首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The activities of signaling pathways are critical for fungi to survive antifungal attack and to maintain cell integrity. However, little is known about how fungi respond to antifungals, particularly if these interact with multiple cellular targets. The antifungal protein AFP is a very potent inhibitor of chitin synthesis and membrane integrity in filamentous fungi and has so far not been reported to interfere with the viability of yeast strains. With the hypothesis that the susceptibility of fungi toward AFP is not merely dependent on the presence of an AFP-specific target at the cell surface but relies also on the cell's capacity to counteract AFP, we used a genetic approach to decipher defense strategies of the naturally AFP-resistant strain Saccharomyces cerevisiae. The screening of selected strains from the yeast genomic deletion collection for AFP-sensitive phenotypes revealed that a concerted action of calcium signaling, TOR signaling, cAMP-protein kinase A signaling, and cell wall integrity signaling is likely to safeguard S. cerevisiae against AFP. Our studies uncovered that the yeast cell wall gets fortified with chitin to defend against AFP and that this response is largely dependent on calcium/Crz1p signaling. Most importantly, we observed that stimulation of chitin synthesis is characteristic for AFP-resistant fungi but not for AFP-sensitive fungi, suggesting that this response is a successful strategy to protect against AFP. We finally propose the adoption of the damage-response framework of microbial pathogenesis for the interactions of antimicrobial proteins and microorganisms in order to comprehensively understand the outcome of an antifungal attack.  相似文献   

2.
Cell wall integrity is crucial for fungal growth, development and stress survival. In the model yeast Saccharomyces cerevisiae, the cell integrity Mpk1/Slt2 MAP kinase and calcineurin pathways monitor cell wall integrity and promote cell wall remodelling under stress conditions. We have identified the Cryptococcus neoformans homologue of the S. cerevisiae Mpk1/Slt2 MAP kinase and have characterized its role in the maintenance of cell integrity in response to elevated growth temperature and in the presence of cell wall synthesis inhibitors. C. neoformans Mpk1 is required for growth at 37 degrees C in vitro, and this growth defect is suppressed by osmotic stabilization. C. neoformans mutants lacking Mpk1 are attenuated for virulence in the mouse model of cryptococcosis. Phosphorylation of Mpk1 is induced in response to perturbations of cell wall biosynthesis by the antifungal drugs nikkomycin Z (a chitin synthase inhibitor), caspofungin (a beta-1,3-glucan synthase inhibitor), or FK506 (a calcineurin inhibitor), and mutants lacking Mpk1 display enhanced sensitivity to nikkomycin Z and caspofungin. Lastly, we show that calcineurin and Mpk1 play complementing roles in regulating cell integrity in C. neoformans. Our studies demonstrate that pharmacological inhibition of the cell integrity pathway would enhance the activity of antifungal drugs that target the cell wall.  相似文献   

3.
One of the essential features of fungal morphogenesis is the polarized synthesis of cell wall components such as chitin. The actin cytoskeleton provides the structural basis for cell polarity in Aspergillus nidulans, as well as in most other eukaryotes. A class V chitin synthase, CsmA, which contains a myosin motor-like domain (MMD), is conserved among most filamentous fungi. The DeltacsmA null mutant showed remarkable abnormalities with respect to cell wall integrity and the establishment of polarity. In this study, we demonstrated that CsmA tagged with 9x HA epitopes localized near actin structures at the hyphal tips and septation sites and that its MMD was able to bind to actin. Characterization of mutants bearing a point mutation or deletion in the MMD suggests that the interaction between the MMD and actin is not only necessary for the proper localization of CsmA, but also for CsmA function. Thus, the finding of a direct interaction between the chitin synthase and the actin cytoskeleton provides new insight into the mechanisms of polarized cell wall synthesis and fungal morphogenesis.  相似文献   

4.
冯贻安  崔志峰 《微生物学报》2008,35(2):0267-0271
真菌细胞壁几丁质的合成是一个复杂的过程, 其关键酶为几丁质合酶(CS)。近年来, 丝状真菌中的CS研究有了大的突破, 与酿酒酵母中只有3种CS不同, 丝状真菌中存在7种类别的CS。大部分临床和农业中重要的病原真菌都是丝状真菌, 文中对真菌中7种类别CS的结构和功能作了概述, 重点讨论了丝状真菌中重要的CS类别, 并介绍了CS作为抗真菌药物有效靶标的研究现状, 旨在为研究真菌CS及其抑制剂提供参考。  相似文献   

5.
真菌几丁质合酶的研究进展   总被引:1,自引:0,他引:1  
真菌细胞壁几丁质的合成是一个复杂的过程,其关键酶为几丁质合酶(CS).近年来,丝状真菌中的CS研究有了大的突破,与酿酒酵母中只有3种CS不同,丝状真菌中存在7种类别的CS.大部分临床和农业中重要的病原真菌都是丝状真菌,文中对真菌中7种类别CS的结构和功能作了概述,重点讨论了丝状真菌中重要的CS类别,并介绍了CS作为抗真菌药物有效靶标的研究现状,旨在为研究真菌CS及其抑制剂提供参考.  相似文献   

6.
7.
Cyclothiazomycin B1 (CTB1) is an antifungal cyclic thiopeptide isolated from the culture broth of Streptomyces sp. HA 125-40. CTB1 inhibited the growth of several filamentous fungi including plant pathogens along with swelling of hyphae and spores. The antifungal activity of CTB1 was weakened by hyperosmotic conditions, and hyphae treated with CTB1 burst under hypoosmotic conditions, indicating increased cell wall fragility. CTB1-sensitive fungal species contain high levels of cell wall chitin and/or chitosan. Unlike nikkomycin Z, a competitive inhibitor of chitin synthase (CHS), CTB1 did not inhibit CHS activity. Although CTB1 inhibited CHS biosynthesis, the same result was also obtained with a non-specific proteins inhibitor, cycloheximide, which did not reduce cell wall rigidity. These results indicate that the primary target of CTB1 is not CHS, and we concluded that CTB1 antifungal activity was independent of this sole inhibition. We found that CTB1 bound to chitin but did not bind to β-glucan and chitosan. The results of the present study suggest that CTB1 induces cell wall fragility by binding to chitin, which forms the fungal cell wall. The antifungal activity of CTB1 could be explained by this chitin-binding ability.  相似文献   

8.
9.
In its attempt to survive, the fungal cell can change the cell wall composition and/or structure in response to environmental stress. The molecules involved in these compensatory mechanisms are a possible target for the development of effective antifungal agents. In the thermodimorphic fungus Paracoccidioides brasiliensis Pb01, the main polymers that compose the cell wall are chitin and glucans. These polymers form a primary barrier that is responsible for the structural integrity and formation of the cell wall. In this study the behaviour of P. brasiliensis was evaluated under incubation with cell wall stressor agents such as Calcofluor White (CFW), Congo Red (CR), Sodium Dodecyl Sulphate (SDS), NaCl, KCl, and Sorbitol. Use of concentrations at which the fungus is visually sensitive to those agents helped to explain some of the adaptive mechanisms used by P. brasiliensis in response to cell wall stress. Our results show that 1,3-β-D-glucan synthase (PbFKS1), glucosamine-6-phosphate synthase (PbGFA1) and β-1,3-glucanosyltransferase (PbGEL3)as well as 1,3-β-D-glucan and N-acetylglucosamine (GlcNAc) residues in the cell wall are involved in compensatory mechanisms against cell wall damage.  相似文献   

10.
Cryptococcus neoformans is an opportunistic fungal pathogen that causes cryptococcal meningoencephalitis, particularly in immunocompromised patients. The fungal cell wall is an excellent target for antifungal therapies as it is an essential organelle that provides cell structure and integrity, it is needed for the localization or attachment of known virulence factors, including the polysaccharide capsule, melanin, and phospholipase, and it is critical for host-pathogen interactions. In C. neoformans, chitosan produced by the enzymatic removal of acetyl groups from nascent chitin polymers has been implicated as an important component of the vegetative cell wall. In this study, we identify four putative chitin/polysaccharide deacetylases in C. neoformans. We have demonstrated that three of these deacetylases, Cda1, Cda2, and Cda3, can account for all of the chitosan produced during vegetative growth in culture, but the function for one, Fpd1, remains undetermined. The data suggest a model for chitosan production in vegetatively growing C. neoformans where the three chitin deacetylases convert chitin generated by the chitin synthase Chs3 into chitosan. Utilizing a collection of chitin/polysaccharide deacetylase deletion strains, we determined that during vegetative growth, chitosan helps to maintain cell integrity and aids in bud separation. Additionally, chitosan is necessary for maintaining normal capsule width and the lack of chitosan results in a "leaky melanin" phenotype. Our analysis indicates that chitin deacetylases and the chitosan made by them may prove to be excellent antifungal targets.  相似文献   

11.
Secondary growth is a common post-harvest problem when pre-infected crops are attacked by filamentous fungi during storage or processing. Several antifungal approaches are thus pursued based on chemical, physical, or bio-control treatments; however, many of these methods are inefficient, affect product quality, or cause severe side effects on the environment. A protein that can potentially overcome these limitations is the antifungal protein AFP, an abundantly secreted peptide of the filamentous fungus Aspergillus giganteus. This protein specifically and at low concentrations disturbs the integrity of fungal cell walls and plasma membranes but does not interfere with the viability of other pro- and eukaryotic systems. We thus studied in this work the applicability of AFP to efficiently prevent secondary growth of filamentous fungi on food stuff and chose, as a case study, the malting process where naturally infested raw barley is often to be used as starting material. Malting was performed under lab scale conditions as well as in a pilot plant, and AFP was applied at different steps during the process. AFP appeared to be very efficient against the main fungal contaminants, mainly belonging to the genus Fusarium. Fungal growth was completely blocked after the addition of AFP, a result that was not observed for traditional disinfectants such as ozone, hydrogen peroxide, and chlorine dioxide. We furthermore detected reduced levels of the mycotoxin deoxynivalenol after AFP treatment, further supporting the fungicidal activity of the protein. As AFP treatments did not compromise any properties and qualities of the final products malt and wort, we consider the protein as an excellent biological alternative to combat secondary growth of filamentous fungi on food stuff.  相似文献   

12.
13.
The cell wall is a protective and versatile structure distributed in all fungi. The component responsible for its rigidity is chitin, a product of chitin synthase (Chsp) enzymes. There are seven classes of chitin synthase genes (CHS) and the amount and type encoded in fungal genomes varies considerably from one species to another. Previous Chsp sequence analyses focused on their study as individual units, regardless of genomic context. The identification of blocks of conserved genes between genomes can provide important clues about the interactions and localization of chitin synthases. On the present study, we carried out an in silico search of all putative Chsp encoded in 54 full fungal genomes, encompassing 21 orders from five phyla. Phylogenetic studies of these Chsp were able to confidently classify 347 out of the 369 Chsp identified (94%). Patterns in the distribution of Chsp related to taxonomy were identified, the most prominent being related to the type of fungal growth. More importantly, a synteny analysis for genomic blocks centered on class IV Chsp (the most abundant and widely distributed Chsp class) identified a putative cell wall metabolism gene cluster in members of the genus Aspergillus, the first such association reported for any fungal genome.  相似文献   

14.
15.
16.
17.
To get a better insight into the relationship between cell wall integrity and pathogenicity of the fungus Botrytis cinerea, we have constructed chitin synthase mutants. A 620 bp class I chitin synthase gene fragment (Bcchs1) obtained by PCR amplification was used to disrupt the corresponding gene in the genome. Disruption of Bcchs1 occurred at a frequency of 8%. Nine independent mutants were obtained and the Bcchs1 mutant phenotype compared to that of transformants in which the gene was not disrupted. These disruption mutants were dramatically reduced in their in vitro Mg2+, Mn2+, and Co2+-dependent chitin synthase activity. Chitin content was reduced by 30%, indicating that Bcchs1p contributes substantially to cell wall composition. Enzymatic degradation by a cocktail of glucanases revealed cell wall weakening in the mutant. Bcchs1 was transcribed at a constant level during vegetative exponential growth, suggesting that it was necessary throughout hyphal development. Bcchs1 mutant growth was identical to undisrupted control transformant growth, however, the mutant exhibited reduced pathogenicity on vine leaves. It can be assumed that disruption of Bcchs1 leads to cell wall weakening which might slow down in planta fungal progression.  相似文献   

18.
Swm1p, a subunit of the APC cyclosome, was originally identified for its role in the later stages of the sporulation process and is required for spore wall assembly. In addition, this protein is required to maintain cell wall integrity in vegetative cells during growth at high temperature. Electron microscopy analyses of mutant cells grown at the restrictive temperature in the absence of osmotic support show that the cell wall is clearly abnormal, with large number of discontinuities that may be responsible for the observed lysis. The mutant cells show a 7-fold reduction in glucan synthase activity during growth at 38 degrees C and a 3.5-fold increase in the chitin content of the cell wall. The chitin is deposited in a delocalized manner all over the cell wall, where it accumulates in patches in abnormal regions. The excess chitin is mainly synthesized by the action of chitin synthase III (Chs3p), since it disappears in the swm1 chs3 double-mutant.  相似文献   

19.
韩琦  王铌翔 《微生物学报》2024,64(1):98-107
抑制真菌细胞壁的合成常作为防治真菌感染的安全有效手段。几丁质是真菌细胞壁及隔膜的重要结构成分,几丁质合酶是催化几丁质合成的关键酶。真菌细胞中几丁质合酶家族的不同成员在调控几丁质的合成中存在着差异,因此产生不同的生物学效应。本文通过综述几丁质合酶在人体三大条件致病真菌白色念珠菌、烟曲霉、新生隐球菌中的研究进展,分析了几丁质合酶对真菌致病性影响的机制,总结了几丁质合酶调控真菌细胞增殖、形态转换、病原菌与宿主的相互作用和细胞壁损伤诱导的补偿效应,展望了抗真菌感染的新策略及关于真菌几丁质合酶的未来研究方向。  相似文献   

20.
As fungal infections are becoming more prevalent in the medical or agricultural fields, novel and more efficient antifungal agents are badly needed. Within the scope of developing new strategies for the management of fungal infections, antifungal compounds that target essential fungal cell wall components are highly preferable. Ideally, newly developed antimycotics should also combine major aspects such as sustainability, high efficacy, limited toxicity and low costs of production. A naturally derived molecule that possesses all the desired characteristics is the antifungal protein (AFP) secreted by the filamentous ascomycete Aspergillus giganteus. AFP is a small, basic and cysteine-rich peptide that exerts extremely potent antifungal activity against human- and plant-pathogenic fungi without affecting the viability of bacteria, yeast, plant and mammalian cells. This review summarises the current knowledge of the structure, mode of action and expression of AFP, and highlights similarities and differences concerning these issues between AFP and its related proteins from other Ascomycetes. Furthermore, the potential use of AFP in the combat against fungal contaminations and infections will be discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号