首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Soluble guanylate cyclase (sGC) is an important downstream intracellular target of nitric oxide (NO) that is produced by endothelial NO synthase (eNOS) and inducible NO synthase (iNOS). In this study, we demonstrate that sGC exists in a complex with eNOS and heat shock protein 90 (HSP90) in aortic endothelial cells. In addition, we show that in aortic smooth muscle cells, sGC forms a complex with HSP90. Formation of the sGC/eNOS/HSP90 complex is increased in response to eNOS-activating agonists in a manner that depends on HSP90 activity. In vitro binding assays with glutathione S-transferase fusion proteins that contain the alpha- or beta-subunit of sGC show that the sGC beta-subunit interacts directly with HSP90 and indirectly with eNOS. Confocal immunofluorescent studies confirm the subcellular colocalization of sGC and HSP90 in both endothelial and smooth muscle cells. Complex formation of sGC with HSP90 facilitates responses to NO donors in cultured cells (cGMP accumulation) as well as in anesthetized rats (hypotension). These complexes likely function to stabilize sGC as well as to provide directed intracellular transfer of NO from NOS to sGC, thus preventing inactivation of NO by superoxide anion and formation of peroxynitrite, which is a toxic molecule that has been implicated in the pathology of several vascular diseases.  相似文献   

2.
Endothelium-derived nitric oxide (NO) activates the heterodimeric heme protein soluble guanylate cyclase (sGC) to form cGMP. In different disease states, sGC levels and activity are diminished possibly involving the sGC binding chaperone, heat shock protein 90 (hsp90). Here we show that prolonged hsp90 inhibition in different cell types reduces protein levels of both sGC subunits by about half, an effect that was prevented by the proteasome inhibitor MG132. Conversely, acute hsp90 inhibition affected neither basal nor NO-stimulated sGC activity. Thus, hsp90 is a molecular stabilizer for sGC tonically preventing proteasomal degradation rather than having a role in short-term activity regulation.  相似文献   

3.
The radial artery (RA) is used as a spastic coronary bypass graft. This study was designed to investigate the mechanism of vasorelaxant effects of YC-1 (3-(5'-hydroxymethyl-2'-furyl)-1-benzyl indazole), a nitric oxide (NO)-independent soluble guanylate cyclase (sGC) activator, and DEA/NO (diethylamine/nitric oxide), a NO-nucleophile adduct, on the human RA. RA segments (n = 25) were obtained from coronary artery bypass grafting patients and were divided into 3-4 mm vascular rings.Using the isolated tissue bath technique, the endothelium-independent vasodilatation function was tested in vitro by the addition of cumulative concentrations of YC-1 (10-10 to 3 x 10-7 mol/L) and DEA/NO (10-8 to 3 x 10-5 mol/L) following vasocontraction by phenylephrine in the presence or absence of 10-5 mol/L ODQ (1H-(1,2,4)oxadiazole(4,3-a)quinoxalin-1-one), the selective sGC inhibitor, 10-7 mol/L iberiotoxin, a blocker of Ca2+-activated K+ channels, or 10-5 mol/L ODQ plus 10-7 mol/L iberiotoxin. We also evaluated the effect of YC-1 and DEA/NO on the cGMP levels in vascular rings obtained from human radial artery (n = 6 for each drug). YC-1 (10-10 to 3 x 10-7 mol/L) and DEA/NO (10-8 to 3 x 10-5 mol/L) caused the concentration-dependent vasorelaxation in RA rings precontracted with phenylephrine (10-5 mol/L) (n = 20 for each drug). Pre-incubation of RA rings with ODQ, iberiotoxin, or ODQ plus iberiotoxin significantly inhibited the vasorelaxant effect of YC-1, but the inhibitor effect of ODQ plus iberiotoxin was significantly more than that of ODQ and iberiotoxin alone (p < 0.05). The vasorelaxant effect of DEA/NO almost completely abolished in the presence of ODQ and iberiotoxin plus ODQ, but did not significantly change in the presence of iberiotoxin alone (p > 0.05). The pEC50 value of DEA/NO was significantly lower than those for YC-1 (p < 0.01), with no change Emax values in RA rings. In addition, YC-1-stimulated RA rings showed more elevation in cGMP than that of DEA/NO (p < 0.05). These findings indicate that YC-1 is a more potent relaxant than DEA/NO in the human RA. The relaxant effects of YC-1 could be due to the stimulation of the sGC and Ca2+-sensitive K+channels, whereas the relaxant effects of DEA/NO could be completely due to the stimulation of the sGC. YC-1 and DEA/NO may be effective as vasodilator for the short-term treatment of perioperative spasm of coronary bypass grafts.  相似文献   

4.
Lo YC  Tsou HH  Lin RJ  Wu DC  Wu BN  Lin YT  Chen IJ 《Life sciences》2005,76(8):931-944
The vasorelaxation activities of MCPT, a newly synthesized xanthine derivative, were investigated in this study. In phenylephrine (PE)-precontracted rat aortic rings with intact endothelium, MCPT caused a concentration-dependent relaxation, which was inhibited by endothelium removed. This relaxation was also reduced by the presence of nitric oxide synthase inhibitor Nomega-nitro-L-arginine methylester (L-NAME, 100 microM), soluble guanylyl cyclase (sGC) inhibitors methylene blue (10 microM), 1 H-[1,2,4] oxidazolol [4,3-a] quinoxalin-1-one (ODQ, 1 microM), adenylyl cyclase (AC) blocker SQ 22536 (100 microM), ATP-sensitive K+ channel blocker (KATP) glibenclamide (1 microM), a Ca2+ activated K+ channels blocker tetraethylammonium (TEA, 10 mM) and a voltage-dependent potassium channels blocker 4-aminopyridine (4-AP, 100 microM). The vasorelaxant effects of MCPT together with IBMX (0.5 microM) had an additive action. In PE-preconstricted endothelium-denuded aortic rings, the vasorelaxant effects of MCPT were attenuated by pretreatments with glibenclamide (1 microM), SQ 22536 (100 microM) or ODQ (1 microM), respectively. MCPT enhanced cAMP-dependent vasodilator isoprenaline- and NO donor/cGMP-dependent vasodilator sodium nitroprusside-induced relaxation activities in endothelium-denuded aortic rings. In A-10 cell and washed human platelets, MCPT induced a concentration-dependent increase in intracellular cyclic GMP and cyclic AMP levels. In phosphodiesterase assay, MCPT displayed inhibition effects on PDE 3, PDE 4 and PDE 5. The inhibition % were 52 +/- 3.9, 32 +/- 2.6 and 8 +/- 1.1 respectively. The Western blot analysis on HUVEC indicated that MCPT increased the expression of eNOS. It is concluded that the vasorelaxation by MCPT may be mediated by the inhibition of phosphodiesterase, stimulation of NO/sGC/ cGMP and AC/cAMP pathways, and the opening of K+ channels.  相似文献   

5.
The role of nitric oxide (NO) in the stimulation of soluble guanylyl cyclase (sGC) is well established, but the mechanism by which the enzyme is inactivated during the prolonged NO stimulation has not been characterized. In this paper we studied the interactions between NO and intracellular Ca(2+) in the control of sGC in rat anterior pituitary cells. Experiments were done in cultured cells, which expressed neuronal and endothelial NO synthases, and in cells with elevated NO levels induced by the expression of inducible NO synthase and by the addition of several NO donors. Basal sGC-dependent cGMP production was stimulated by the increase in NO levels in a time-dependent manner. In contrast, depolarization of cells by high K(+) and Bay K 8644, an L-type Ca(2+) channel agonist, inhibited sGC activity. Depolarization-induced down-regulation of sGC activity was also observed in cells with inhibited cGMP-dependent phosphodiesterases but not in cells bathed in Ca(2+)-deficient medium. This inhibition was independent from the pattern of Ca(2+) signaling (oscillatory versus nonoscillatory) and NO levels, and was determined by averaged concentration of intracellular Ca(2+). These results indicate that inactivation of sGC by intracellular Ca(2+) serves as a negative feedback to break the stimulatory action of NO on enzyme activity in intact pituitary cells.  相似文献   

6.
Large (pathological) amounts of nitric oxide (NO) induce cell injury, whereas low (physiological) NO concentrations often ameliorate cell injury. We tested the hypotheses that pretreatment of endothelial cells with low concentrations of NO (preconditioning) would prevent injury induced by high NO concentrations. Apoptosis, induced in bovine aortic endothelial cells (BAECs) by exposing them to either 4 mM sodium nitroprusside (SNP) or 0.5 mM N-(2-aminoethyl)-N-(2-hydroxy-2-nitrosohydrazino)-1,2-ethylenediamine (spermine NONOate) for 8 h, was abolished by 24-h pretreatment with either 100 microM SNP, 10 microM spermine NONOate, or 100 microM 8-bromo-cGMP (8-Br-cGMP). Repair of BAECs following wounding, measured as the recovery rate of transendothelial electrical resistance, was delayed by 8-h exposure to 4 mM SNP, and this delay was significantly attenuated by 24-h pretreatment with 100 microM SNP. NO preconditioning produced increased association and expression of soluble guanyl cyclase (sGC) and heat shock protein 90 (HSP90). The protective effect of NO preconditioning, but not the injurious effect of 4 mM SNP, was abolished by either a sGC activity inhibitor 1H-[1,2,4]oxadiazolo-[4,3-a]quinoxalin-1-one (ODQ) or a HSP90 binding inhibitor (radicicol) and was mimicked by 8-Br-cGMP. We conclude that preconditioning with a low dose of NO donor accelerates repair and maintains endothelial integrity via a mechanism that includes the HSP90/sGC pathway. HSP90/sGC may thus play a role in the protective effects of NO-generating drugs from injurious stimuli.  相似文献   

7.
Heat shock protein 90 (Hsp90) binding to endothelial nitric oxide synthase (eNOS) is an important step in eNOS activation. The conformational state of bound Hsp90 determines whether eNOS produces nitric oxide (NO) or superoxide (O(2)(*-)). We determined the effects of the Hsp90 antagonists geldanamycin (GA) and radicicol (RA) on basal and ACh-stimulated changes in vessel diameter, cGMP production, and Hsp90:eNOS coimmunoprecipitation in piglet resistance level pulmonary arteries (PRA). In perfused piglet lungs, we evaluated the effects of GA and RA on ACh-stimulated changes in pulmonary arterial pressure (Ppa) and perfusate accumulation of stable NO metabolites (NOx(-)). The effects of GA and RA on ACh-stimulated O(2)(*-) generation was investigated in cultured pulmonary microvascular endothelial cells (PMVEC) by dihydroethidine (DHE) oxidation and confocal microscopy. Hsp90 inhibition with GA or RA reduced ACh-mediated dilation, abolished the ACh-stimulated increase in cGMP, and reduced eNOS:Hsp90 coprecipitation. GA and RA also inhibited the ACh-mediated changes in Ppa and NOx(-) accumulation rates in perfused lungs. ACh increased the rate of DHE oxidation in PMVEC pretreated with GA and RA but not in untreated cells. The cell-permeable superoxide dismutase mimetic M40401 reversed GA-mediated inhibition of ACh-induced dilation in PRA. We conclude that Hsp90 is a modulator of eNOS activity and vascular reactivity in the newborn piglet pulmonary circulation. Uncoupling of eNOS with GA or RA inhibits ACh-mediated dilation by a mechanism that involves O(2)(*-) generation.  相似文献   

8.
The formation of nitric oxide (NO) from L-arginine by vascular endothelial cells and its relationship to endothelium-dependent relaxation of vascular rings was studied. The release of NO, measured by bioassay or chemiluminescence, from porcine aortic endothelial cells stimulated with bradykinin was enhanced by infusions of L-, but not D-arginine. The release of 15NO, determined by high resolution mass spectrometry, from L-guanidino 15N (99%) arginine was also observed, indicating that NO is formed from the terminal guanidino nitrogen atom(s) of L-arginine. L-NG-monomethyl arginine (L-NMMA), but not D-NMMA, inhibited both the generation of NO by endothelial cells in culture and the endothelium-dependent relaxation of rabbit aortic rings. Both these effects were reversed by L-arginine. These data indicate that L-arginine is the physiological precursor for the formation of NO which mediates endothelium-dependent relaxation.  相似文献   

9.
Nitric oxide signaling: no longer simply on or off   总被引:1,自引:0,他引:1  
Nitric oxide (NO) triggers various physiological responses in numerous tissues by binding and activating soluble guanylate cyclase (sGC) to produce the second messenger cGMP. In vivo, basal NO/cGMP signaling maintains a resting state in target cells (for example, resting tone in smooth muscle), but an acute burst of NO/cGMP signaling triggers rapid responses (such as smooth muscle relaxation). Recent studies have shown that the sGC heterodimer comprises at least four modular domains per subunit. The N-terminal heme domain is a member of the H-NOX family of domains that bind O(2) and/or NO and are conserved in prokaryotes and higher eukaryotes. Studies of these domains have uncovered the molecular basis for ligand discrimination by sGC. Other work has identified two temporally distinct states of sGC activation by NO: formation of a stable NO-heme complex results in a low-activity species, and additional NO produces a transient fully active enzyme. Nucleotides also allosterically modulate the duration and intensity of enzyme activity. Together, these studies suggest a biochemical basis for the two distinct types of NO/cGMP signal observed in vivo.  相似文献   

10.
Erectile dysfunction (ED) can be elicited by a variety of pathogenic factors, particularly impaired formation of and responsiveness to nitric oxide (NO) and the downstream effectors soluble guanylate cyclase (sGC) and cGMP-dependent protein kinase I (PKGI). One important target of PKGI in smooth muscle is the large-conductance, Ca2+ -activated potassium (BKCa) channel. In our previous report (42), we demonstrated that deletion of the BKCa channel in mice induced force oscillations and led to reduced nerve-evoked relaxations and ED. In the current study, we used this ED model to explore the role of the BKCa channel in the NO/sGC/PKGI pathway. Electrical field stimulation (EFS)-induced contractions of corpus cavernosum smooth muscle strips were significantly enhanced in the absence of BKCa channel function. In strips precontracted with phenylephrine, EFS-induced relaxations were converted to contractions by inhibition of sGC, and this was further enhanced by loss of BK channel function. Sildenafil-induced relaxations were decreased to a similar extent by inhibition of sGC or BKCa channels. At concentrations >1 microM, sildenafil caused relaxations independent of inhibition of sGC or BKCa channels. Sildenafil did not affect the enhanced force oscillations that were induced by the loss of BKCa channel function. Yet, these oscillations could be completely eliminated by blocking L-type voltage-dependent Ca2+ channels (VDCCs). These results suggest that therapeutically relevant concentrations of sildenafil act through cGMP and BKCa channels, and loss of BKCa channel function leads to hypercontractility, which depends on VDCCs and cannot be modified by the cGMP pathway.  相似文献   

11.
Metabolism of nitroglycerin (GTN) to 1,2-glycerol dinitrate (GDN) and nitrite by mitochondrial aldehyde dehydrogenase (ALDH2) is essentially involved in GTN bioactivation resulting in cyclic GMP-mediated vascular relaxation. The link between nitrite formation and activation of soluble guanylate cyclase (sGC) is still unclear. To test the hypothesis that the ALDH2 reaction is sufficient for GTN bioactivation, we measured GTN-induced formation of cGMP by purified sGC in the presence of purified ALDH2 and used a Clark-type electrode to probe for nitric oxide (NO) formation. In addition, we studied whether GTN bioactivation is a specific feature of ALDH2 or is also catalyzed by the cytosolic isoform (ALDH1). Purified ALDH1 and ALDH2 metabolized GTN to 1,2- and 1,3-GDN with predominant formation of the 1,2-isomer that was inhibited by chloral hydrate (ALDH1 and ALDH2) and daidzin (ALDH2). GTN had no effect on sGC activity in the presence of bovine serum albumin but caused pronounced cGMP accumulation in the presence of ALDH1 or ALDH2. The effects of the ALDH isoforms were dependent on the amount of added protein and, like 1,2-GDN formation, were sensitive to ALDH inhibitors. GTN caused biphasic sGC activation with apparent EC(50) values of 42 +/- 2.9 and 3.1 +/- 0.4 microm in the presence of ALDH1 and ALDH2, respectively. Incubation of ALDH1 or ALDH2 with GTN resulted in sustained, chloral hydrate-sensitive formation of NO. These data may explain the coupling of ALDH2-catalyzed GTN metabolism to sGC activation in vascular smooth muscle.  相似文献   

12.
cGMP is generated in endothelial cells after stimulation of soluble guanylyl cyclase (sGC) by nitric oxide (NO) or of particulate guanylyl cyclase (pGC) by natriuretic peptides (NP). We examined whether localized increases in cytosolic cGMP have distinct regulatory roles on the contraction induced by H2O2 treatment in human umbilical vein endothelial cells. cGMP concentrations and temporal dynamics were different upon NO stimulation of sGC or C-type NP (CNP) activation of pGC and did not correlate with their relaxing effects measured as planar cell surface area after H2O2 challenge. cGMP production due to sGC stimulation was always smaller and more brief than that induced by pGC stimulation with CNP, which was greater and remained elevated longer. The NO effects on cell relaxation were cGMP dependent because they were blocked by sGC inhibition with 1H-(1,2,4)Oxadiazolo(4,3-a)quinoxaline-1-one and mimicked by 8-Br-cGMP. An antagonist of the cGMP-dependent protein kinase type-I (PKG-I) also inhibited the NO-induced effects. The cell contraction induced by H2O2 produces myosin light chain (MLC) phosphorylation and NO prevented it completely, whereas CNP only produced a partial inhibition. Transfection with a dominant negative form of PKG type-I completely reversed the NO-induced effects on MLC phosphorylation, whereas it only partially inhibited the effects due to CNP. Taken together, these results demonstrate that the NO/sGC/cGMP pathway induces endothelial cell relaxation in a more efficient manner than does CNP/pGC/cGMP pathway, an effect that might be related to a selective stimulation of PKG-1 by NO-derived cGMP. Consequently, stimulated PKG-I may phosphorylate important protein targets that are necessary to inhibit the endothelial contractile machinery activated by oxidative stress. nitric oxide; C-type natriuretic peptide; myosin light chain; cGMP-dependent protein kinase type I; endothelial cell barrier dysfunction  相似文献   

13.
The chaperone heat shock protein 90 (hsp90) associates with signaling proteins in cells including soluble guanylate cyclase (sGC). hsp90 associates with the heme-free (apo) sGC-β1 subunit and helps to drive heme insertion during maturation of sGC to its NO-responsive active form. Here, we found that NO caused apo-sGC-β1 to rapidly and transiently dissociate from hsp90 and associate with sGC-α1 in cells. This NO response (i) required that hsp90 be active and that cellular heme be available and be capable of inserting into apo-sGC-β1; (ii) was associated with an increase in sGC-β1 heme content; (iii) could be mimicked by the heme-independent sGC activator BAY 60-2770; and (iv) was followed by desensitization of sGC toward NO, sGC-α1 disassociation, and reassociation with hsp90. Thus, NO promoted a rapid, transient, and hsp90-dependent heme insertion into the apo-sGC-β1 subpopulation in cells, which enabled it to combine with the sGC-α1 subunit to form the mature enzyme. The driving mechanism likely involves conformational changes near the heme site in sGC-β1 that can be mimicked by the pharmacologic sGC activator. Such dynamic interplay between hsp90, apo-sGC-β1, and sGC-α1 in response to NO is unprecedented and represent new steps by which cells can modulate the heme content and activity of sGC for signaling cascades.  相似文献   

14.
Nitric oxide exerts a stimulatory role during postnatal angiogenesis. Although soluble guanylyl cyclase (sGC) mediates many of the effects of nitric oxide (NO) in the vascular system, the contribution of cGMP-dependent vs cGMP-independent pathways in NO-induced angiogenesis remains unclear. Herein, we determined the effects of a NO donor (sodium nitroprusside; SNP) and a NO-independent sGC activator (BAY 41-2272) in the growth and migration of rat aortic endothelial cells (RAEC). RAEC lack enzymatically active sGC as suggested by their inability to accumulate cGMP upon exposure to SNP. However, treatment of RAEC with SNP promoted a modest increase in their proliferation and migration that was dependent on extracellular signal regulated kinase1/2 activation. Moreover, when RAEC were exposed to vascular endothelial growth factor we observed an increase in migration that was inhibited by NO synthase, but not sGC, inhibition. Infection of cells with adenoviruses containing sGC greatly increased the efficacy of SNP as a mitogenic and migratory stimulus. We conclude that NO is capable of stimulating EC proliferation and mobility in the absence of sGC; however, increased intracellular levels of cGMP following sGC activation greatly amplify the angiogenic potential of NO.  相似文献   

15.
Previous studies have demonstrated that cGMP is produced by nitric oxide-mediated activation of soluble guanylyl cyclase (sGC) in seminiferous tubules of the human testis. It is not known, however, whether carbon monoxide (CO), another activator of sGC, is also involved in testicular function. To address this issue, testicular probes from 65- to 75-yr-old men have been examined. The CO-generating enzyme, heme oxygenase-1 (HO-1), could be localized by immunohistochemical and immunoblot analyses to Sertoli cells. In these cells, HO-1 is detectable in adluminal cell compartments, whereas sGC immunoreactivity is distributed exclusively in basal compartments. Treatments of isolated tubules with either sodium arsenite, known to induce HO-1, or hematin, an HO substrate, resulted in 4.4- and 1.8-fold, respectively, increases in cGMP levels. ODQ, a specific sGC inhibitor, inhibited completely the sodium arsenite-stimulated cGMP production. Moreover, the HO inhibitor zinc protoporphyrin-IX and the CO scavenger hemoglobin both significantly reduced (77% or 46% of control, respectively) tubular cGMP generation. These findings, demonstrating for the first time a link between HO-1 activity in Sertoli cells and sGC-dependent cGMP production in seminiferous tubules, suggest a functional role of CO in the human testis.  相似文献   

16.
In a newly characterized cultured porcine pulmonary artery (PA) preparation, 24-h treatment with the nitric oxide (NO) donor (Z)-1-[N-(2-aminoethyl)-N-(2-ammonioethyl)amino]diazen-1-ium-1,2-diolate (DETA-NO) decreased the response to acutely applied DETA-NO compared with 24-h control (-log EC(50) 6.55 +/- 0.12 and 5.02 +/- 0.21, respectively). Treatment of PA with the cell-permeable superoxide dismutase mimetic, Mn(III) tetra(4-benzoic acid) porphyrin chloride, did not change NO responsiveness in either freshly prepared or 24-h DETA-NO-treated PA. cGMP and cAMP phosphodiesterase activities were approximately equal in PA. Twenty-four-hour DETA-NO treatment did not change either cGMP or cAMP phosphodiesterase activities. Twenty-four hours in culture had no significant effect on soluble guanylyl cyclase (sGC) subunit mRNA expression, but 24-h DETA-NO treatment significantly decreased the expression of both sGCalpha(1) and sGCbeta(1). sGCbeta(1) protein expression was 42 +/- 4 ng/mg soluble protein. Twenty-four hours in culture without and with DETA-NO reduced sGCbeta(1) protein expression (36 +/- 3 and 31 +/- 3 ng/mg soluble protein, respectively, P < 0.025). Basal tissue cGMP [(cGMP)(i)] was significantly increased, and NO-induced (cGMP)(i) was significantly decreased by 24-h DETA-NO treatment. (cGMP)(i) normalized to the amount of sGC protein expressed in PA was significantly lower in PA treated for 24 h with DETA-NO compared with both freshly isolated and 24-h cultured PA. We conclude that prolonged NO treatment induces decreased acute NO responsiveness in part by decreasing both sGC expression and sGC-specific activity.  相似文献   

17.
The effects of authentic nitric oxide (NO, 10(-6) M) and NO-donors such as sodium nitroprusside (SNP, 10(-5) M) and glyceryl trinitrate (GTN, 10(-4) M) on contractile force and free intracellular calcium level ([Ca2+]i) were studied on precontracted with high potassium chloride (KCl, 70 mM) isolated rings of rat tail artery. The sensitivity of contractile myofilaments to Ca2+ was measured using chemically permeabilized (alpha-toxin, beta-escin, Triton X-100) vascular rings. [Ca2+]i and contractile activity were measured simultaneously. The relationship of [Ca2+]i and tension developed was studied in endothelium-denuded rings and controlled calcium response was evaluated in both endothelium-denuded and permeabilized vascular rings. Both authentic NO and NO-donors decreased [Ca2+]i and high potassium-induced tension with a different time course. Inhibitor of soluble guanylyl cyclase (sGC) LY83583 (10(-5) M) did not affect SNP-induced relaxation whereas the other sGC inhibitor ODQ (10(-6) M) attenuated SNP-induced relaxation. Both inhibitors had no effect on NO- and SNP-induced reduction in [Ca2+]i. On the contrary, GTN induced neither relaxation nor decrease in [Ca2+]i on application of both LY83583 and ODQ. Tail artery rings permeabilized with alpha-toxin, beta-escin, but not with Triton X-100 were relaxed by authentic NO and NO-donors, but to a less extent than non-permeabilized rings. Dithioerythritol (DTE, 5 x 10(-3) M) that maintains sulfhydryl (SH) groups in reduced state preventing their nitrosylation attenuated NO-induced relaxation in both non-permeabilized and permeabilized tail artery rings. The cyclic heptapeptide mycrocystin-LR (MC-LR) (10(-5) M), an inhibitor of type 1 and 2A phosphatases, induced sustained increase in tension of beta-escin permeabilized rings in low Ca2+ (10(-8) M) solution. The tension was not affected by authentic NO and SNP. We conclude that authentic NO and SNP relax rat tail artery smooth muscle (SM) in the presence of inhibitors of sGC via cyclic guanosine monophosphate (cGMP)-independent pathway, whereas relaxation induced by GTN is inhibited. The data demonstrate that cGMP-dependent pathway in vascular smooth muscle is ubiquitous, but not the only way of relaxation induced by NO. NO can modulate vascular tone directly by reducing sensitivity of contractile myofilaments to [Ca2+]i and may involve activation of protein phosphatase(s).  相似文献   

18.
Nitric oxide and cGMP influence axonogenesis of antennal pioneer neurons   总被引:2,自引:0,他引:2  
The grasshopper embryo has been used as a convenient system with which to investigate mechanisms of axonal navigation and pathway formation at the level of individual nerve cells. Here, we focus on the developing antenna of the grasshopper embryo (Schistocerca gregaria) where two siblings of pioneer neurons establish the first two axonal pathways to the CNS. Using immunocytochemistry we detected nitric oxide (NO)-induced synthesis of cGMP in the pioneer neurons of the embryonic antenna. A potential source of NO are NADPH-diaphorase-stained epithelial cells close to the basal lamina. To investigate the role of the NO/cGMP signaling system during pathfinding, we examined the pattern of outgrowing pioneer neurons in embryo culture. Pharmacological inhibition of soluble guanylyl cyclase (sGC) and of NO synthase (NOS) resulted in an abnormal pattern of pathway formation in the antenna. Axonogenesis of both pairs of pioneers was inhibited when specific NOS or sGC inhibitors were added to the culture medium; the observed effects include the loss axon emergence as well as retardation of outgrowth, such that growth cones do not reach the CNS. The addition of membrane-permeant cGMP or a direct activator of the sGC enzyme to the culture medium completely rescued the phenotype resulting from the block of NO/cGMP signaling. These results indicate that NO/cGMP signaling is involved in axonal elongation of pioneer neurons in the antenna of the grasshopper.  相似文献   

19.
Endothelium-dependent vasorelaxation of the rabbit aorta is mediated by either nitric oxide (NO) or arachidonic acid (AA) metabolites from cyclooxygenase (COX) and 15-lipoxygenase (15-LO) pathways. 15-LO-1 metabolites of AA, 11,12,15-trihydroxyeicosatrienoic acid (THETA), and 15-hydroxy-11,12-epoxyeicosatrienoic acid (HEETA) cause concentration-dependent relaxation. We tested the hypothesis that in the 15-LO pathway of AA metabolism, 15-LO-1 is sufficient and is the rate-limiting step in inducing relaxations in rabbit aorta. Aorta and rabbit aortic endothelial cells were treated with adenoviruses containing human 15-LO-1 cDNA (Ad-15-LO-1) or beta-galactosidase (Ad-beta-Gal). Ad-15-LO-1-transduction increased the expression of a 75-kDa protein corresponding to 15-LO-1, detected by immunoblotting with an anti-human15-LO-1 antibody, and increased the production of HEETA and THETA from [(14)C]AA. Immunohistochemical studies on Ad-15-LO-1-transduced rabbit aorta showed the presence of 15-LO-1 in endothelial cells. Ad-15-LO-1-treated aortic rings showed enhanced relaxation to AA (max 31.7 +/- 3.2%) compared with Ad-beta-Gal-treated (max 12.7 +/- 3.2%) or control nontreated rings (max 13.1 +/- 1.6%) (P < 0.01). The relaxations in Ad-15-LO-1-treated aorta were blocked by the 15-LO inhibitor cinnamyl-3,4-dihydroxy-a-cyanocinnamate. Overexpression of 15-LO-1 in the rabbit aortic endothelium is sufficient to increase the production of the vasodilatory HEETA and THETA and enhance the relaxations to AA. This confirms the role of HEETA and THETA as endothelium-derived relaxing factors.  相似文献   

20.
To study the effect of the degree of unsaturation of dietary fatty acids on the production of free radicals and on the vascular smooth muscle tone in rings of the aorta, Sprague-Dawley rats were fed a semipurified diet containing 5% lipids from either corn oil (CO) or menhaden oil (MO) for 8 wk. The MO diet did not change the basal or NADPH-dependent superoxide anion (O2-*) release. There were no significant differences in phenylephrine-induced contractions between the two groups in intact rings. However, these contractions increased in endothelium-intact aortic rings from the MO group after addition of the nitric oxide (*NO) synthase inhibitor NG-nitro-L-arginine and in endothelium-denuded rings, both indicating a greater endothelial basal *NO production in rats fed with the MO diet. Endothelium-dependent relaxations in response to acetylcholine were more prominent in rings from the MO group. These differences were not due to an increased smooth muscle response to.NO, because relaxations were the same using an exogenous *NO donor. Our results indicate that dietary MO did not modify O2-* release by the vessel wall or relaxation due to the cyclooxygenase pathway, but it potentiated endothelial production of *NO.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号