首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 712 毫秒
1.
目的:在现有关节镜下microfracture技术的基础上,应用现代干细胞技术修复猪关节软骨缺损,探索注射式软骨缺损微创修复技术用于软骨再生治疗的可行性.方法:抽取6只猪的骨髓体外扩增培养至三代,动物随机分2组,每组6膝,每膝制备1个软骨缺损,左膝行缺损部位microfracture治疗后将3×107/mL浓度的骨髓间充质干细胞注射于关节腔内,右膝为单纯microfracture或空白对照.术后8、16周各3只动物,行大体观察、组织学检测,评价其对关节软骨缺损的再生修复效果.结果:术后8周观察见软骨缺损的修复表面平整,色泽渐趋正常,与周围组织整合良好;术后16周,修复组织具有透明软骨样结构,并产生大量GAGs和Ⅱ型胶原,单纯microfracture治疗组为纤维软骨修复,而空白组为少量纤维组织覆盖缺损底面,观察期内未见毛细血管长入及免疫排斥反应发生.结论:注射式软骨缺损微创修复技术创伤小,操作简便,能显著促进关节软骨缺损的再生修复的特点,具有较高的科学价值及临床应用前景.  相似文献   

2.
目的:探讨经深低温冻存组织工程化软骨修复关节软骨缺损的可行性。方法:分离收集3周龄新西兰大白兔关节软骨细胞进行体外培养,接种于PGA三维支架材料上,复合物体外培养1周后冻存,冻存1个月后解冻、复苏及体外培养,1周后接种于已建立的双侧兔膝关节软骨缺损模型的膝关节软骨缺损处,并设对照组。分别于手术后4周、8周、12周行大体标本及组织观察。结果:大体观察结果表明,实验组与对照组缺损处均由软骨组织修复;组织学观察可以见到实验组和对照组关节软骨缺损处有密集的软骨细胞,均有软骨生成及基质分泌,两组差异无统计学意义。结论:应用深低温冻存组织工程化软骨修复关节软骨缺损的方法是有效可行的,为其进一步临床应用提供了实验依据。  相似文献   

3.
目的:将未诱导的自体脂肪干细胞(ADSCs)与富血小板纤维蛋白(PRF)复合,作为一种全新的软骨修复材料,探讨其对家兔耳软骨全层缺损修复的可行性.方法:取家兔10只,于每只家兔耳部做4处软骨全层缺损,随机分为A、B、C、D组,A组,作为空白对照;B组植入自体ADSCs;C组植入自体PRF;D组植入自体ADSCs与PRF的复合物.分别于术后1月、2月、3月取材,进行大体及HE染色观察,并使用IPP6.0软件对软骨生成量进行半定量分析.结果:HE染色显示,3月后,A组几乎无新生软骨生成,B、C、D三组软骨生成量依次增多,D组尤为明显.IPP6.0统计结果显示,移植物植入3月后,A组软骨缺损修复率为(1.68±0.17)%,B组为(15.4±0.91.)%,C组为(32.0±2.76)%,D组为(85.77±4.88)%.各组间有显著统计学差异,与HE染色结果相符.结论:未诱导的自体ADSC s复合自体PRF作为一种全新的软骨修复材料,可以有效的修复家兔耳软骨全层缺损,具有潜在的临床应用价值.  相似文献   

4.
为探讨组织工程化软骨与富血小板血浆复合修复软骨缺损的效果,本研究选取了8周龄健康新西兰兔24只,依据随机数表法分为观察组(组织工程化软骨与富血小板血浆复合)和对照组(单纯软骨缺损模型),发现术后4周、8周、12周,观察组实验动物的大体评分均明显高于对照组(p0.05)。观察组实验动物的Collagen TypeⅠ、Collagen TypeⅡ相对表达水平明显高于对照组(p0.05)。两组实验动物的Collagen TypeⅩ相对表达水平无显著差异(p0.05)。观察组实验动物的软骨缺损直径和缺损深度分别为(1.02±0.35)mm、(0.96±0.27)mm,对照组实验动物的软骨缺损直径和缺损深度分别为(4.27±1.09)mm、(5.43±1.85)mm(p0.05),表明组织工程化软骨与富血小板血浆复合修复软骨缺损效果明显,能够刺激软骨相关基因表达,缩小软骨缺损范围,促进缺损软骨愈合。  相似文献   

5.
目的:探讨利用生物可降解支架修复动物胸骨缺损,为临床手术治疗提供新的可行性方法。方法:对于12只比格犬进行手术切除部分胸骨,并利用聚己内酯/羟基磷灰石(PCL/HA)复合支架,并制备出与临床相似的胸骨缺损模型。实验动物分成2组,分别是:空白对照组和PCL/HA支架组。分别于术后第4、12周进行胸部CT扫描,并对胸廓进行三维重建,观察胸骨缺损部位的修复情况,并在第12周取胸骨缺损部位组织进行硬组织切片,苦味酸-品红染色,观察缺损部位的骨组织修复情况,并利用软件进行骨组织比率分析,评估修复情况。结果:通过检查发现空白对照组的胸骨缺损部位未见明显骨连接,胸廓的骨性结构有明显畸形,PCL/HA支架组能很好地维持胸廓的完整性,组织学检查发现PCL/HA支架组的缺损部位有明显新生骨形成,通过软件分析可发现支架组的骨组织比率较空白组的高(P〈0.05)。结论:这些结果表明采用PCL/HA复合材料支架能很好地修复胸骨缺损。  相似文献   

6.
目的:观察玻璃化法保存同种异体软骨移植修复兔关节软骨缺损的效果,并与低温冷冻法作比较.方法:18只健康成年日本大白兔,其中6只用于异体骨软骨柱的制备,另外12只随机分成2组,每组各6只.软骨移植物标本取材后,采用低温冷冻法和玻璃化法保存2w.同种异体骨软骨移植物相应复温后移植于兔膝关节软骨缺损模型的相应软骨缺损区.移植术后12w处死动物,移植区软骨组织后固定、切片、脱钙及石蜡包埋.采用苏木精-伊红染色及蕃红-O染色后进行组织学观察及Mankin评分.结果:玻璃化组软骨移植区颜色与周围正常软骨组织基本一致,软骨完整,无坍陷及裂纹;镜下观察可见其组织深层透明软骨样组织,浅层软骨区可见纤维样软骨组织,细胞成熟,大量分泌软骨基质.低温冷冻组软骨移植区表面欠光整,存在裂隙及轻度坍陷;镜下观察可见少量纤维样软骨组织,大部分为纤维结缔组织,细胞排列相对紊乱,软骨基质分泌量少.两组的组织学Mankin评分分别为9.6± 2.4和3.0± 1.0,低温冷冻组显著高于玻璃化组(t=2.014,P=0.000).结论:采用玻璃化法保存兔同种异体软骨移植物是一种可行的方法.相比低温冷冻法,玻璃化法保存的同种异体软骨其移植术后,软骨修复区的组织更接近正常软骨.  相似文献   

7.
目的:TGF-β3广泛存在于骨组织、软骨组织中,能诱导体外培养的间充质干细胞向软骨分化、生长。TIMP-2能抑制MMP对软骨基质的降解,保护新生软骨组织。本实验探讨单纯TGF-β3和TGF-β3,TIMP-2联合转染兔骨髓间充质干细胞复合丝素蛋白壳聚糖/(silk fibrin/chitosan,SF/CS)生物支架植入动物体内修复兔膝关节软骨缺损的可行性及效果差异。方法:将新西兰大白兔20只分为4组,每组5只(支架组、未转染组、reAAV-TGF-β3转染组、reAAV-TGF-β3,reAAV-TIMP-2联合转染组)。在无菌条件下取兔第三代对数生长期骨髓间充质干细胞(bone marrow mesenchymal stem cells,BMSCs),用携带目的基因的重组腺相关病毒进行转染,将转染成功的BMSCs与SF-CS生物支架复合,分别植入兔膝关节软骨缺损处:未转染组植入SF-CS生物支架,未转染组植入未转染的BMSCs复合SF-CS生物支架,reAAV-TGF-β3转染组植入reAAV-TGF-β3转染的BMSCs复合SF-CS生物支架,reAAV-TGF-β3,TIMP-2联合转染组植入reAAV-TGF-β3,TIMP-2联合转染的BMSCs复合SF-CS生物支架。两月后处死家兔,肉眼观察以及HE染色评定缺损软骨修复情况。并进行软骨细胞特征性染色即甲苯胺蓝染色及II型胶原免疫组化染色鉴定。结果:两个月后除支架组外各实验组兔膝关节软骨缺损处均有软骨样物质形成,且联合转染组诱导的新生成分更接近缺损处周围正常软骨。联合转染组与reAAV-TGF-β3转染组;联合转染组与未转染组;reAAV-TGF-β3转染组与未转染组的评分差异均具有统计学意义(P0.05)。HE染色结果提示联合转染组软骨修复效果较单纯TGF-β3转染组更好。结论:单纯TGF-β3转染兔骨髓间充质干细胞对兔膝关节软骨缺损有修复作用,TGF-β3与TIMP-2联合转染组修复缺损效果更明显,提示TIMP-2与TGF-β3具有协同效应。  相似文献   

8.
目的:探讨低温保存组织工程化软骨在喉狭窄功能重建中的应用价值。方法:取3周龄新西兰兔关节软骨细胞,体外培养,取第2代对数生长期培养细胞,制成细胞悬液,调整软骨细胞悬液浓度约为5×107个/ml左右,接种于PGA三维支架材料上,复合物体外培养2周后冻存,冻存6个月后解冻复苏,再行体外培养观察,2周后接种于已建立的喉甲状软骨缺损模型的软骨缺损处,并设对照组。术后12周取材,行大体及组织学观察。结果:经低温冻存的组织工程化软骨生长良好,组织学观察有软骨形成,与周围软骨组织结合紧密,与非冻存组相比差异无统计学意义。结论:深低温冻存对组织工程化软骨的生物活性无明显的影响,低温冻存的组织工程化软骨可用于喉软骨缺损的修复,重建喉功能。  相似文献   

9.
目的:评价壳聚糖/碳酸钙三维复合材料(CS/CaCO3)和壳聚糖/羟基磷灰石复合材料(CS/HA)用于骨缺损修复的可行性.方法:家兔24只,随机分为对照、CS/CaCO3、CS/HA三组.左前肢去毛后,2%巴比妥钠(30mg/kg,iv)麻醉,距桡骨远端3cm处截骨1cm,形成骨缺损,分别植入相应材料.术后4w、8w、12w分别处死动物,X线摄片后,取骨缺损标本,进行大体与组织学观察.结果:术后4周植入块颜色变红,周围有较多量的新生骨样组织包裹,骨痂增多,向植入块内移行;术后8周,植入块周围有明显新骨生成,将材料分隔包围,新骨中央区可见材料呈蜂窝状残留.术后12周缺损区大部分编织骨被成熟的板层骨组织替代,并形成髓腔.结论:CS/CaCO3和CS/HA两种仿生复合材料能明显促进兔桡骨骨缺损修复,诱导骨痂生成.  相似文献   

10.
目的:评估骨碎补结合组织工程软骨治疗对实验兔软骨缺陷模型软骨再生的疗效。方法:将h IGF-1基因转染MSCs,并与脱细胞真皮基质(ADM)构建组织工程软骨。24只新西兰白兔随机分为A、B、C、D四组,A、C组进行自体软骨移植,B、D组进行改建的细胞-ADM移植。C、D组用40%骨碎补汤喂养4周,150 m L/d。第12周处死实验动物,分离缺损关节软骨部位,蜡块包埋染色,通过总体形态评价软骨再生组织。采用组织学评分评估再生软骨质量。采用甲苯胺蓝染色评价缺损部位产生软骨糖胺聚糖的情况。结果:与B组比较,C组和D组的新生软骨覆盖度、新骨髓的颜色、缺损边缘和表面粗糙度均显著提高(P0.05);再生软骨的组织学评分软骨表面评分显著改善(P0.05)。C组与D组具有比其他组更好的基质、细胞分布和表面指数。并且有较厚的透明样软骨组织,具有正常的糖胺聚糖产生。表明该治疗方法可以通过再生透明样软骨且没有不良事件来减少软骨缺陷。结论:工程软骨结合骨碎补治疗可显著改善兔膝关节软骨缺损修复的质量,为临床治疗软骨病变提供重要理论依据。  相似文献   

11.
IntroductionMicrofracture does not properly repair full-thickness cartilage defects. The purpose of this study was to evaluate the effect of intraarticular injection of the small-molecule compound kartogenin (KGN) on the restoration of a full-thickness cartilage defect treated with microfracture in a rabbit model.MethodsFull-thickness cartilage defects (3.5 mm in diameter and 3 mm in depth) were created in the patellar groove of the right femurs of 24 female New Zealand White rabbits. The rabbits were divided into two groups (12 in each group) based on postsurgery treatment differences, as follows: microfracture plus weekly intraarticular injection of KGN (group 1) and microfracture plus dimethyl sulfoxide (group 2). Six rabbits from each group were illed at 4 and 12 weeks after surgery, and their knees were harvested. The outcome was assessed both macroscopically, by using the International Cartilage Repair Society (ICRS) macroscopic evaluation system, and histologically, by using the modified O’Driscoll histologic scoring system. Immunohistochemistry for type II and I collagen was also conducted.ResultsAt 4 weeks, group 1 showed better defect filling and a greater number of chondrocyte-like cells compared with group 2. At 12 weeks, group 1 showed statistically significantly higher ICRS scores and modified O’Driscoll scores compared with group 2. More hyaline cartilage-like tissue was found in the defects of group 1 at 12 weeks.ConclusionsIntraarticular injection of KGN enhances the quality of full-thickness cartilage defects repair after microfracture, with better defect filling and increased hyaline-like cartilage formation.  相似文献   

12.
After high fractures of the mandibular condyle, the insufficient blood supply to the condyle often leads to poor bone and cartilage repair ability and poor clinical outcome. Parathyroid hormone (PTH) can promote the bone formation and mineralization of mandibular fracture, but its effects on cartilage healing after the free reduction and internal fixation of high fractures of the mandibular condyle are unknown. In this study, a rabbit model of free reduction and internal fixation of high fractures of the mandibular condyle was established, and the effects and mechanisms of PTH on condylar cartilage healing were explored. Forty-eight specific-pathogen-free (SPF) grade rabbits were randomly divided into two groups. In the experimental group, PTH was injected subcutaneously at 20 µg/kg (PTH (1–34)) every other day, and in the control group, PTH was replaced with 1 ml saline. The healing cartilages were assessed at postoperative days 7, 14, 21, and 28. Observation of gross specimens, hematoxylin eosin staining and Safranin O/fast green staining found that every-other-day subcutaneous injection of PTH at 20 µg/kg promoted healing of condylar cartilage and subchondral osteogenesis in the fracture site. Immunohistochemistry and polymerase chain reaction showed that PTH significantly upregulated the chondrogenic genes Sox9 and Col2a1 in the cartilage fracture site within 7–21 postoperative days in the experimental group than those in the control group, while it downregulated the cartilage inflammation gene matrix metalloproteinase-13 and chondrocyte terminal differentiation gene ColX. In summary, exogenous PTH can stimulate the formation of cartilage matrix by triggering Sox9 expression at the early stage of cartilage healing, and it provides a potential therapeutic protocol for high fractures of the mandibular condyle.  相似文献   

13.
This study aimed to investigate the ability of CD146+ subset of ADSCs to repair cartilage defects. In this study, we prepared CD146+ liposome magnetic beads (CD146+LMB) to isolate CD146+ADSCs. The cells were induced for chondrogenic differentiation and verified by cartilage-specific mRNA and protein expression. Then a mouse model of cartilage defect was constructed and treated by filling the induced cartilage cells into the damaged joint, to evaluate the function of such cells in the cartilage microenvironment. Our results demonstrated that the CD146+LMBs we prepared were uniform, small and highly stable, and cell experiments showed that the CD146+LMB has low cytotoxicity to the ADSCs. ADSCs isolated with CD146+LMB were all CD146+, CD105+, CD166+ and CD73+. After chondrogenic induction, the cells showed significantly increased expression of cartilage markers Sox9, collagen Ⅱ and aggrecan at protein level and significantly increased Sox9, collagen Ⅱ and aggrecan at mRNA level, and the protein expression and mRNA expression of CD146+ADSCs group were higher than those of ADSCs group. The CD146+ADSCs group showed superior tissue repair ability than the ADSCs group and blank control group in the animal experiment, as judged by gross observation, histological observation and histological scoring. The above results proved that CD146+LMB can successfully isolate the CD146+ADSCs, and after chondrogenic induction, these cells successfully promoted repair of articular cartilage defects, which may be a new direction of tissue engineering.  相似文献   

14.
The effects of fluoride on the mandibular condyles in growing newborn rats were studied by histological, histometrical and fluoride electrode methods. The layer of cartilage of the mandibular condyle in the animals administered 5, 15, 25 and 35 mg/kg of fluoride for 3 weeks displayed a significant increase in thickness when compared with that of the mandibular condyle in the control animals. The thickening of the cartilage layer was proportioned to the amounts of fluoride administered. The volumetric density of cancellous bone of the condyle in the animals administered 25 and 35 mg/kg of fluoride also increased significantly when compared with that of the condyle in the control animals. The trabeculae of cancellous bone of the condyle in these animals contained large amounts of osteoid. The cancellous bone of the condyle in the animals of the four fluoride groups showed a significantly higher fluoride concentration when compared with that of the condyle in the control animals. The fluoride concentration proportionally increased with the amounts of fluoride administered. The results of the present study indicate that the morphologic changes and the fluoride concentrations in the mandibular condyles of rats receiving fluoride were closely correlated with each other.  相似文献   

15.
The articular disc in the temporomandibular joint plays an important role in mandibular growth. Functional appliances induce regeneration of the condyle even after condylectomy. The aim of this study was to examine the role of the articular disc in regeneration of the condyle after unilateral condylectomy with use of a functional appliance in growing rats. Fifty growing rats were subjected to unilateral condylectomy and then half of them underwent discectomy. The functional appliance was applied to half of the rats in each group to induce regeneration of the condyle. Four and eight weeks later, morphometric and histologic analyses of the mandible were performed. Regeneration of the condyle was demonstrated in the two condylectomy groups. In the condylectomy+appliance group, the shape and cartilage of the condyle were equivalent to a normal condyle. However, regeneration of the condyle was not observed in the two discectomy groups even with the use of the functional appliance. The articular disc appears to be crucial in the regeneration of a damaged condyle, suggesting that defects or damage to the articular disc may influence mandibular growth and regeneration or repair of the condyle.  相似文献   

16.
BackgroundMesenchymal stem cells (MSCs) are known to have therapeutic potential for cartilage repair. However, the optimal concentration of MSCs for cartilage repair remains unclear. Therefore, we aimed to explore the feasibility of cartilage repair by human umbilical cord blood-derived MSCs (hUCB-MSCs) and to determine the optimal concentrations of the MSCs in a rabbit model.MethodsOsteochondral defects were created in the trochlear groove of femur in 55 rabbits. Four experimental groups (11 rabbits/group) were treated by transplanting the composite of hUCB-MSCs and HA with various MSCs concentrations (0.1, 0.5, 1.0, and 1.5 x 107 cells/ml). One control group was left untreated. At 4, 8, and 16 weeks post-transplantation, the degree of cartilage repair was evaluated grossly and histologically.FindingsOverall, transplanting hUCB-MSCs and HA hydrogel resulted in cartilage repair tissue with better quality than the control without transplantation (P = 0.015 in 0.1, P = 0.004 in 0.5, P = 0.004 in 1.0, P = 0.132 in 1.5 x 107 cells/ml). Interestingly, high cell concentration of hUCB-MSCs (1.5×107 cells/ml) was inferior to low cell concentrations (0.1, 0.5, and 1.0 x 107 cells/ml) in cartilage repair (P = 0.394,P = 0.041, P = 0.699, respectively). The 0.5 x 107 cells/ml group showed the highest cartilage repair score at 4, 8 and 16 weeks post transplantation, and followed by 0.1x107 cells/ml group or 1.0 x 107 cell/ml group.ConclusionsThe results of this study suggest that transplantation of the composite of hUCB-MSCs and HA is beneficial for cartilage repair. In addition, this study shows that optimal MSC concentration needs to be determined for better cartilage repair.  相似文献   

17.
梁鑫  张波  刘苹  翁土军  张莉  贺龙珠  李芳菲  屈晨  王萍 《遗传》2015,37(6):561-567
成纤维细胞生长因子受体2(Fibroblast growth factor receptor, FGFR2)是参与调控骨骼发育的重要分子,在调控软骨内成骨过程中发挥着重要作用。为了探讨FGFR2功能增强对小鼠下颌骨髁突生长发育的影响,文章以FGFR2功能增强型点突变(Fgfr2+/S252W)小鼠为研究对象,采用番红固绿染色研究Fgfr2+/S252W小鼠下颌骨髁突不同生长发育阶段的组织形态;利用免疫细胞化学染色和实时荧光定量PCR方法检测X型胶原(Col X)在3周龄小鼠髁突肥大软骨细胞中的表达。结果显示,1周龄、3周龄和6周龄突变型小鼠下颌骨髁突的软骨细胞层宽度都比同窝野生型窄,钙化软骨细胞层退化时间早,骨小梁钙化绿染程度深;Col X在突变型小鼠下颌骨髁突的表达高于同窝野生型小鼠(P<0.001)。结果表明,FGFR2功能增强可导致小鼠下颌骨髁突软骨层组织形态异常,抑制髁突软骨内成骨,从而导致下颌骨髁突发育畸形。  相似文献   

18.
Platelet-rich plasma (PRP) has offered great promise for the treatment of cartilage degradation, and has been proved to have positive effects on the restoration of cartilage lesions. But no comparative work has been done between PRP and hyaluronate acid (HA) concerning their restoring effect on cartilage defect, especially by means of animal experiments and histologic assessments. The purpose of the study was to compare the therapeutic effects of P-PRP and HA on osteoarthritis in rabbit knees. Thirty rabbits were used to establish the animal models by creating a cartilage defect of 5 mm in diameter on the condyles of the femurs, and were randomly divided into three groups: the P-PRP group, HA group and the control group. Then each group was treated with P-PRP, HA or saline solution, respectively. Six and twelve weeks later the rabbits were sacrificed and the samples were collected. The platelet number, the concentrations of growth factors of P-PRP and whole blood, and the IL-1β concentration in the joint fluid were investigated, and the histological assessment of the cartilage were performed according to Mankin''s scoring system. Micro-CT was also used to evaluate the restoration of subchondral bone. The platelet concentration in P-PRP is 6.8 fold of that in the whole blood. The IL-1β level in the P-PRP group was lower than in the HA group (p<0.01) and in the control group (p<0.01). The restoration of the defected cartilage as well as the subchondral bone was better in the P-PRP group than in the HA group or the control group (P<0.05). Our data showed that P-PRP is better than HA in promoting the restoration of the cartilage and alleviating the arthritis caused by cartilage damage.  相似文献   

19.
Tissue engineering (TE) has been proven usefulness in cartilage defect repair. For effective cartilage repair, the structural orientation of the cartilage scaffold should mimic that of native articular cartilage, as this orientation is closely linked to cartilage mechanical functions. Using thermal-induced phase separation (TIPS) technology, we have fabricated an oriented cartilage extracellular matrix (ECM)-derived scaffold with a Young''s modulus value 3 times higher than that of a random scaffold. In this study, we test the effectiveness of bone mesenchymal stem cell (BMSC)-scaffold constructs (cell-oriented and random) in repairing full-thickness articular cartilage defects in rabbits. While histological and immunohistochemical analyses revealed efficient cartilage regeneration and cartilaginous matrix secretion at 6 and 12 weeks after transplantation in both groups, the biochemical properties (levels of DNA, GAG, and collagen) and biomechanical values in the oriented scaffold group were higher than that in random group at early time points after implantation. While these differences were not evident at 24 weeks, the biochemical and biomechanical properties of the regenerated cartilage in the oriented scaffold-BMSC construct group were similar to that of native cartilage. These results demonstrate that an oriented scaffold, in combination with differentiated BMSCs can successfully repair full-thickness articular cartilage defects in rabbits, and produce cartilage enhanced biomechanical properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号