首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Summary Cross-inoculation experiments with 10 pure cultured strains and 17 host species were carried out. The 10 strains were isolated from the root nodules on actinorhizal trees ranging in 9 species, 5 genera and 4 families. The host species belong to 5 genera. The pure cultured strains fromAlnus are of strong ability to infect different species of the same genus. The seedlings inoculated with these strains are able to nodulate normally. These strains can also infect and nodulate the seedlings ofMyrica californica, but not the seedlings of Elaeagnus, Casuarina andMyrica rubra. The pure cultured strains from Elaeagnus can infect and nodulate the host species in the same genus and family with an exception ofE. viridis vardelavayi, which can be only poorly nodulated by a few strains from Elaeagnus. The strains from Elaeagnus cannot infect the seedlings of Alnus andMyrica rubra. The results presented here suggest thatFrankia endophytes can be divided into two groups: Alnus group and Elaeagnus group.  相似文献   

2.
The response ofAlnus glutinosa, Casuarina cunninghamiana, Elaeagnus angustifolia andMyrica cerifera to a range of substrate nitrogen levels in solution, in relation to plant growth, infection, nodulation and root fine structure was studied. Nine concentrations of potassium nitrate ranging from 0.05 to 3.0 mM, were tested on each of the species. Plants were inoculated withFrankia pure cultures after a two week exposure to one of the nine levels of added nitrate. After six more weeks with constant exposure to nitrate, plants were harvested and assayed. With the exception of Myrica, regression analyses of whole plant dry weights as a function of added nitrate were highly significant. There was a tendency for nodulated plants grown at intermediate levels of added nitrate to exhibit higher relative growth rates, probably due to the additive effect of substrate nitrogen and fixation of atmospheric nitrogen. The mean numbers of nodules per plant were, with the exception of Alnus, significantly higher at intermediate levels of added nitrate, as were mean nodule dry weights. A highly significant inverse relationship between nodule weight as a percentage of whole plant weight was found in Elaeagnus and Myrica. The observed response of Elaeagnus to added nitrate compared to other actinorhizal plants appears to demonstrate that root hair infected plants are much more sensitive to the inhibitory effects of added nitrate than plants infected by intercellular penetration. A sharp reduction in the presence of root hairs at high concentrations of nitrate was observed. This indicates that the inhibition of nodulation in some actinorhizal plant species results from nitrate induced root hair suppression.  相似文献   

3.
Summary Nitrogen fixing trees and shrubs may be useful in revegetation efforts. Speculation that insufficient endophyte populations in surface soils may limit non-leguminous symbiotic nitrogen fixation in marginal land was explored.Purshia tridentata andP. glandulosa seedlings were grown in greenhouse trials using ten soils from nativePurshia sites. Treatments include a control, an inoculated treatment, and six mmole nitrogen amendment. When inoculated with aP.tridentata crushed nodule inoculum, two of five non-nodulating soils and three sparsely nodulating soils produced well nodulated plants. Inoculation also increased nodule mass, total nitrogen, nitrogen content and shoot dry mass in plants from some of the soils. Of the three soils failing to produce nodulated plants when inoculated, one produced plants that responded well to nitrogen additions but failed to nodulate under low nitrogen conditions; another produced severely stunted plants indicating nutritional limitations on the host; and the third produced plants that were not nitrogen deficient. An application of nitrogen completely suppressed nodulation in all but one soil. The twoPurshia species were similar in nodulation, nitrogen fixation and growth, although important exceptions exist that indicate species may differ in adaptability to certain soil conditions.  相似文献   

4.
The nodulation ability of variousFrankia strains isolated from the nodules of Casuarina were tested on two Casuarina species (C. equisetifolia andC. glauca), and onHippophaë rhamnoides. We found that the isolates could be separated into two groups, some of them being unable to reinfect the Casuarina host-plant but infective onH. rhamnoides. Other isolates effectively nodulated the original Casuarina host-plant. The second purpose of this study was to examine the genetic diversity among the Casuarina-isolated strains using well-characterized symbiotic genes as hybridization probes. We found a relationship between nodulation characteristics and hybridization patterns.  相似文献   

5.
Summary From 1979 to 1984 more than seven million seedlings of actinorhizal plants were successfully inoculated on an industrial scale withFrankia inoculants. Nodulated seedlings were produced in greenhouses to be used for land reclamation in northern Québec by the Societe d'Energie de la Baie James (SEBJ) and also by the City of Montréal for a revegetation program. Crushed-nodule homogenates andFrankia pure culture formulations were compared for large scale inoculation of green alder. Pure culture inoculant was found to be superior than crushed-nodule homogenates yielding reproducible nodulation of seedlings. Two inoculation methods of theFrankia pure culture inocula were compared: soil injection and spraying with greenhouse watering devices. Both methods resulted in efficient nodulation ofAlnus crispa, A. glutinosa, A. rugosa, Elaeagnus angustifolia, E. commutata, Hippophaë rhamnoides, Myrica gale andShepherdia argentea.  相似文献   

6.
Summary Nitrogen fixing trees and shrubs may be useful in revegetation efforts. The possibility that soil and environmental factors may influence a soil's capability to produce nodulated seedlings was explored.Purshia tridentata andCowania mexicana var. Stansburiana seedlings were grown in greenhouse trials using ten soils from native sites for each of the two genera. Treatments included a control and a six mmole nitrogen amendment as NH4NO3 for both surface and subsurface samples. Nodulation was often sparse for seedlings grown in surface collected samples. Although nodulation was usually better in subsoil samples, even some subsoils produced few or no nodules. Nitrogen additions inhibit nodulation and although soil nitrogen may be inhibitory in some unamended surface soils it is probably not a general cause of sparse nodulation. Nodule masses showed the same trends as nodule number but varied less with treatment and depth of soil source. Seedlings compensated for sparse nodulation with an increase in mass per nodule. Incidence of nodulation was related to some soil and environmental factors. Multiple regression analysis explained a substantial portion of nodulation variability. Soils from lower elevations with less precipitation did not produce well nodulated seedlings even in well watered greenhouse trials. Micronutrient cations, potassium, and phosphorus are positively correlated with nodulation incidence. The two genera were generally similar in nodulation responses to soil and environmental factors.Support for portions of this study was provided by the National Science Foundation (PCM-8204885). Any opinions, findings conclusions or recommendations expressed are those of the authors and do not necessarily reflect the views of the sponsor. Oregon Agricultural Experiment Station technical paper number 7293.  相似文献   

7.
Summary Fifteen species from three genera of the Casuarinaceae were inoculated with suspensions ofFrankia prepared from single nodule-lobes collected from different species and genera within the Casuarinaceae. Host-endophyte specificity was expressed mainly at the generic level. There was marked cross-inoculation within Casuarina and little nodulation ofCasuarina species from Allocasuarina sources with the exception of 3 sources ofFrankia fromA. torulosa which showed a high tendency to nodulateCasuarina species. Few sources from Casuarina nodulated species of Allocasuarina and while cross-inoculation within Allocasuarina was frequent it was less marked than within Casuarina. SomeFrankia inocula had wider host ranges than others, nodulating outside the genus or series of origin. It was not possible to determine if these apparent wider ranges in host spectra reflected genotypic differences betweenFrankia or were associated with the presence of more than oneFrankia strain in some inocula.  相似文献   

8.
Summary Seedlings ofCasuarina spp. andAllocasuarina spp. were grown from seed in the greenhouse and inoculated with a nodule suspension fromC. equisetifolia. Plants ofCasuarina spp. nodulated regularly and were effective in nitrogen-fixation. Only one species ofAllocasuariona, A. lehmanniana formed root nodules. Using these plants as source of inoculum, the isolation of a newFrankia sp. HFPA11I1 (HFP022 801) was made and the strain was grown in pure culture.Frankia sp. HFPA11I1 grows well in a defined medium and shows typical morphological characteristics. In media lacking combined nitrogen, the filamentours bacterium forms terminal vesicles in abundance and differentiaties large intrahyphal or terminal sporangia containing numerous spores. This strain, used as inoculum, nodulates effectively seedlings ofC. equisietifolia andC. cunninghamiana, forming nodules with verically-growing nodule roots. Although effective in acetylene reduction, the endophyte within the nodules is filamentous and lacks veiscles. When used to inoculated seedlings ofA llocasuarina lehmanniana, Frankia sp. HFPA11I1 induces root nodules which are coralloid and lacking nodule roots. The nodules are effective in acetylene reduction and the filamentous hyphae ofFrankia within the nodule lobes lack vesicles. Effective nodulation inA. Lehmanniana depends upon environmental conditions of the seedlings and proceeds much more slowly than in Casuariana.  相似文献   

9.
Summary In vitro growth (total protein content) of 5Frankia isolates was significantly inhibited at 10–4 M juglone (5-hydroxy-1, 4-napthoquinone) concentration, but the degree of inhibition varied with theFrankia isolate. Isolates fromAlnus crispa [Alnus viridis ssp.crispa (Ait.) Turril] were most tolerant of 10–4 M juglone relative to controls, while an isolate fromPurshia tridentata (Pursh.) D.C. was most inhibited, displaying a dramatic decrease in growth and greatly altered morphology.Nodulation of black alder [Alnus glutinosa L. (Gaertn.)] in an amended prairie soil inoculated with aFrankia isolate from red alder (Alnus rubra Bong.) was significantly decreased by the addition of aqueous suspensions of 10–3 M and 10–4 M juglone. This decrease was partially independent of decreased plant growth. The addition of an equal volume of sand to the soil mixture further decreased nodulation of black alder.Frankia inoculation of the soil mixtures significantly increased the total number of nodules formed per seedling, and the degree of differences in seedling nodulation owing to juglone and soil treatments.  相似文献   

10.
The effects of soil type (an acid peat and 2 acid brown earths) andFrankia source (3 spore-positive crushed nodule inocula and spore-negative crushed nodules containing the singleFrankia ArI5) on nodulation, N content and growth ofAlnus glutinosa andA. rubra were determined in a glasshouse pot experiment of two years duration. Plants on all soils required additional P for growth. Growth of both species was very poor on peat withA. glutinosa superior toA. rubra. The former species was also superior toA. rubra on an acid brown earth with low pH and low P content. Some plant-inoculum combinations were of notable effectivity on particular soils but soil type was the major source of variation in plant weight. Inoculation with crushed nodules containingFrankia ArI5 only gave poor infection of the host plant, suggesting that inoculation with locally-collected crushed nodules can be a preferred alternative to inoculation withFrankia isolates of untested effectivity. Evidence of adaptation ofFrankia to particular soils was obtained. Thus, while the growth of all strains was stimulated by mineral soil extracts, inhibitory effects of peat extracts were more apparent with isolates from nodules from mineral soils than from peat, suggesting that survival ofFrankia on peat may be improved by strain selection.  相似文献   

11.
Summary A morphological analysis of the initiation and development of root nodules ofElaeagnus angustifolia andMyrica cerifera inoculated with pure-culturedFrankia strains DDB 011610 or DDB 020110 was undertaken. From ultrastructural observations it was determined that both of theseFrankia strains can infectElaeagnus by an intercellular penetration mechanism andMyrica by the root hair infection mechanism. This indicates that both of these strains have the ability to infect host plant roots by either of two mechanisms. The reverse, thatElaeagnus orMyrica could be infected by both mechanisms, was not observed. The infection and nodule development processes of these two plants in combination with these strains were similar to observations made in previous studies (Miller andBaker 1985,Torrey andCallaham 1979). However, one exception was identified in the development of the prenodule ofMyrica when infected with strain 011610, in that endophytic hyphae developed vesicles within the cells of the prenodule. This event has not been described before for any of the actinorhizal genera and may be an indication of less than optimal compatibility between the host plant and the symbiont.Contribution no. 876 of the Battelle-Kettering Laboratory.  相似文献   

12.
The present contribution covers the cross-inoculation between two actinorhizae belonging to different genera and families, mainlyAlnus glutinosa andCoriaria myrtifolia. Frankia strains isolated fromA. glutinosa received from the Netherlands (LDAgp1r1, LDAgn1) and from Scotland (UGL010708), induced a fully effective nodulation onC. myrtifolia. The same effect was caused by a nodule extract fromA. glutinosa. The reverse, a crushed-nodule inoculum fromC. myrtifolia nodulated all theA. glutinosa seedlings, though nodules formed were less effective than those induced by the other inocula. Re-isolation of thoseFrankia strains from the nodules formed onA. glutinosa was readily obtained, whereas attempts to re-isolate them from the nodules formed onC. myrtifolia failed, suggesting that isolation procedures different to those employed should be tried.  相似文献   

13.
Frankia is the diverse bacterial genus that fixes nitrogen within root nodules of actinorhizal trees and shrubs. Systematic and ecological studies of Frankia have been hindered by the lack of morphological, biochemical, or other markers to readily distinguish strains. Recently, nucleotide sequence of 16 S RNA from the small ribosomal subunit has been used to classify and identify a variety of microorganisms. We report nucleotide sequences from portions of the 16 S ribosomal RNA from Frankia strains AcnI1 isolated from Alnus viridis ssp. crispa (Ait.) Turrill and PtI1 isolated from Purshia tridentata (Pursh) DC. The number of nucleotide base substitutions and gaps we find more than doubles the previously reported sequence diversity for the same variable regions within other strains of Frankia.  相似文献   

14.
To examine how soil phosphorus status affects nitrogen fixation by the Casuarinaceae —Frankia symbiosis,Casuarina equisetifolia and two species ofAllocasuarina (A. torulosa andA. littoralis) inoculated or fertilized with KNO3 were grown in pots in an acid soil at 4 soil phosphate levels. InoculatedC. equisetifolia nodulated well by 12 weeks after planting and the numbers and weight of nodules increased markedly with phosphorus addition. Growth ofC. equisetifolia dependent on symbiotically fixed nitrogen was more sensitive to low levels of phosphorus (30 mg kg–1 soil) than was growth of seedings supplied with combined nitrogen; at higher levels of phosphorus, the growth response curves were similar for both nitrogen fertilized and inoculated plants. The interaction between phosphorus and nitrogen treatments (inoculated and nitrogen fertilized) demonstrated that there was a greater requirement of phosphorus for symbiotic nitrogen fixation than for plant growth when soil phosphorus was low.WithAllocasuarina species, large plant to plant variation in nodulation occurred both within pots and between replicates. This result suggests genetic variation in nodulation withinAllocasuarina species. Nodulation ofAllocasuarina species did not start until 16 weeks after planting and no growth response due toFrankia inoculation was obtained at the time of harvest. Addition of nitrogen starter is suggested to boost plant growth before the establishment of the symbiosis. Growth ofAllocasuarina species fertilized with nitrogen responded to increasing levels of phosphorus up to 90 mg P/kg soil after which it declined by 69% forA. littoralis. The decrease in shoot weight ofA. littoralis, A. torulosa, C. equisetifolia andC. cunninghamiana at high phosphorus was confirmed in a sand culture experiment, and may be atributable to phosphorus toxicity.  相似文献   

15.
Air dry soil samples stored at room temperature for more than one and a half years, were used as inocula for actinorhizal plants. Seedlings of Colletia paradoxa, Discaria americana, D. articulata and D. trinervis (Rhamnaceae) cultivated in nitrogen-free nutrient solution, were inoculated by adding dry soil to the solution. All the soil samples tested were able to induce nodulation, showing the presence of infective propagules of Frankia. Healthy growth of nodulated plants suggested the occurrence of nitrogen fixation.  相似文献   

16.
Summary The nodulation and the morphology and physiology of the nodules were studied onDatisca cannabina, a perennial herb from northern Pakistan andAlnus nitida, a nodulated tree in the same locality. Both species bear coralloid clusters of actinorhizal nodules. The main free amino acid inD. cannabina nodules was arginine while the predominant free amino acid inA. nitida nodules was citrulline. The infectivity of crushed nodules of both types of plants on their respective host was about 106 infective particles per gram of nodule fresh wt. In cross-inoculation experiments crushed nodule inoculum fromA. nitida failed to induce nodulation onD. cannabina seedlings but the crushed nodule inoculum fromD. cannabina caused low nodulation on seedlings ofA. nitida (103 infective particles. g. nodule fresh wt.).The activity of nitrogenase, hydrogenase and respiration (O2 uptake) were measured in detached nodules, nodule homogenates and the 20 m residue and 20 m filtrate preparations from the nodules of both species. Both species showed similar patterns of activities except that only the nodule homogenate and 20 m residue preparations fromD. cannabina showed pronounced enhancement of the O2 uptake by succinate which was further stimulated by ADP. This has in part been explained by the presence of mitochondria in close connection with the endophyte.  相似文献   

17.
A strain ofFrankia was isolated fromGymnostoma papuanum(Casuarinaceae) nodules harvested from rooted cuttings which had been inoculated with a suspension of crushedCasuarina equisetifolia nodules. Designated HFPGpI1 (catalogue #HFP021801), this strain is pigmented and similar to other pigmentedFrankia strains in cultural characteristics. A previously unknown spiraled hyphal morphology was observed at very low frequency in some cultures of this strain. HFPGpI1 is infective and effective onG. papuanum but not on anyCasuarina species tested. It also infects members of the family Elaeagnaceae andMyrica gale. The host plantG. papuanum can be infected with a wide range ofFrankia isolates and thus can be considered a promiscuous host, unlike its close relatives in the genera Casuarina and Allocasuarina which are very restrictive as to which strains may nodulate them.  相似文献   

18.
I. M. Miller  D. D. Baker 《Protoplasma》1985,128(2-3):107-119
Summary A correlated light and electron microscopic study was undertaken of the initiation and development of root nodules of the actinorhizal tree species,Elaeagnus angustifolia L. (Elaeagnaceae).Two pure culturedFrankia strains were used for inoculation of plants in either standing water culture or axenic tube cultures. Unlike the well known root hair infection of other actinorhizal genera such asAlnus orMyrica the mode of infection ofElaeagnus in all cases was by direct intercellular penetration of the epidermis and apoplastic colonization of the root cortex. Root hairs were not involved in this process and were not observed to be deformed or curled in the presence of the actinomyceteFrankia. In response to the invasion of the root, host cells secreted a darkly staining material into the intercellular spaces. The colonizingFrankia grew through this material probably by enzymatic digestion as suggested by clear dissolution zones around the hyphal strands. A nodule primordium was initiated from the root pericycle, well in advance of the colonizingFrankia. No random division of root cortical cells, indicative of prenodule formation was observed inElaeagnus. As the nodule primordium grew in size it was surrounded by tanninised cells of a protoperiderm. The endophyte easily traversed this protoperiderm, and once inside the nodule primordium cortex ramified within the intercellular spaces at multiple cell junctions. Invasion of the nodule cortical cells occurred when a hyphal branch of the endophyte was initiated and grew through the plant cell wall, again by apparent enzymatic digestion. The plant cell plasmalemma of invaded cells always remained intact and numerous secretory vesicles fused with it to encapsulate the advancingFrankia within a fibrous cell wall-like material. Once within the host cell some endophyte cells began to differentiate into characteristic vesicles which are the presumed site of nitrogen fixation. This study clearly demonstrates that alternative developmental pathways exist for the development of actinorhizal nitrogen-fixing root symbioses.  相似文献   

19.
Summary Alnus species are used widely in Britain for land reclamation, forestry and other purposes. Rapid juvenile growth of the AmericanAlnus rubra makes it an attractive species for planting on N-deficient soils, particularly those of low organic content. In small plot trials, this species is nodulated by indigenous soil frankiae as effectively asAlnus glutinosa. Over a three year period both species return similar amounts of N to the ecosystem, estimated at up to 10–12 kg N ha–1. Several strains ofFrankia have been isolated from local (Lennox Forest)A. rubra nodules. These differ morphologically and in their growth on different culture media, both from each other and fromA. glutinosa nodule isolates. AllAlnus isolates, however, have a total cellular fatty acid composition qualitatively similar to some other Group B frankiae. Glasshouse tests in N free culture suggest thatA. rubra nodules formed after inoculation of seedlings with American spore (–) isolates are three times more effective in N fixation than those inoculated with LennoxA. rubra spore (+) nodule homogenates. By contrast, the early growth of seedlings inoculated with spore (–)Frankia strains suggests at best a 35% improvement in N fixing activity over seedlings inoculated with LennoxA. rubra nodule isolates. Nevertheless, this improvement in activity, together with the better performance of seedlings inoculated with isolates compared with those treated with crushed nodule preparations, suggest that it would be worthwhile commercially to inoculate nursery stock with a spore (–)Frankia strain.  相似文献   

20.

Nodule samples were collected from four alder species:Alnus nepalensis, A. sibirica, A. tinctoria andA. mandshurica growing in different environments on Gaoligong Mountains, Yunnan Province of Southwest China and on Changbai Mountains, Jilin Province of Northeast China. PCR-RFLP analysis of the IGS betweennifD andnifK genes was directly applied to unculturedFrankia strains in the nodules. A total of 21 restriction patterns were obtained. TheFrankia population in the nodules ofA. nepalensis had the highest genetic diversity among all fourFrankia populations; by contrast, the population in the nodules ofA. mandshurica had the lowest degree of divergence; the ones in the nodules ofA. sibirica andA. tinctoria were intermediate. A dendrogram, which was constructed based on the genetic distance between the restriction patterns, indicated thatFrankia strains fromA. sibirica andA. tinctoria had a close genetic relationship.Frankia strains fromA. nepalensis might be the ancestor ofFrankia strains infecting otherAlnus species. From these results and the inference of the ages ofAlnus host species, it is deduced that there was a co-evolution betweenAlnus and its microsymbiontFrankia in China.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号