首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We have previously established that the ABCA1 transporter, which plays a critical role in the lipidation of extracellular apolipoprotein acceptors, traffics between late endocytic vesicles and the cell surface (Neufeld, E. B., Remaley, A. T., Demosky, S. J., Jr., Stonik, J. A., Cooney, A. M., Comly, M., Dwyer, N. K., Zhang, M., Blanchette-Mackie, J., Santamarina-Fojo, S., and Brewer, H. B., Jr. (2001) J. Biol. Chem. 276, 27584-27590). The present study provides evidence that ABCA1 in late endocytic vesicles plays a role in cellular lipid efflux. Late endocytic trafficking was defective in Tangier disease fibroblasts that lack functional ABCA1. Consistent with a late endocytic protein trafficking defect, the hydrophobic amine U18666A retained NPC1 in abnormally tubulated, cholesterol-poor, Tangier disease late endosomes, rather than cholesterol-laden lysosomes, as in wild type fibroblasts. Consistent with a lipid trafficking defect, Tangier disease late endocytic vesicles accumulated both cholesterol and sphingomyelin and were immobilized in a perinuclear localization. The excess cholesterol in Tangier disease late endocytic vesicles retained massive amounts of NPC1, which traffics lysosomal cholesterol to other cellular sites. Exogenous apoA-I abrogated the cholesterol-induced retention of NPC1 in wild type but not in Tangier disease late endosomes. Adenovirally mediated ABCA1-GFP expression in Tangier disease fibroblasts corrected the late endocytic trafficking defects and restored apoA-I-mediated cholesterol efflux. ABCA1-GFP expression in wild type fibroblasts also reduced late endosome-associated NPC1, induced a marked uptake of fluorescent apoA-I into ABCA1-GFP-containing endosomes (that shuttled between late endosomes and the cell surface), and enhanced apoA-I-mediated cholesterol efflux. The combined results of this study suggest that ABCA1 converts pools of late endocytic lipids that retain NPC1 to pools that can associate with endocytosed apoA-I, and be released from the cell as nascent high density lipoprotein.  相似文献   

2.
People homozygous for mutations in the Niemann-Pick type C1 (NPC1) gene have physiological defects, including excess accumulation of intracellular cholesterol and other lipids, that lead to drastic neural and liver degeneration. The NPC1 multipass transmembrane protein is resident in late endosomes and lysosomes, but its functions are unknown. We find that organelles containing functional NPC1-fluorescent protein fusions undergo dramatic movements, some in association with extending strands of endoplasmic reticulum. In NPC1 mutant cells the NPC1-bearing organelles that normally move at high speed between perinuclear regions and the periphery of the cell are largely absent. Pulse-chase experiments with dialkylindocarbocyanine low-density lipoprotein showed that NPC1 organelles function late in the endocytic pathway; NPC1 protein may aid the partitioning of endocytic and lysosomal compartments. The close connection between NPC1 and the drug U18666A, which causes NPC1-like organelle defects, was established by rescuing drug-treated cells with overproduced NPC1. U18666A inhibits outward movements of NPC1 organelles, trapping membranes and cholesterol in perinuclear organelles similar to those in NPC1 mutant cells, even when cells are grown in lipoprotein-depleted serum. We conclude that NPC1 protein promotes the creation and/or movement of particular late endosomes, which rapidly transport materials to and from the cell periphery.  相似文献   

3.
It has been shown that the treatment with 3-[2-(diethylamino)ethoxy] androst-5-en-17-one (U18666A) causes the accumulation of cholesterol and the cation-independent mannose 6-phosphate receptor (CIMPR) in late endosomal/lysosomal compartments in BHK cells. The present study reports on a study of the effect of U18666A on CIMPR distribution in more detail in HeLa cells. When cells were treated with U18666A for 20 h, the intense perinuclear signal for CIMPR corresponding to the trans-Golgi network (TGN) disappeared and lamp1-negative punctate signals, scattered in the perinuclear region were detected. CIMPR then began to accumulate in lamp1-positive compartments 48 h after addition of the drug. Double immunofluorescence microscopy showed that U18666A-induced mannose 6-phosphate receptor-containing compartments (U-MPRCs), which were formed in the early phase of the redistribution, contained no marker for the TGN, late endosomes or lysosomes. Approximately half of the structures contained transferrin that had been internalized for 20 min, and cathepsin D, the majority of which appeared to be its precursor form. Immunoelectron-microscopic analysis revealed that U-MPRCs are composed of multivesicular bodies, irregularly shaped structures, and vesicular structures adjacent to the multivesicular bodies. These results suggest that U18666A treatment primarily suppresses the CIMPR transport pathways to late endosomes and from transferrin-containing endosomes, both of which may be dependent on cholesterol function.This work was supported by grants from Japan Ministry of Education, Culture, Sports, Science, and Technology.  相似文献   

4.
Niemann-Pick disease type C (NPC) is caused by mutations leading to loss of function of NPC1 or NPC2 proteins, resulting in accumulation of unesterified cholesterol in late endosomes and lysosomes. We previously reported that expression of the ATP-binding cassette transporter A1 (ABCA1) is impaired in human NPC1(-/-) fibroblasts, resulting in reduced HDL particle formation and providing a mechanism for the reduced plasma HDL cholesterol seen in the majority of NPC1 patients. We also found that treatment of NPC1(-/-) fibroblasts with an agonist of liver X-receptor corrects ABCA1 expression and HDL formation and reduces lysosomal cholesterol accumulation. We have confirmed that ABCA1 expression is also reduced in NPC2(-/-) cells, and found that α-HDL particle formation is impaired in these cells. To determine whether selective up-regulation of ABCA1 can correct lysosomal cholesterol accumulation in NPC disease cells and HDL particle formation, we produced and infected NPC1(-/-) and NPC2(-/-) fibroblasts with an adenovirus expressing full-length ABCA1 and enhanced green fluorescent protein (AdABCA1-EGFP). ABCA1-EGFP expression in NPC1(-/-) fibroblasts resulted in normalization of cholesterol efflux to apolipoprotein A-I (apoA-I) and α-HDL particle formation, plus a marked reduction in filipin staining of unesterified cholesterol in late endosomes/lysosomes. In contrast, AdABCA1-EGFP treatment of NPC2(-/-) fibroblasts to normalize ABCA1 expression had no effect on cholesterol efflux to apoA-I or accumulation of excess cholesterol in lysosomes, and only partially corrected α-HDL formation by these cells. These results suggest that correction of ABCA1 expression can bypass the mutation of NPC1 but not NPC2 to mobilize excess cholesterol from late endosomes and lysosomes in NPC disease cells. Expression of ABCA1-EGFP in NPC1(-/-) cells increased cholesterol available for esterification and reduced levels of HMG-CoA reductase protein, effects that were abrogated by co-incubation with apoA-I. A model can be generated in which ABCA1 is able to mobilize cholesterol, to join the intracellular regulatory pool or to be effluxed for HDL particle formation, either directly or indirectly from the lysosomal membrane, but not from the lysosomal lumen. This article is part of a Special Issue entitled Advances in High Density Lipoprotein Formation and Metabolism: A Tribute to John F. Oram (1945-2010).  相似文献   

5.
Niemann‐Pick type C disease (NPC) is a disorder characterized by abnormal intracellular accumulation of unesterified cholesterol and glycolipids. Two distinct disease‐causing genes have been isolated, NPC1 and NPC2. The NPC1 protein is involved in the sorting and recycling of cholesterol and glycosphingolipids in the late endosomal/lysosomal system. It has extensive homology with the Patched1 (Ptc1) receptor, a transmembrane protein localized in the primary cilium, and involved in the Hedgehog signaling (Shh) pathway. We assessed the presence of NPC1 and Ptc1 proteins and evaluated the relative distribution and morphology of primary cilia in fibroblasts from five NPC1 patients and controls, and in normal fibroblasts treated with 3‐ß‐[2‐(diethylamino)ethoxy]androst‐5‐en‐17‐one (U18666A), a cholesterol transport‐inhibiting drug that is widely used to mimic NPC. Immunofluorescence and western blot analyses showed a significant decrease in expression of NPC1 and Ptc1 in NPC1 fibroblasts, while they were normally expressed in U18666A‐treated fibroblasts. Moreover, fibroblasts from NPC1 patients and U18666A‐treated cells showed a lower percentage distribution of primary cilia and a significant reduction in median cilia length with respect to controls. These are the first results demonstrating altered cytoplasmic expression of Ptc1 and reduced number and length of primary cilia, where Ptc1 is located, in fibroblasts from NPC1 patients. We suggest that the alterations in Ptc1 expression in cells from NPC1 patients are closely related to NPC1 expression deficit, while the primary cilia alterations observed in NPC1 and U18666A‐treated fibroblasts may represent a secondary event derived from a defective metabolic pathway.  相似文献   

6.
Recently, a new class of lipid-lowering agents has been described that upregulate LDL receptor (LDLr) activity. These agents are proposed to activate sterol-regulated gene expression through binding to the sterol regulatory element binding protein (SREBP) cleavage-activating protein (SCAP). Here, we show that the steroidal LDLr upregulator, GW707, induces accumulation of lysosomal free cholesterol and inhibits LDL-stimulated cholesterol esterification, similar to that observed in U18666A-treated cells and in Niemann-Pick type C1 (NPC1) mutants. Moreover, we demonstrate that induction of the NPC-like phenotype by GW707 is independent of SCAP function. We find that treatment with GW707 does not increase SREBP-dependent gene expression above that observed in lipoprotein-starved cells. Rather, we show that the apparent increase in SREBP-dependent activity in GW707-treated cells is attributable to a failure to appropriately suppress sterol-regulated gene expression, as has been shown previously for U18666A-treated cells and NPC mutant fibroblasts. We further demonstrate that cells treated with either GW707 or U18666A fail to appropriately generate 27-hydroxycholesterol in response to LDL cholesterol. Taken together, these findings support a mechanism in which GW707 exerts its hypolipidemic effects through disruption of late endosomal/lysosomal sterol trafficking and subsequent stimulation of LDLr activity.  相似文献   

7.
Niemann-Pick type C1 disease is an autosomal-recessive lysosomal storage disorder. Loss of function of the npc1 gene leads to abnormal accumulation of free cholesterol and sphingolipids within the late endosomal and lysosomal compartments resulting in progressive neurodegeneration and dysmyelination. Here, we show that oligodendroglial cells secrete cholesterol by exosomes when challenged with cholesterol or U18666A, which induces late endosomal cholesterol accumulation. Up-regulation of exosomal cholesterol release was also observed after siRNA-mediated knockdown of NPC1 and in fibroblasts derived from NPC1 patients and could be reversed by expression of wild-type NPC1. We provide evidence that exosomal cholesterol secretion depends on the presence of flotillin. Our findings indicate that exosomal release of cholesterol may serve as a cellular mechanism to partially bypass the traffic block that results in the toxic lysosomal cholesterol accumulation in Niemann-Pick type C1 disease. Furthermore, we suggest that secretion of cholesterol by exosomes contributes to maintain cellular cholesterol homeostasis.  相似文献   

8.
The mechanisms of endosomal and lysosomal cholesterol traffic are still poorly understood. We showed previously that unesterified cholesterol accumulates in the late endosomes and lysosomes of fibroblasts deficient in both lysosome associated membrane protein-2 (LAMP-2) and LAMP-1, two abundant membrane proteins of late endosomes and lysosomes. In this study we show that in cells deficient in both LAMP-1 and LAMP-2 (LAMP−/−), low-density lipoprotein (LDL) receptor levels and LDL uptake are increased as compared to wild-type cells. However, there is a defect in esterification of both endogenous and LDL cholesterol. These results suggest that LAMP−/− cells have a defect in cholesterol transport to the site of esterification in the endoplasmic reticulum, likely due to defective export of cholesterol out of late endosomes or lysosomes. We also show that cholesterol accumulates in LAMP-2 deficient liver and that overexpression of LAMP-2 retards the lysosomal cholesterol accumulation induced by U18666A. These results point to a critical role for LAMP-2 in endosomal/lysosomal cholesterol export. Moreover, the late endosomal/lysosomal cholesterol accumulation in LAMP−/− cells was diminished by overexpression of any of the three isoforms of LAMP-2, but not by LAMP-1. The LAMP-2 luminal domain, the membrane-proximal half in particular, was necessary and sufficient for the rescue effect. Taken together, our results suggest that LAMP-2, its luminal domain in particular, plays a critical role in endosomal cholesterol transport and that this is distinct from the chaperone-mediated autophagy function of LAMP-2.  相似文献   

9.
Reactive oxygen species (ROS) can induce lysosomal membrane permeabilization (LMP). Photoirradiation of murine hepatoma 1c1c7 cultures preloaded with the photosensitizer NPe6 generates singlet oxygen within acidic organelles and causes LMP and the activation of procaspases. Treatment with the cationic amphiphilic drugs (CADs) U18666A, imipramine, and clozapine stimulated the accumulation of filipin-stainable nonesterified cholesterol/sterols in late endosomes/lysosomes, but not in mitochondria. Concentration-response studies demonstrated an inverse relationship between lysosomal nonesterified cholesterol/sterol contents and susceptibility to NPe6 photoirradiation-induced intracellular membrane oxidation, LMP, and activation of procaspase-9 and -3. Similarly, the kinetics of restoration of NPe6 photoirradiation-induced LMP paralleled the losses of lysosomal cholesterol that occurred upon replating U18666A-treated cultures in CAD-free medium. Consistent with the oxidation of lysosomal cholesterol, filipin staining in U18666A-treated cultures progressively decreased with increasing photoirradiating light dose. U18666A also suppressed the induction of LMP and procaspase activation by exogenously added hydrogen peroxide. However, neither U18666A nor imipramine suppressed the induction of apoptosis by agents that did not directly induce LMP. These studies indicate that lysosomal nonesterified cholesterol/sterol content modulates susceptibility to ROS-induced LMP and possibly does so by being an alternative target for oxidants and lowering the probability of damage to other lysosomal membrane lipids and/or proteins.  相似文献   

10.
Niemann-Pick disease type C (NPC) is caused by mutations leading to loss of function of NPC1 or NPC2 proteins, resulting in accumulation of unesterified cholesterol in late endosomes and lysosomes. We previously reported that expression of the ATP-binding cassette transporter A1 (ABCA1) is impaired in human NPC1−/− fibroblasts, resulting in reduced HDL particle formation and providing a mechanism for the reduced plasma HDL cholesterol seen in the majority of NPC1 patients. We also found that treatment of NPC1−/− fibroblasts with an agonist of liver X-receptor corrects ABCA1 expression and HDL formation and reduces lysosomal cholesterol accumulation. We have confirmed that ABCA1 expression is also reduced in NPC2−/− cells, and found that α-HDL particle formation is impaired in these cells. To determine whether selective up-regulation of ABCA1 can correct lysosomal cholesterol accumulation in NPC disease cells and HDL particle formation, we produced and infected NPC1−/− and NPC2−/− fibroblasts with an adenovirus expressing full-length ABCA1 and enhanced green fluorescent protein (AdABCA1-EGFP). ABCA1-EGFP expression in NPC1−/− fibroblasts resulted in normalization of cholesterol efflux to apolipoprotein A-I (apoA-I) and α-HDL particle formation, plus a marked reduction in filipin staining of unesterified cholesterol in late endosomes/lysosomes. In contrast, AdABCA1-EGFP treatment of NPC2−/− fibroblasts to normalize ABCA1 expression had no effect on cholesterol efflux to apoA-I or accumulation of excess cholesterol in lysosomes, and only partially corrected α-HDL formation by these cells. These results suggest that correction of ABCA1 expression can bypass the mutation of NPC1 but not NPC2 to mobilize excess cholesterol from late endosomes and lysosomes in NPC disease cells. Expression of ABCA1-EGFP in NPC1−/− cells increased cholesterol available for esterification and reduced levels of HMG-CoA reductase protein, effects that were abrogated by co-incubation with apoA-I. A model can be generated in which ABCA1 is able to mobilize cholesterol, to join the intracellular regulatory pool or to be effluxed for HDL particle formation, either directly or indirectly from the lysosomal membrane, but not from the lysosomal lumen. This article is part of a Special Issue entitled Advances in High Density Lipoprotein Formation and Metabolism: A Tribute to John F. Oram (1945-2010).  相似文献   

11.
Alterations in lipid homeostasis are implicated in several neurodegenerative diseases, although the mechanisms responsible are poorly understood. We evaluated the impact of cholesterol accumulation, induced by U18666A, quinacrine or mutations in the cholesterol transporting Niemann-Pick disease type C1 (NPC1) protein, on lysosomal stability and sensitivity to lysosome-mediated cell death. We found that neurons with lysosomal cholesterol accumulation were protected from oxidative stress-induced apoptosis. In addition, human fibroblasts with cholesterol-loaded lysosomes showed higher lysosomal membrane stability than controls. Previous studies have shown that cholesterol accumulation is accompanied by the storage of lipids such as sphingomyelin, glycosphingolipids and sphingosine and an up regulation of lysosomal associated membrane protein-2 (LAMP-2), which may also influence lysosomal stability. However, in this study the use of myriocin and LAMP deficient fibroblasts excluded these factors as responsible for the rescuing effect and instead suggested that primarily lysosomal cholesterol content determineD the cellular sensitivity to toxic insults. Further strengthening this concept, depletion of cholesterol using methyl-β-cyclodextrin or 25-hydroxycholesterol decreased the stability of lysosomes and cells became more prone to undergo apoptosis. In conclusion, cholesterol content regulated lysosomal membrane permeabilization and thereby influenced cell death sensitivity. Our data suggests that lysosomal cholesterol modulation might be used as a therapeutic strategy for conditions associated with accelerated or repressed apoptosis.  相似文献   

12.
The 3beta-(2-diethylaminoethoxy)-androstenone HCl (U18666A), progesterone and several cationic amphiphilic drugs have been shown to alter the trafficking of a number of intracellular membrane proteins including CD63/Lamp-3, insulin growth factor 2/mannose 6-phosphate receptor (IGF2/MPR), and the Niemann-Pick C1 gene product (NPC1) as well as ganglioside GM1. We have examined the effects of these compounds on cultured melanocytes at concentrations that have been shown to effectively alter intracellular trafficking. Treatment of melanocytes with U18666A (2.5 micro M) or progesterone (15 micro M) for 96 h decreased melanin content an average of 67% as compared with control without lowering the total cellular tyrosinase activity. Steroidal alkaloids that preferentially act on the Sonic Hedgehog signaling pathway showed no related specificity in their ability to decrease pigmentation. In melanocytes treated with U18666A, tyrosinase accumulates in a compartment that contains both lysosome-associated membrane protein-1 (Lamp 1) and MPR, and stains with filipin, consistent with cholesterol-laden late endosomes/lysosomes. Our results suggest that tyrosinase, like the NPC1 gene product, traverses a U18666A-sensitive trafficking pathway.  相似文献   

13.
Oxysterol binding protein (OSBP) translocation between Golgi and vesicular/cytoplasmic compartments is affected by conditions that alter cholesterol and sphingomyelin homeostasis, indicating a role in lipid and sterol regulation in this organelle. In this study, we show that OSBP dissociation from the Golgi apparatus was inhibited when LDL cholesterol efflux from lysosomes was blocked in Niemann-Pick C (NPC) or U18666A [3-beta-[2-(diethylamino)ethoxy]androst-5-en-17-one]-treated fibroblasts. Dissociation of OSBP from the Golgi apparatus in response to LDL was independent of de novo cholesterol biosynthesis. OSBP did not localize with filipin-stained lysosomal cholesterol, and the NPC defect did not alter OSBP expression or phosphorylation. However, OSBP in the Golgi apparatus was progressively dephosphorylated (as assessed by a molecular mass shift on SDS-PAGE) in U18666A-treated fibroblasts or Chinese hamster ovary cells as a result of combined inhibition of LDL cholesterol transport and de novo cholesterol synthesis. In vivo phosphopeptide mapping and mutagenesis of OSBP was used to identify the cholesterol-sensitive phosphorylation sites at serines 381, 384, and 387 that were responsible for the altered mobility on SDS-PAGE. NPC-1 protein-mediated release of LDL-derived cholesterol and de novo biosynthesis regulates OSBP localization and phosphorylation. This indicates that OSBP responds to or senses altered cellular sterol content and transport.  相似文献   

14.
The Niemann-Pick C1 (NPC1) protein regulates the transport of cholesterol from late endosomes/lysosomes to other compartments responsible for maintaining intracellular cholesterol homeostasis. The present study examined the expression of the NPC1 gene and the distribution of the NPC1 protein that resulted from the transport of LDL-derived cholesterol through normal human fibroblasts. A key finding was that the transport of cholesterol from late endosomes/lysosomes to the sterol-regulatory pool at the endoplasmic reticulum, as determined by feedback inhibition of the sterol-regulatory element binding protein (SREBP) pathway, was associated with the downregulation of the NPC1 gene. Consistent with these results, fibroblasts incubated with LDL had decreased amounts of SREBP protein that interacted with sterol-regulatory element (SRE) sequences positioned within the NPC1 gene promoter region. Finally, partial colocalization of the NPC1 protein with late endosomes/lysosomes and distinct regions of the endoplasmic reticulum suggested that the NPC1 protein may facilitate the transport of cholesterol directly between these two compartments. Together, these results indicate that the transport of LDL-derived cholesterol from late endosomes/lysosomes to the sterol-regulatory pool, known to be regulated by the NPC1 protein, is responsible for promoting feedback inhibition of the SREBP pathway and downregulation of the NPC1 gene.  相似文献   

15.
Cationic amphiphilic drugs (CADs) cause massive intracellular accumulation of phospholipids, thereby resulting in phospholipidosis (PLD); however, the molecular mechanism underlying CAD-induced PLD remains to be resolved. Here, we found that treatment of normal rat kidney cells with CADs known to induce PLD caused redistribution of a mannose 6-phosphate/IGF-II receptor (MPR300) from the TGN to endosomes and concomitantly increased the secretion of lysosomal enzymes, resulting in a decline of intracellular lysosomal enzyme levels. These results enable the interpretation of why CADs cause excessive accumulation of undegraded substrates, including phospholipids in lysosomes, and led to the conclusion that the impaired MPR300-mediated sorting system of lysosomal enzymes reflects the general mechanism of CAD-induced PLD. In addition, our findings suggest that the measurement of lysosomal enzyme activity secreted into culture medium is useful as a rapid and convenient in vitro early screening system to predict drugs that can induce PLD.  相似文献   

16.
Niemann-Pick disease type C (NPC), caused by mutations in the NPC1 gene or the NPC2 gene, is characterized by the accumulation of unesterified cholesterol and other lipids in endo/lysosomal compartments. NPC2 is a small, soluble, lysosomal protein that is targeted to this compartment via a mannose 6-phosphate-inhibitable pathway. To obtain insight into the roles of mannose 6-phosphate receptors (MPRs) in NPC2 targeting, we here examine the trafficking and function of NPC2 in fibroblast lines deficient in one or both of the two MPRs, MPR46 and MPR300. We demonstrate that either MPR alone is sufficient to transport NPC2 to the endo/lysosomal compartment, although MPR300 seems to be more efficient than MPR46. In the absence of both MPRs, NPC2 is secreted into the culture medium, and only a small amount of intracellular NPC2 can be detected, mainly in the endoplasmic reticulum. This leads to massive accumulation of unesterified cholesterol in the endo/lysosomal compartment of the MPR46/300-deficient fibroblasts, a phenotype similar to that of the NPC patient fibroblasts. In addition, we observed an upregulation of NPC1 protein and mRNA in the MPR-double-deficient cells. Taken together, our results suggest that the lysosomal targeting of NPC2 is strictly dependent on MPRs in fibroblasts.  相似文献   

17.
Atheroma macrophages internalize large quantities of lipoprotein-derived lipids. While most emphasis has been placed on cholesterol, lipoprotein-derived fatty acids may also play important roles in lesional macrophage biology. Little is known, however, about the trafficking or metabolism of these fatty acids. In this study, we first show that the cholesterol-fatty acyl esterification reaction, catalyzed by acyl-CoA:cholesterol acyltransferase (ACAT), competes for the incorporation of lipoprotein-derived fatty acids into cellular phospholipids. Furthermore, conditions that inhibit trafficking of cholesterol from late endosomes/lysosomes to the endoplasmic reticulum (ER), such as the amphipathic amine U18666A and the Npc1+/- mutation, also inhibit incorporation of lipoprotein-derived fatty acids into phospholipids. The biological relevance of these findings was investigated by studying the suppression of agonist-induced prostaglandin E(2) (PGE(2)) and leukotriene C(4)/D(4)/E(4) production during lipoprotein uptake by macrophages, which has been postulated to involve enrichment of cellular phospholipids with non-arachidonic fatty acids (NAAFAs). We found that eicosanoid suppression was markedly enhanced when ACAT was inhibited and prevented when late endosomal/lysosomal lipid trafficking was blocked. Moreover, PGE(2) suppression depended entirely on acetyl-LDL-derived NAAFAs, not on acetyl-LDL-cholesterol, and was not due to decreased cPLA(2) activity per se. These data support the following model: lipoprotein-derived NAAFAs traffic via the NPC1 pathway from late endosomes/lysosomes to a critical pool of phospholipids. In competing reactions, these NAAFAs can be either esterified to cholesterol or incorporated into phospholipids, resulting in suppression of eicosanoid biosynthesis. In view of recent evidence suggesting dysfunctional cholesterol esterification in late lesional macrophages, these data predict that such cells would have highly suppressed eicosanoid synthesis, thus affecting eicosanoid-mediated cell signaling in advanced atherosclerosis.  相似文献   

18.

Background

Neurotrophins and their receptors regulate several aspects of the developing and mature nervous system, including neuronal morphology and survival. Neurotrophin receptors are active in signaling endosomes, which are organelles that propagate neurotrophin signaling along neuronal processes. Defects in the Npc1 gene are associated with the accumulation of cholesterol and lipids in late endosomes and lysosomes, leading to neurodegeneration and Niemann-Pick type C (NPC) disease. The aim of this work was to assess whether the endosomal and lysosomal alterations observed in NPC disease disrupt neurotrophin signaling. As models, we used i) NPC1-deficient mice to evaluate the central cholinergic septo-hippocampal pathway and its response to nerve growth factor (NGF) after axotomy and ii) PC12 cells treated with U18666A, a pharmacological cellular model of NPC, stimulated with NGF.

Results

NPC1-deficient cholinergic cells respond to NGF after axotomy and exhibit increased levels of choline acetyl transferase (ChAT), whose gene is under the control of NGF signaling, compared to wild type cholinergic neurons. This finding was correlated with increased ChAT and phosphorylated Akt in basal forebrain homogenates. In addition, we found that cholinergic neurons from NPC1-deficient mice had disrupted neuronal morphology, suggesting early signs of neurodegeneration. Consistently, PC12 cells treated with U18666A presented a clear NPC cellular phenotype with a prominent endocytic dysfunction that includes an increased size of TrkA-containing endosomes and reduced recycling of the receptor. This result correlates with increased sensitivity to NGF, and, in particular, with up-regulation of the Akt and PLC-?? signaling pathways, increased neurite extension, increased phosphorylation of tau protein and cell death when PC12 cells are differentiated and treated with U18666A.

Conclusions

Our results suggest that the NPC cellular phenotype causes neuronal dysfunction through the abnormal up-regulation of survival pathways, which causes the perturbation of signaling cascades and anomalous phosphorylation of the cytoskeleton.  相似文献   

19.
The dynamics of endolysosomal cholesterol were investigated in Niemann-Pick type C (NPC) cells and in human fibroblasts treated with class 2 amphiphiles to mimic NPC cells. We showed through new approaches that the massive pools of endolysosomal cholesterol in these cells are not trapped but, rather, circulate to the cell surface at about the normal rate. This flux spared NPC and amphiphile-treated cells from disruption by the extraction of their plasma membrane cholesterol with cyclodextrin. Nocodazole, a microtubule-depolymerizing agent, reversed the resistance of NPC and U18666A-treated cells to cholesterol depletion, apparently by reducing the flux of endolysosomal cholesterol to the plasma membrane. Neither nocodazole nor bafilomycin A1 (an inhibitor of the vacuolar proton pump) acted in the same way as the NPC mutation or class 2 amphiphiles: both agents decreased plasma membrane cholesterol at the expense of the endolysosomal pool and both blocked the actions of the amphiphile, U18666A. Finally, the resistance of NPC cells to lysis by amphotericin B was shown not to reflect a reduction in plasma membrane cholesterol arising from a block in lysosomal cholesterol export but rather the diversion of the amphotericin B to cholesterol-rich endolysosomes. We conclude that the large pool of endolysosomal cholesterol in NPC and amphiphile-treated fibroblasts is dynamic and that its turnover, as in normal cells, is dependent on microtubules.  相似文献   

20.
The Niemann-Pick C (NPC) pathway plays an essential role in the intracellular trafficking of cholesterol by facilitating the release of lipoprotein-derived sterol from the lumen of lysosomes. Regulation of cellular cholesterol homeostasis is of particular importance to lung alveolar type II cells because of the need for production of surfactant with an appropriate lipid composition. We performed microscopic and biochemical analysis of NPC proteins in isolated rat type II pneumocytes. NPC1 and NPC2 proteins were present in the lung, isolated type II cells in culture, and alveolar macrophages. The glycosylated and nonglycosylated forms of NPC1 were prominent in the lung and the lamellar body organelles. Immunocytochemical analysis of isolated type II pneumocytes showed localization of NPC1 to the limiting membrane of lamellar bodies. NPC2 and lysosomal acid lipase were found within these organelles, as confirmed by z-stack analysis of confocal images. All three proteins also were identified in small, lysosome-like vesicles. In the presence of serum, pharmacological inhibition of the NPC pathway with compound U18666A resulted in doubling of the cholesterol content of the type II cells. Filipin staining revealed a striking accumulation of cholesterol within lamellar bodies. Thus the NPC pathway functions to control cholesterol accumulation in lamellar bodies of type II pneumocytes and, thereby, may play a role in the regulation of surfactant cholesterol content.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号