首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Reperfusion after global brain ischemia results initially in a widespread suppression of protein synthesis in neurons, which persists in vulnerable neurons, that is caused by the inhibition of translation initiation as a result of the phosphorylation of the alpha-subunit of eukaryotic initiation factor 2 (eIF2alpha). To identify kinases responsible for eIF2alpha phosphorylation [eIF2alpha(P)] during brain reperfusion, we induced ischemia by bilateral carotid artery occlusion followed by post-ischemic assessment of brain eIF2alpha(P) in mice with homozygous functional knockouts in the genes encoding the heme-regulated eIF2alpha kinase (HRI), or the amino acid-regulated eIF2alpha kinase (GCN2). A 10-fold increase in eIF2alpha(P) was observed in reperfused wild-type mice and in the HRI-/- or GCN2-/- mice. However, in all reperfused groups, the RNA-dependent protein kinase (PKR)-like endoplasmic reticulum eIF2alpha kinase (PERK) exhibited an isoform mobility shift on SDS-PAGE, consistent with the activation of the kinase. These data indicate that neither HRI nor GCN2 are required for the large increase in post-ischemic brain eIF2alpha(P), and in conjunction with our previous report that eIF2alpha(P) is produced in the brain of reperfused PKR-/- mice, provides evidence that PERK is the kinase responsible for eIF2alpha phosphorylation in the early post-ischemic brain.  相似文献   

2.
3.
4.
We previously hypothesized that efficient translation of influenza virus mRNA requires the recruitment of P58(IPK), the cellular inhibitor of PKR, an interferon-induced kinase that targets the eukaryotic translation initiation factor eIF2alpha. P58(IPK) also inhibits PERK, an eIF2alpha kinase that is localized in the endoplasmic reticulum (ER) and induced during ER stress. The ability of P58(IPK) to interact with and inhibit multiple eIF2alpha kinases suggests it is a critical regulator of both cellular and viral mRNA translation. In this study, we sought to definitively define the role of P58(IPK) during viral infection of mammalian cells. Using mouse embryo fibroblasts from P58(IPK-/-) mice, we demonstrated that the absence of P58(IPK) led to an increase in eIF2alpha phosphorylation and decreased influenza virus mRNA translation. The absence of P58(IPK) also resulted in decreased vesicular stomatitis virus replication but enhanced reovirus yields. In cells lacking the P58(IPK) target, PKR, the trends were reversed-eIF2alpha phosphorylation was decreased, and influenza virus mRNA translation was increased. Although P58(IPK) also inhibits PERK, the presence or absence of this kinase had little effect on influenza virus mRNA translation, despite reduced levels of eIF2alpha phosphorylation in cells lacking PERK. Finally, we showed that influenza virus protein synthesis and viral mRNA levels decrease in cells that express a constitutively active, nonphosphorylatable eIF2alpha. Taken together, our results support a model in which P58(IPK) regulates influenza virus mRNA translation and infection through a PKR-mediated mechanism which is independent of PERK.  相似文献   

5.
Gil J  Esteban M  Roth D 《Biochemistry》2000,39(51):16016-16025
Regulation of eIF2alpha phosphorylation is critical to the maintenance of cellular homeostasis, and eIF2alpha kinases are subject to complex and multidimensional controls. A cellular 67 kDa glycoprotein (p67) has been proposed to have an important role in regulating the activity of eIF2alpha kinases including the interferon-induced, dsRNA-stimulated protein kinase PKR. To dissect p67-PKR interactions and evaluate their significance in vivo, we have used a vaccinia virus (VV) expression system that successfully mimics PKR control pathways. Recombinant VV were constructed that constitutively express p67 and inducibly express PKR in BSC-40 cells. Stable expression of p67 reduced the PKR-mediated antiviral response and apoptosis. These effects correlated with decreased eIF2alpha phosphorylation, with rescue of PKR-mediated inhibition of protein synthesis, and with partial inhibition of PKR-triggered activation of NF-kappaB. The direct interaction between PKR and p67 was suggested by in vivo and in vitro analyses. These data demonstrate that in vivo p67 is an important modulator of PKR-mediated signal transduction pathways and may provide a useful tool to dissect the relative contributions of PKR to cell growth and stress response.  相似文献   

6.
7.
Eukaryotic initiation factor 2 (eIF2)-associated glycoprotein p67 protects eIF2alpha phosphorylation from kinases. The N-terminal lysine-rich domains increase this activity and the acidic residue-rich domain inhibits it. Conserved amino acid residues D251, D262, E364, and E459 are involved in this inhibition. During heat shock, the overall protein synthesis rate decreases due to the increased levels of eIF2alpha phosphorylation. In this study, we examined whether the above inhibition is also found during heat shock. Indeed, the acidic residue-rich domain mutant (D6/2) showed a decreased level of eIF2alpha phosphorylation, and its second-site alanine substitutions at D251, D262, and E459 reversed this effect, whereas second-site alanine substitution at H331 and E364 residues further augmented it. A high-molecular-weight phosphoprotein and at least two faster-migrating phosphoproteins were detected by the monospecific polyclonal antibody against eIF2alpha(P) form in rat tumor hepatoma cells constitutively expressing the double mutant D6/2+D251A. Although the levels of p67 mutants were unaffected during heat shock, those of p67 and p67-deactivating enzyme varied. Furthermore, the overall rate of protein synthesis correlated with the level of eIF2alpha phosphorylation. Taken together, these results suggest that the lysine-rich domains and conserved amino acid residues of p67 are involved in the regulation of eIF2alpha phosphorylation during heat shock.  相似文献   

8.
9.
Phosphorylation of the alpha (alpha) subunit of the eukaryotic translation initiation factor 2 (eIF2) leads to the inhibition of protein synthesis in response to diverse stress conditions, including viral infection. The eIF2alpha kinase PKR has been shown to play an essential role against vesicular stomatitis virus (VSV) infection. We demonstrate here that another eIF2alpha kinase, the endoplasmic reticulum-resident protein kinase PERK, contributes to cellular resistance to VSV infection. We demonstrate that mouse embryonic fibroblasts (MEFs) from PERK(-/-) mice are more susceptible to VSV-mediated apoptosis than PERK(+/+) MEFs. The higher replication capacity of VSV in PERK(-/-) MEFs results from their inability to attenuate viral protein synthesis due to an impaired eIF2alpha phosphorylation. We also show that VSV-infected PERK(-/-) MEFs are unable to fully activate PKR, suggesting a cross talk between the two eIF2alpha kinases in virus-infected cells. These findings further implicate PERK in virus infection, and provide evidence that the antiviral and antiapoptotic roles of PERK are mediated, at least in part, via the activation of PKR.  相似文献   

10.
The eIF2alpha kinases have been involved in the inhibition of vesicular virus replication but the contribution of each kinase to this process has not been fully investigated. Using mouse embryonic fibroblasts (MEFs) from knock-out mice we show that PKR and HRI have no effects on VSV replication as opposed to PERK and GCN2, which exhibit strong inhibitory effects. When MEFs containing the serine 51 to alanine mutation of eIF2alpha were used, we found that VSV replication is independent of eIF2alpha phosphorylation. Nevertheless, the kinase domain of the eIF2alpha kinases is both necessary and sufficient to inhibit VSV replication in cultured cells. Induction of PI3K-Akt/PKB pathway by eIF2alpha kinase activation plays no role in the inhibition of VSV replication. Our data provide strong evidence that VSV replication is not affected by eIF2alpha phosphorylation or downstream effector pathways such as the PI3K-Akt/PKB pathway. Thus, the anti-viral properties of eIF2alpha kinases are not always related to their inhibitory effects on host protein synthesis as previously thought and are possibly mediated by phosphorylation of proteins other than eIF2alpha.  相似文献   

11.
Phosphoinositide-3 kinase (PI3K) plays an important role in signal transduction in response to a wide range of cellular stimuli involved in cellular processes that promote cell proliferation and survival. Phosphorylation of the alpha subunit of the eukaryotic translation initiation factor eIF2 at Ser51 takes place in response to various types of environmental stress and is essential for regulation of translation initiation. Herein, we show that a conditionally active form of the eIF2alpha kinase PKR acts upstream of PI3K and turns on the Akt/PKB-FRAP/mTOR pathway leading to S6 and 4E-BP1 phosphorylation. Also, induction of PI3K signaling antagonizes the apoptotic and protein synthesis inhibitory effects of the conditionally active PKR. Furthermore, induction of the PI3K pathway is impaired in PKR(-/-) or PERK(-/-) mouse embryonic fibroblasts (MEFs) in response to various stimuli that activate each eIF2alpha kinase. Mechanistically, PI3K signaling activation is indirect and requires the inhibition of protein synthesis by eIF2alpha phosphorylation as demonstrated by the inactivation of endogenous eIF2alpha by small interfering RNA or utilization of MEFs bearing the eIF2alpha Ser51Ala mutation. Our data reveal a novel property of eIF2alpha kinases as activators of PI3K signaling and cell survival.  相似文献   

12.
Hypoxia profoundly influences tumor development and response to therapy. While progress has been made in identifying individual gene products whose synthesis is altered under hypoxia, little is known about the mechanism by which hypoxia induces a global downregulation of protein synthesis. A critical step in the regulation of protein synthesis in response to stress is the phosphorylation of translation initiation factor eIF2alpha on Ser51, which leads to inhibition of new protein synthesis. Here we report that exposure of human diploid fibroblasts and transformed cells to hypoxia led to phosphorylation of eIF2alpha, a modification that was readily reversed upon reoxygenation. Expression of a transdominant, nonphosphorylatable mutant allele of eIF2alpha attenuated the repression of protein synthesis under hypoxia. The endoplasmic reticulum (ER)-resident eIF2alpha kinase PERK was hyperphosphorylated upon hypoxic stress, and overexpression of wild-type PERK increased the levels of hypoxia-induced phosphorylation of eIF2alpha. Cells stably expressing a dominant-negative PERK allele and mouse embryonic fibroblasts with a homozygous deletion of PERK exhibited attenuated phosphorylation of eIF2alpha and reduced inhibition of protein synthesis in response to hypoxia. PERK(-/-) mouse embryo fibroblasts failed to phosphorylate eIF2alpha and exhibited lower survival after prolonged exposure to hypoxia than did wild-type fibroblasts. These results indicate that adaptation of cells to hypoxic stress requires activation of PERK and phosphorylation of eIF2alpha and suggest that the mechanism of hypoxia-induced translational attenuation may be linked to ER stress and the unfolded-protein response.  相似文献   

13.
Reperfusion after global brain ischemia results initially in a widespread suppression of protein synthesis in neurons that is due to inhibition of translation initiation as a result of the phosphorylation of the alpha-subunit of eukaryotic initiation factor 2 (eIF2). To address the role of the eIF2alpha kinase RNA-dependent protein kinase-like endoplasmic reticulum kinase (PERK) in the reperfused brain, transgenic mice with a targeted disruption of the Perk gene were subjected to 20 min of forebrain ischemia followed by 10 min of reperfusion. In wild-type mice, phosphorylated eIF2alpha was detected in the non-ischemic brain and its levels were elevated threefold after 10 min of reperfusion. Conversely, there was no phosphorylated eIF2alpha detected in the non-ischemic transgenic mice and there was no sizeable rise in phosphorylated eIF2alpha levels in the forebrain after ischemia and reperfusion. Moreover, there was a substantial rescue of protein translation in the reperfused transgenic mice. Neither group showed any change in total eIF2alpha, phosphorylated eukaryotic elongation factor 2 or total eukaryotic elongation factor 2 levels. These data demonstrate that PERK is responsible for the large increase in phosphorylated eIF2alpha and the suppression of translation early in reperfusion after transient global brain ischemia.  相似文献   

14.
Cyclin D1 plays a critical role in controlling the G(1)/S transition via the regulation of cyclin-dependent kinase activity. Several studies have indicated that cyclin D1 translation is decreased upon activation of the eukaryotic initiation factor 2alpha (eIF2alpha) kinases. We examined the effect of activation of the eIF2alpha kinases PKR and PKR-like endoplasmic reticulum kinase (PERK) on cyclin D1 protein levels and translation and determined that cyclin D1 protein levels decrease upon the induction of PKR and PERK catalytic activity but that this decrease is not due to translation. Inhibition of the 26 S proteasome with MG132 rescued cyclin D1 protein levels, indicating that rather than inhibiting translation, PKR and PERK act to increase cyclin D1 degradation. Interestingly, this effect still requires eIF2alpha phosphorylation at serine 51, as cyclin D1 remains unaffected in cells containing a non-phosphorylatable form of the protein. This proteasome-dependent degradation of cyclin D1 requires an intact ubiquitination pathway, although the ubiquitination of cyclin D1 is not itself affected. Furthermore, this degradation is independent of phosphorylation of cyclin D1 at threonine 286, which is mediated by the glycogen synthase kinase 3beta and mitogen-activated protein kinase pathways as described in previous studies. Our study reveals a novel functional cross-talk between eIF2alpha phosphorylation and the proteasomal degradation of cyclin D1 and that this degradation is dependent upon eIF2alpha phosphorylation during short, but not prolonged, periods of stress.  相似文献   

15.
To understand the mechanisms of prostaglandin F2alpha (PGF2alpha)-induced protein synthesis in vascular smooth muscle cells (VSMC), we have studied its effect on two major signal transduction pathways: mitogen-activated protein kinases and phosphatidylinositol 3-kinase (PI3-kinase) and their downstream targets ribosomal protein S6 kinase (p70(S6k)) and eukaryotic initiation factor eIF4E and its regulator 4E-BP1. PGF2alpha induced the activities of extracellular signal-regulated kinase 2 (ERK2) and Jun N-terminal kinase 1 (JNK1) groups of mitogen-activated protein kinases, PI3-kinase, and p70(S6k) in a time-dependent manner in growth-arrested VSMC. PGF2alpha also induced eIF4E and 4E-BP1 phosphorylation, global protein synthesis, and basic fibroblast growth factor-2 (bFGF-2) expression in VSMC. Whereas inhibition of PI3-kinase by wortmannin completely blocked the p70(S6k) activation, it only partially decreased the ERK2 activity, and had no significant effect on global protein synthesis and bFGF-2 expression induced by PGF2alpha. Rapamycin, a potent inhibitor of p70(S6k), also failed to prevent PGF2alpha-induced global protein synthesis and bFGF-2 expression, although it partially decreased ERK2 activity. In contrast, inhibition of ERK2 activity by PD 098059 led to a significant loss of PGF2alpha-induced eIF4E and 4E-BP1 phosphorylation, global protein synthesis, and bFGF-2 expression. PGF2alpha-induced phosphorylation of eIF4E and 4E-BP1 was also found to be sensitive to inhibition by both wortmannin and rapamycin. These findings demonstrate that 1) PI3-kinase-dependent and independent mechanisms appear to be involved in PGF2alpha-induced activation of ERK2; 2) PGF2alpha-induced eIF4E and 4E-BP1 phosphorylation appear to be mediated by both ERK-dependent and PI3-kinase-dependent rapamycin-sensitive mechanisms; and 3) ERK-dependent eIF4E phosphorylation but not PI3-kinase-dependent p70(S6k) activation correlates with PGF2alpha-induced global protein synthesis and bFGF-2 expression in VSMC.  相似文献   

16.
Meiotic maturation of mammalian oocytes (transition from prophase I to metaphase II) is accompanied by complex changes in the protein phosphorylation pattern. At least two major protein kinases are involved in these events; namely, cdc2 kinase and mitogen-activated protein (MAP) kinase, because the inhibition of these kinases arrest mammalian oocytes in the germinal vesicle (GV) stage. We show that during meiotic maturation of bovine oocytes, the translation initiation factor, eIF4E (the cap binding protein), gradually becomes phosphorylated. This substantial phosphorylation begins at the time of germinal vesicle breakdown (GVBD) and continues to the metaphase II stage. The onset of eIF4E phosphorylation occurs in parallel with a significant increase in overall protein synthesis. However, although eIF4E is nearly fully phosphorylated in metaphase II oocytes, protein synthesis reaches only basal levels at this stage, similar to that of prophase I oocytes, in which the factor remains unphosphorylated. We present evidence that a specific repressor of eIF4E, the binding protein 4E-BP1, is present and could be involved in preventing eIF4E function in metaphase II stage oocytes. Recently, two protein kinases, called Mnk1 and Mnk2, have been identified in somatic cells as eIF4E kinases, both of which are substrates of MAP kinase in vivo. In bovine oocytes, a specific inhibitor of cdk kinases, butyrolactone I, arrests oocytes in GV stage and prevents activation of both cdc2 and MAP kinase. Under these conditions, the phosphorylation of eIF4E is also blocked, and its function in initiation of translation is impaired. In contrast, PD 098059, a specific inhibitor of the MAP kinase activation pathway, which inhibits the MAP kinase kinase, called MEK function, leads only to a postponed GVBD, and a delay in MAP kinase and eIF4E phosphorylation. These results indicate that in bovine oocytes, 1) MAP kinase activation is only partially dependent on MEK kinase, 2) MAP kinase is involved in eIF4E phosphorylation, and 3) the abundance of fully phosphorylated eIF4E does not necessarily directly stimulate protein synthesis. A possible MEK kinase-independent pathway of MAP kinase phosphorylation and the role of 4E-BP1 in repressing translation in metaphase II oocytes are discussed.  相似文献   

17.
Phosphorylation of the alpha-subunit of eukaryotic initiation factor 2 is the major regulatory step in the initiation of protein synthesis in mammals. P67, a cellular glycoprotein, protects phosphorylation of eIF2alpha from kinases. Previously, we reported that the D6/2 mutant of p67 has higher levels of protection of eIF2alpha phosphorylation (POEP) activity. In this study, we report that the D6/2 mutant and its double mutants containing second-site alanine substitutions at the five conserved amino acid residues (D251, D262, H331, E364, and E459) show increased POEP activity in serum-starved rat tumor hepatoma cells. Serum-restoration to those cells did not abolish their increased POEP activity except the D6/2+H331A double mutant. The latter mutant shows slight inhibition of POEP activity during serum starvation and this inhibition increased significantly during serum restoration. KRC-7 cells constitutively expressing the D6/2 mutant showed slightly decreased levels of PKR phosphorylation and significantly low level of phosphorylation of ERKs 1 and 2. The D6/2 mutant also showed increased binding with eIF2alpha and eIF2gamma and almost similar binding with ERKs 1 and 2 as compared to wild type p67. Altogether, our data demonstrate that the increased binding of the D6/2 mutant with the subunits of eIF2 may be in part the cause for its high POEP activity.  相似文献   

18.
In eukaryotic cells, protein synthesis is regulated in response to various environmental stresses by phosphorylating the alpha subunit of the eukaryotic initiation factor 2 (eIF2alpha). Three different eIF2alpha kinases have been identified in mammalian cells, the heme-regulated inhibitor (HRI), the interferon-inducible RNA-dependent kinase (PKR) and the endoplasmic reticulum-resident kinase (PERK). A fourth eIF2alpha kinase, termed GCN2, was previously characterized from Saccharomyces cerevisiae, Drosophila melanogaster and Neurospora crassa. Here we describe the cloning of a mouse GCN2 cDNA (MGCN2), which represents the first mammalian GCN2 homolog. MGCN2 has a conserved motif, N-terminal to the kinase subdomain V, and a large insert of 139 amino acids located between subdomains IV and V that are characteristic of the known eIF2alpha kinases. Furthermore, MGCN2 contains a class II aminoacyl-tRNA synthetase domain and a degenerate kinase segment, downstream and upstream of the eIF2alpha kinase domain, respectively, and both are singular features of GCN2 protein kinases. MGCN2 mRNA is expressed as a single message of approximately 5.5 kb in a wide range of different tissues, with the highest levels in the liver and the brain. Specific polyclonal anti-(MGCN2) immunoprecipitated an eIF2alpha kinase activity and recognized a 190 kDa phosphoprotein in Western blots from either mouse liver or MGCN2-transfected 293 cell extracts. Interestingly, serum starvation increased eIF2alpha phosphorylation in MGCN2-transfected human 293T cells. This finding provides evidence that GCN2 is the unique eIF2alpha kinase present in all eukaryotes from yeast to mammals and underscores the role of MGCN2 kinase in translational control and its potential physiological significance.  相似文献   

19.
Previously, we observed that N-ethylmaleimide (NEM), a thiol-alkylating agent, was found to stimulate the phosphorylation of several proteins in translating wheat germ (WG) lysates, including the phosphorylation of alpha, the p41-42 doublet subunit, and beta, the p36 subunit, of the WG initiation factor 2 (eIF2). We find now that NEM increases phosphorylation of several proteins significantly in lysates which are moderate or low in their translation compared to optimally active lysates. Heat treatment, which stimulates oxidation of protein sulfhydryls, decreases the translation and phosphorylation ability of WG lysates. The decrease in phosphorylation, but not translation, that occurs in heat-treated lysates is prevented very efficiently by NEM and partially by reducing agents such as dithiothreitol (DTT) and GSH. DTT prevents, however, completely the loss of sulfhydryl content of heat-treated WG lysates and does not at all prevent heat-induced inhibition of translation. In contrast, DTT prevents completely the diamide-induced translational inhibition and also the loss of sulfhydryl content. These findings therefore suggest that in addition to the maintenance of sulfhydryl groups, heat-labile proteins and their interactions with other proteins play an important role in overall translation and phosphorylation. It is also observed here that heat treatment stimulates the phosphorylation of rabbit reticulocyte eIF2 alpha but not the alpha subunit (p41-42 doublet) of WG eIF2. A phosphospecific anti-eIF2 alpha antibody recognizes the WG eIF2 alpha(P) that is phosphorylated by an authentic eIF2 alpha kinase such as double-stranded RNA-dependent protein kinase, but it is unable to recognize the eIF2 alpha that is phosphorylated in NEM-treated lysates. These findings therefore suggest that phosphorylation of WG eIF2 alpha in NEM-treated lysates occurs on a site different from the serine 51 residue that is phosphorylated by authentic eIF2 alpha kinases. In addition, it also suggests that WG eIF2 alpha, unlike reticulocyte eIF2 alpha, is phosphorylated by eIF2 alpha kinases and also by other kinases. Consistent with this idea, it has been observed here that casein kinase II (CKII) phosphorylates WG eIF2 alpha and the phosphorylation is enhanced by NEM in vitro and in lysates. The phosphopeptide analysis suggests that WG eIF2 alpha has separate phosphorylation sites for CKII and heme-regulated eIF2 alpha kinase (a well-characterized mammalian eIF2 alpha kinase), and NEM-induced phosphorylation in WG lysates resembles CKII-mediated phosphorylation.  相似文献   

20.
The rate of protein synthesis in higher eukaryotes is largely regulated at the level of eIF2alpha phosphorylation by its kinases. A cellular glycoprotein, p67, protects eIF2alpha from phosphorylation. An enzyme, p67-deglycosylase, when active, removes the carbohydrate moieties from p67 and inactivates it. Subsequently, protein synthesis is inhibited. During mitosis the overall rate of protein synthesis sharply declines. To understand the molecular mechanism underlying this inhibition of protein synthesis, we have examined the phosphorylation of eIF2alpha and the activity of p67. We find that the phosphorylation of eIF2alpha increases at the G2/M border of cycling U2-OS cells, and p67 is deglycosylated at the same period of the cell cycle. In addition, the level and the activity of p67-deglycosylase also increase at the G2/M boundary of cycling U2-OS cells. These results thus provide an important in vivo correlation between the increased phosphorylation of eIF2alpha and deglycosylation of p67 by p67-deglycosylase at the G2/M boundary of cycling U2-OS cells. This may explain in part the inhibition of protein synthesis in U2-OS cells approaching mitosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号