-HT1B receptors in the control of 5-HT output and firing in the dorsal raphe nucleus (DR), median raphe nucleus (MnR) and forebrain of the rat in vivo. The local perfusion (30-300 microM) of the selective 5-HT1B receptor agonist CP-93,129 to freely moving rats decreased 5-HT release in the DR and more markedly in the MnR. Likewise, 300 microM CP-93,129 reduced 5-HT output in substantia nigra pars reticulata, ventral pallidum, lateral habenula and the suprachiasmatic nucleus. The effect of CP-93,129 was prevented by SB-224289, but not by WAY-100635, selective 5-HT1B and 5-HT1A receptor antagonists, respectively. SB-224289 did not alter dialysate 5-HT in any raphe nuclei. The intravenous administration of the brain-penetrant selective 5-HT1B receptor agonist CP-94,253 (0.5-2.0 mg/kg) to anesthetized rats decreased dialysate 5-HT in dorsal hippocampus and globus pallidus, increased it in MnR and left it unaltered in the DR and medial prefrontal cortex. SB-224289, at a dose known to block 5-HT1B autoreceptor-mediated effects (5 mg/kg), did not prevent the effect of CP-94,253 on MnR 5-HT. The intravenous administration of CP-94,253 (0.05-1.6 mg/kg) to anesthetized rats increased the firing rate of MnR, but not DR-5-HT neurons. The local perfusion of CP-94,253 in the MnR showed a biphasic effect, with 5-HT reductions at 0.3-3 microM and increase at 300 microM. These results suggest that 5-HT cell firing and release in midbrain raphe nuclei (particularly in the MnR) are under control of 5-HT1B receptors. The activation of 5-HT1B autoreceptors (possibly located on 5-HT nerve endings and/or varicosities within DR and MnR) reduces 5-HT release. The effects of higher concentrations of 5-HT1B receptor agonists seem more compatible with the activation of 5-HT1B heteroreceptors on inhibitory neurons.  相似文献   

5.
The functional properties of GABA(B) receptors were examined in the dorsal raphe nucleus (DRN) and the hippocampus of knock-out mice devoid of the 5-HT transporter (5-HTT-/-) or the 5-HT(1A) receptor (5-HT(1A)-/-). Electrophysiological recordings in brain slices showed that the GABA(B) receptor agonist baclofen caused a lower hyperpolarization and neuronal firing inhibition of DRN 5-HT cells in 5-HTT-/- versus 5-HTT+/+ mice. In addition, [(35)S]GTP-gamma-S binding induced by GABA(B) receptor stimulation in the DRN was approximately 40% less in these mutants compared with wild-type mice. In contrast, GABA(B) receptors appeared functionally intact in the hippocampus of 5-HTT-/-, and in both this area and the DRN of 5-HT(1A)-knock-out mice. The unique functional changes of DRN GABA(B) receptors closely resembled those of 5-HT(1A) autoreceptors in 5-HTT-/- mice, further supporting the idea that both receptor types are coupled to a common pool of G-proteins in serotoninergic neurons.  相似文献   

6.
This study investigates, using in vivo microdialysis, the role of serotonin2A (5-HT2A) and 5-HT(2B/2C) receptors in the effect of dorsal raphe nucleus (DRN) electrical stimulation on dopamine (DA), 3,4-dihydroxyphenylacetic acid (DOPAC), and 5-hydroxyindoleacetic acid (5-HIAA) extracellular levels monitored in the nucleus accumbens (NAC) and the striatum of halothane-anesthetized rats. Following DRN stimulation (300 microA, 1 ms, 20 Hz, 15 min) DA release was enhanced in the NAC and reduced in the striatum. The 5-HT2A antagonist SR 46349B (0.5 mg/kg) and the mixed 5-HT(2A/2B/2C) antagonist ritanserin (0.63 mg/kg) significantly reduced the effect of DRN stimulation on DA release in the NAC but not in the striatum. DA responses to DRN stimulation were not affected by the 5-HT(2B/2C) antagonist SB 206553 (5 mg/kg) in either region. None of these compounds was able to modify the enhancement of DOPAC and 5-HIAA outflow induced by DRN stimulation in either the NAC or the striatum. Finally, in both brain regions basal DA release was significantly increased only by SB 206553. These results indicate that 5-HT2A but not 5-HT(2B/2C) receptors participate in the facilitatory control exerted by endogenous 5-HT on accumbal DA release. Conversely, 5-HT(2B/2C) receptors tonically inhibit basal DA release in both brain regions.  相似文献   

7.
Abstract: Serotonergic neurons of the dorsal and median raphe nuclei are morphologically dissimilar. Recent results challenge previous evidence indicating a greater inhibition of dorsal raphe neurons after 5-hydroxytryptamine1A (5-HT1A) autoreceptor activation. As both nuclei innervate different forebrain territories, this issue is critical to understanding the changes in brain function induced by anxiolytic and antidepressant drugs. Using microdialysis, we examined the modifications of 5-HT release induced by the selective 5-HT1A agonist ipsapirone in both neuronal pathways. Maximal and minimal basal 5-HT values (in the presence of 1 µ M citalopram) were 45.0 ± 4.8 fmol/fraction in the median raphe nucleus and 8.4 ± 0.4 fmol/fraction in the dorsal hippocampus. Ipsapirone (0.3, 3, and 10 mg/kg s.c.) reduced dose-dependently 5-HT in the two raphe nuclei and four forebrain areas. Maximal reductions (to ∼25% of predrug values) were observed in cortex and striatum and in median raphe nucleus. The effects were more moderate in dorsal and ventral hippocampus (to 66 and 50% of baseline, respectively). These results are consistent with a higher sensitivity of dorsal raphe neurons to 5-HT1A autoreceptor activation. Yet the differential reduction of 5-HT release in the median raphe nucleus and hippocampus suggests the presence of complex mechanisms of control of 5-HT release in these neurons.  相似文献   

8.
Here we have used the brain microdialysis method to test the effect of the 5-HT precursor L-tryptophan on 5-HT release. The release of endogenous 5-HT was measured in ventral hippocampus of the anesthetized rat both under basal conditions and when serotoninergic neuronal activity was raised by electrical stimulation of the dorsal raphe nucleus (DRN). Low frequency electrical stimulation of the DRN evoked a frequency-dependent (2-10 Hz) release of hippocampal 5-HT. The electrically evoked release of 5-HT was markedly enhanced by pretreatment with L-tryptophan (50 and 100 mg/kg i.p.). The effect of L-tryptophan on evoked release of 5-HT was dose-related, detectable at low (2 Hz) stimulation frequencies, and became stronger as the stimulation frequency increased. L-Tryptophan (10, 50 and 100 mg/kg i.p.) had no effect on basal output of 5-HT. We conclude from these findings that elevation of 5-HT precursor availability increases 5-HT release in hippocampus in vivo under conditions of increased serotoninergic neuronal activity.  相似文献   

9.
Abstract: Extracellular 5-hydroxytryptamine (5-HT) in the median raphe and dorsal hippocampus was measured using in vivo microdialysis. Administration of 60 m M K+ through the probe into the median raphe region significantly increased 5-HT output from the median raphe and the right dorsal hippocampus. Local infusion of 10 µ M tetrodotoxin into the median raphe region substantially decreased 5-HT in the median raphe and left and right dorsal hippocampus. Systemic administration (0.3 mg/kg s.c.) of 8-hydroxy-2-(di- n -propylamino)tetralin (8-OH-DPAT) decreased the 5-HT levels in the dialysates from both the median raphe region and dorsal hippocampus. Administration of 30 n M 8-OH-DPAT through the dialysis probe into the median raphe region decreased 5-HT output from the median raphe and dorsal hippocampus significantly, whereas at concentrations from 60 n M to 10 µ M , no significant effects were found in either region. With 100 µ M 8-OH-DPAT, a significant increase was seen in the median raphe region, but not in dorsal hippocampus. Similar findings were obtained following microinjections of different doses of the compound into the median raphe region. The results of this study indicate that the somatodendritic release of 5-HT is impulse flow-dependent. Moreover, the decrease of 5-HT in the median raphe region by low nanomolar concentrations of 8-OH-DPAT supports the notion that somatodendritic 5-HT release is subject to a local negative feedback mechanism through 5-HT1A autoreceptors.  相似文献   

10.
Abstract: 5-HT1A autoreceptor antagonists enhance the effects of antidepressants by preventing a negative feedback of serotonin (5-HT) at somatodendritic level. The maximal elevations of extracellular concentration of 5-HT (5-HText) induced by the 5-HT uptake inhibitor paroxetine in forebrain were potentiated by the 5-HT1A antagonist WAY-100635 (1 mg/kg s.c.) in a regionally dependent manner (striatum > frontal cortex > dorsal hippocampus). Paroxetine (3 mg/kg s.c.) decreased forebrain 5-HText during local blockade of uptake. This reduction was greater in striatum and frontal cortex than in dorsal hippocampus and was counteracted by the local and systemic administration of WAY-100635. The perfusion of 50 µmol/L citalopram in the dorsal or median raphe nucleus reduced 5-HText in frontal cortex or dorsal hippocampus to 40 and 65% of baseline, respectively. The reduction of cortical 5-HText induced by perfusion of citalopram in midbrain raphe was fully reversed by WAY-100635 (1 mg/kg s.c.). Together, these data suggest that dorsal raphe neurons projecting to striatum and frontal cortex are more sensitive to self-inhibition mediated by 5-HT1A autoreceptors than median raphe neurons projecting to the hippocampus. Therefore, potentiation by 5-HT1A antagonists occurs preferentially in forebrain areas innervated by serotonergic neurons of the dorsal raphe nucleus.  相似文献   

11.
Noradrenaline (NA), 3,4-dihydroxyphenylethylamine (dopamine, DA), 5-hydroxytryptamine (serotonin, 5-HT), homovanillic acid (HVA), and 5-hydroxyindoleacetic acid (5-HIAA) were measured in 22 regions of postmortem brains from four histologically verified cases with Alzheimer-type dementia (ATD) and nine histologically normal controls. Compared with the controls, concentrations of 5-HT and 5-HIAA in the ATD brains were significantly reduced in nine regions (superior frontal gyrus, insula, cingulate gyrus, amygdala, putamen, medial and lateral segments of globus pallidus, substantia nigra, lateral nucleus of thalamus) and in eight regions (amygdala, substantia innominata, caudate, putamen, medial and lateral segments of globus pallidus, medial and lateral nuclei of thalamus), respectively. NA concentrations of the ATD brains were significantly reduced in six regions (cingulate gyrus, substantia innominata, putamen, hypothalamus, medial nucleus of thalamus, raphe area). In contrast, significant reductions of DA and HVA concentrations in the ATD brains were found only in putamen and amygdala, respectively. The 5-HIAA/5-HT ratio in the ATD brains decreased significantly in locus coeruleus, while the HVA/DA ratio increased significantly in putamen and medial segment of globus pallidus. These findings suggest that the serotonergic and noradrenergic systems are affected, while the dopaminergic system is relatively unaffected in ATD brains.  相似文献   

12.
Exploring the mechanisms of serotonin [5-hydroxytryptamine (5-HT)] in the brain requires an in vivo method that combines fast temporal resolution with chemical selectivity. Fast-scan cyclic voltammetry is a technique with sufficient temporal and chemical resolution for probing dynamic 5-HT neurotransmission events; however, traditionally it has not been possible to probe in vivo 5-HT mechanisms. Recently, we optimized fast-scan cyclic voltammetry for measuring 5-HT release and uptake in vivo in the substantia nigra pars reticulata (SNR) with electrical stimulation of the dorsal raphe nucleus (DRN) in the rat brain. Here, we address technical challenges associated with rat DRN surgery by electrically stimulating 5-HT projections in the medial forebrain bundle (MFB), a more accessible anatomical location. MFB stimulation elicits 5-HT in the SNR; furthermore, we find simultaneous release of an additional species. We use electrochemical and pharmacological methods and describe physiological, anatomical and independent chemical analyses to identify this species as histamine. We also show pharmacologically that increasing the lifetime of extracellular histamine significantly decreases 5-HT release, most likely because of increased activation of histamine H-3 receptors that inhibit 5-HT release. Despite this, under physiological conditions, we find by kinetic comparisons of DRN and MFB stimulations that the simultaneous release of histamine does not interfere with the quantitative 5-HT concentration profile. We therefore present a novel and robust electrical stimulation of the MFB that is technically less challenging than DRN stimulation to study 5-HT and histamine release in the SNR.  相似文献   

13.
Antagonists at NK1 substance P receptors have demonstrated similar antidepressant properties in both animal paradigms and in human as selective serotonin reuptake inhibitors (SSRIs) that induce desensitization of 5-HT 1A autoreceptors within the dorsal raphe nucleus (DRN). We investigated whether this receptor adaptation also occurs upon NK1 receptor blockade. C57B/L6J mice were treated for 21 days with the selective NK1 receptor antagonist GR 205171 (10 mg/kg daily) through subcutaneously implanted osmotic mini pumps, and DRN 5-HT 1A autoreceptor functioning was assessed using various approaches. Recording of DRN serotonergic neurons in brainstem slices showed that GR 205171 treatment reduced (by approximately 1.5 fold) the potency of the 5-HT 1A receptor agonist, ipsapirone, to inhibit cell firing. In parallel, the 5-HT 1A autoreceptor-mediated [35S]GTP-gamma-S binding induced by 5-carboxamidotryptamine onto the DRN in brainstem sections was significantly decreased in GR 205171-treated mice. In vivo microdialysis showed that the cortical 5-HT overflow caused by acute injection of the SSRI paroxetine (1 mg/kg) was twice as high in GR 205171-treated as in vehicle-treated controls. In the DRN, basal 5-HT outflow was significantly enhanced by GR 205171 treatment. These data supported the hypothesis that chronic NK1 receptor blockade induces a functional desensitization of 5-HT 1A autoreceptors similar to that observed with SSRIs.  相似文献   

14.
Abstract: The effects of systemic administration of the serotonin (5-hydroxytryptamine) 5-HT1A receptor agonists flesinoxan and 8-hydroxy-2-(di- n -propylamino)tetralin on extracellular 5-HT were measured using microdialysis probes in both median raphe nucleus and dorsal hippocampus. Both 5-HT1A agonists dose-dependently decreased dialysate 5-HT levels from both brain regions. The effects of flesinoxan in the median raphe (0.3 mg/kg) and dorsal hippocampus (1.0 mg/kg) could be blocked by the 5-HT1A receptor antagonist N -[2-[4-(2-methoxyphenyl)-1-piperazinyl]ethyl]- N -(2-pyridyl)cyclohexane carboxamide trihydrochloride (WAY 100,635) at a dose of 0.05 mg/kg s.c. The antagonist itself had no effect at this dosage. Local perfusion of flesinoxan for 30 min through the dialysis probe into the median raphe region at concentrations of 20, 100, and 1,000 n M resulted in a significant decrease in dialysate 5-HT content from both regions. The effect of 100 n M flesinoxan could be blocked by coperfusion of 1,000 n M WAY 100,635. The data indicate that flesinoxan is a potent 5-HT1A receptor agonist and also support the notion that somatodendritic 5-HT1A autoreceptors regulate both terminal and somatodendritic 5-HT release.  相似文献   

15.
HPLC coupled with electrochemical detection was used to make concurrent measurements of the rate of accumulation of 5-hydroxytryptophan and 3,4-dihydroxyphenylalanine in selected brain regions (striatum, nucleus accumbens, septum, medial periventricular hypothalamus) and thoracic spinal cords of rats treated with NSD 1015, an inhibitor of aromatic-L-amino-acid decarboxylase. 5-Hydroxytryptophan and 3,4-dihydroxyphenylalanine accumulated in all brain regions 30 min after the intravenous infusion of various doses of NSD 1015; there were no significant differences in the responses to 12.5, 25, 50, and 100 mg/kg. After the intravenous administration of 25 mg/kg NSD 1015 the concentrations of 5-hydroxytryptophan and 3,4-dihydroxyphenylalanine increased linearly with time in all brain regions for at least 30 min. Electrical stimulation of 5-hydroxytryptamine neurons in the dorsal raphe nucleus for 30 min at 5 or 10 Hz increased 5-hydroxytryptophan accumulation in all brain regions but not in the spinal cord. Unexpectedly, this stimulation also increased the accumulation of 3,4-dihydroxyphenylalanine in the hypothalamus and spinal cord. These results suggest that 5-hydroxytryptophan accumulation following the administration of NSD 1015 is a valid index of 5-hydroxytryptamine neuronal activity in the brain.  相似文献   

16.
The effects of microinfusingl-glutamate, serotonin (5-HT), (±)-8-hydroxy-2-(di-N-propylamino) tetralin (8-OH DPAT; a 5-HT1A agonist), and muscimol (a GABAA agonist) into the dorsal raphe nucleus on the extracellular levels of 5-HT, dopamine (DA) and their metabolites in the nucleus accumbens were studied in unanesthetized, freely moving, adult male Wistar rats, using the technique of microdialysis coupled with small-bore HPLC. Administration of 0.75 gl-glutamate produced a 25–50% increase (P<0.05) in the extracellular levels of both 5-HT and DA. On the other hand, infusion of 8-OH DPAT and, to a lesser extent, 5-HT produced a significant (P<0.05) decrease in the extracellular levels of both 5-HT and DA. Muscimol (0.25 or 0.50 g) had little effect on the extracellular concentrations of 5-HT or DA following its administration. In general, the extracellular levels of the major metabolites of 5-HT and DA in the nucleus accumbens were not altered by microinfusion of any of the agents. The data indicate that (a) the 5-HT neurons projecting to the nucleus accumbens from the dorsal raphe nucleus can be activated by excitatory amino acid receptors and inhibited by stimulation of 5-HT1A autoreceptors, and (b) the dorsal raphe nucleus 5-HT neuronal system may regulate the ventral tegmental area DA projection to the nucleus accumbens.Special issue dedicated to Dr. Morris H. Aprison  相似文献   

17.
The goal of our study was to assess the monoaminergic changes in locus coeruleus (LC) and dorsal raphe nucleus (DRN) following noradrenaline (NA) depletion. Seven days after a single N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine (DSP-4) intraperitoneal administration in mice, we observed a decrease of NA in both the LC and DRN, as well as in prefrontal cortex (PFC) and hippocampus (HIPP). Moreover, an increase of serotonin (5-HT) and 5-hydroxyindolacetic acid (5-HIAA) was detected at LC level, while no change was found in DRN. DSP-4 also caused a significant decrease of dopamine (DA) tissue content in HIPP and DRN, without affecting the LC and the PFC. A decrease of DA metabolite, homovanillic acid (HVA), was found in the DRN of NA-depleted mice. These results highlight that the neurotoxic action of DSP-4 is not restricted to LC terminal projections but also involves NA depletion at the cell body level, where it is paralleled by adaptive changes in both serotonergic and dopaminergic systems. T. Cassano and S. Gaetani have contributed equally to the present study.  相似文献   

18.
俞光弟  邓柏澧 《生理学报》1997,49(3):314-320
本实验观察刺激中缝背核对大鼠视交叉上核光敏神经元单位放电的影响,并进行药理学分析。结果表明,刺激DR能明显抑制SCN神经元光诱发放电,这种抑制作用能被单胺氧化酶抑制剂优降宁增强,能被5-HT合成抑制剂对氯苯丙氨酸减弱,还能被5-HT受体拮抗剂赛庚啶阻断。结果提示,5-HT参与了刺激DR对SCN光敏神经元放电的抑制。  相似文献   

19.
陈文雁  王建军 《生理学报》1996,48(2):132-140
我们首次观察了电刺激大鼠中缝背核(DR)对小脑核团(DCN)──内侧核(MN),间位核(IN)和外侧核(LN)神经元电活动的影响。结果表明:刺激DR可引起DCN神经元的抑制、兴奋和双相(兴奋-抑制、抑制-兴奋)三种不同类型的反应,其中以抑制性反应为主(76%-90%);反应的潜伏期为10—84ms,但大多数细胞呈现小于30ms的短潜伏期反应;DCN细胞的自发放电频率为5-120Hz,自发放电频率高的神经元群体对DR刺激的反应比率却比自发放电频率低的群体低;静脉注射5-HT2/1c受体阻断剂methysergide可以阻断DCN细胞对DR刺激的抑制性反应(66.7%-83.3%)。这些结果提示中缝-小脑5-HT能纤维传入系统可能通过对DCN细胞电活动的调制作用参予小脑的感觉运动整合过程。  相似文献   

20.
Rats received a unilateral lesion of the nucleus basalis magnocellularis (NBM) by infusion of ibotenic acid. In addition, the dorsal raphe nucleus was lesioned by infusion of 5,7-dihydroxytryptamine (5,7-DHT). The release of acetylcholine (ACh), choline, serotonin (5-HT) and 5-hydroxyindoleacetic acid (5-HIAA) was measured in the frontal neocortex by means of microdialysis. Lesions of the NBM, but not the raphe nucleus, reduced the release of ACh significantly (–47%). The release of 5-HT and 5-HIAA was reduced by raphe lesions (–44% and –79%), but not by NBM lesions. In no case did the combined lesion affect neurotransmitter release more than a single lesion. These results suggest that serotonergic projections from the dorsal raphe nucleus are not involved in tonic inhibition of ACh release in the neocortex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号