首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Apostichopus (= Stichopus) japonicus blastulae and gastrulae were acclimated for 18 h to salinities of 32 (control), 24 and 22 (the lower limit of the range of tolerance), and 20 (below the range of tolerance). Acclimation to 20 resulted in the appearance of teratic larvae, most of which subsequently died. Acclimation to 24, 22, and 20 led to a shift in the range of tolerance of the larvae at further stages of development. With a decrease in salinity, acclimated larvae developed more successfully than unacclimated larvae. Acclimated larvae attained the pentactula stage and settled at a salinity range of 32–20; unacclimated larvae, at 32–22. At different stages of development, acclimated larvae survived greater decreases in salinity than unacclimated larvae. The acclimation effects could be traced up to metamorphosis and settling, i.e., two weeks after the end of the acclimation process.  相似文献   

2.
The stable isotope ratios of nitrogen were measured in the mysid,Neomysis intermedia, together with various biogenic materials in a eutrophic lake, Lake Kasumigaura, in Japan throughout a year of 1984/85. The mysid, particulate organic matter (POM, mostly phytoplankton), and zooplankton showed a clear seasonal change in 15N with high values in spring and fall, but the surface bottom mud did not. A year to year variation as well as seasonal change in 15N was found in the mysid. The annual averages of 15N of each material collected in 1984/85 are as follows: surface bottom mud, 6.3 (range: 5.7–6.9); POM, 7.9 (5.8–11.8); large sized mysid, 11.6 (7.7–14.3); zooplankton, 12.5 (10.0–16.4); prawn, 13.2 (9.9–15.4); goby, 15.1 (13.8–16.7). The degree of15N enrichment by the mysid was determined as 3.2 by the laboratory rearing experiments. The apparent parallel relationship between the POM and the mysid in the temporal patterns of 15N with about 3 difference suggests the POM (mostly phytoplankton) as a possible food source ofN. intermedia in this lake through the year.  相似文献   

3.
G. Fischer  C. Wiencke 《Polar Biology》1992,12(3-4):341-348
Summary Stable carbon isotope composition of macroalgae collected at King George Island (Antarctica) ranged from about -8 to -34. We hypothesize that the 13C values are related to the depth distribution: species inhabiting greater depth had much lower values (around-30) compared to species from shallower waters (around -17). Isotopic studies on sediment trap samples from the King George Basin (2,000 m deep) revealed that benthic macroalgae contributed strongly to the total organic carbon pool of the deeper basin waters during austral spring and summer. Fragments of brown macroalgae (Desmarestiales) were detected in microscopical analyses of semi-thin sections of sediment samples from the Bransfield Strait. Possible mechanisms regarding the erosion of benthic macroalgae and their transport to the deeper waters and to the sediment are summarized.  相似文献   

4.
A method is described whereby arrays of samples ofClupea pallasi eggs may be stored during their preparation. The high fertilization potential retained by the eggs during short-term storage allows them to be fertilized synchronously when sample preparation is complete. A variation of the dry method of storage retained maximum fertilization potential (80–85%) of the eggs for about 1 hr, and of milt dilution (18 with 17 S sea water), about 7 hr. Following dry storage, eggs fertilized in salinities of 0–45 showed maximum rates of fertilization in salinities of 10–20, and fertilization rates 50% in salinities of 4.5–42. Salinities of fertilization influenced egg diameter, median hatching time, and larval length at hatching in egg samples transferred 21/2 hr after fertilization to an incubation salinity of 17 at 7°C. Fertilization rates were higher (90–95%) for eggs stored in 17 S at 7°C prior to fertilization. Under such wet storage conditions, maximum fertilization pontential was retained for about 2 hr. Highest fertilization rates (95–96%) were obtained for eggs stored and fertilized in salinities of 12–15. For the species and the area of origin considered (British Columbia), wet storage of eggs should result in maximum fertilization when the eggs are stored at 4°C for a period not greater than 2 hr prior to fertilization in the 12–15 S storage medium.Prepared under the auspices of the Canadian-German Scientific and Technical Cooperation Agreement.  相似文献   

5.
Summary An ice microflora community collected from the bottom of seasonal pack-ice off the Amery Ice Shelf, Antarctica, was grown at salinities which varied from 11.5 to 34. The response exhibited by the community and by individual species was characterized by an initial lag phase-adaptation period followed by a short period of exponential growth. Doubling rates based on changes in chlorophyll a had a range from 0.05 to 0.23 day-1 during the time required to reach maximum chlorophyll a concentration and a range of 0.04 to 0.42 day-1 during a period of exponential growth. Exponential growth rates of individual species ranged from 0.2 to 1.0 doublings day-1. Growth occurred at all salinities above 11.5. Community growth rates increased with increasing salinity, and the growth-salinity response of most species was shifted toward higher salinities suggesting that this Antarctic ice microalgal community was adapted to the ambient salinity regime: 34.  相似文献   

6.
Ursula Seelemann 《Oecologia》1968,1(1-2):130-154
Zusammenfassung Die Überwindung der biologischen Grenze zwischen Meer und Land durch Mollusken ist bisher nur wenig im Hinblick auf physiologische Umstellungen untersucht worden. Unter diesem Aspekt wurden Experimente durchgeführt an Alderia modesta, einem amphibisch lebenden Opisthobranchier des unteren Supralitorals, und an Ovatella myosotis, einer Pulmonate, die im oberen Supralitoral vorkommt. Alderia zeigt eine relativ enge Salinitätstoleranz. Zu hohe und zu niedrige Salzgehalte hemmen die Entwicklung, führen zu Mißbildungen bei der Embryonalentwicklung und lassen adulte tiere rasch eingehen. In Beziehung zu der Salinität der angrenzenden Gewässer (Brackwasser der Ostsee und der Ästuare, Meerwasser der Nordsee) existieren verschiedene Biotypen, die auf Aussüßung und hohe Salzkonzentration unterschiedlich reagieren.Die weiter ins Supralitoral vorgedrungene Ovatella myositis hat eine wesentlich breitere Salinitätstoleranz. Schädigungen der Adulten treten auf Süßwasser nicht, auf Salzwasser erst oberhalb von 55 auf. Durch schrittweise Adaptation können höhere Konzentrationen ertragen werden. Der Toleranzunterschied zwischen den untersuchten Populationen ist genetisch bedingt. Eiablage, Embryonalentwicklung und Wachstum erfolgen im Bereich zwischen 5 und mindestens 50 Substratsalinität.Physiologisch wird diese große Salinitätstoleranz durch ein fast durchgehendes poikilosmotisches Verhalten ermöglicht. Auf sehr ausgesüßtem Substrat sind die Schnecken stark hypertonisch (auf Süßwasser hat das Binnenmedium auf 7), im ganzen übrigen Bereich weniger stark (3–4 über der Substratsalinität). Im oberen Extrembereich vermögen die Tiere diese Hypertonie offenbar nur schwer aufrechtzuerhalten (vgl. S. 149).Die Veränderungen von Gastropoden auf dem Wege vom Meer über das Supralitoral zum Land werden diskutiert; im Gebiet der Salzwiesen läßt sich ein günstigeres Schema zu dieser Frage aufstellen als bei den bisher meist zitierten Littorinen.
On the emigration of gastropodes from the sea: Studies on Alderia modesta and Ovatella myosotis
Summary Up to now little attention has been paid to the phylogenetic emigration of gastropods from the sea: almost nothing is known about the physiological changes which enable snails to live in terrestrial habitats. To help solve this question, experiments were carried out on Alderia modesta, an opisthobranch slug of the lower supralittoral, and Ovatella myositis, a primitive pulmonate snail of the upper supralittoral. In each case two subspecies were studied.North Sea Alderias differ from their Baltic counterparts in size and salinitytolerance. The difference in size between Ovatella of the Mediterranean and of the Baltic is very slight. There is a marked difference, however, in the salinity-tolerance. Alderia modesta survives in a comparatively narrow range of different salinities. The optimum is between 10 and 20 for Baltic specimens and between 15 and 35 for those of the North Sea. The results are the same in and out of water. Ovatella can live on a freshwater substratum as well as on 55. Specimens of the Mediterranean can even become adapted to 90. Flooded with water of differrent salinities the tolerated range becomes markedly smaller. Eggs are produced between 5 and 50 (Baltic specimens) or 5 and 65 (Mediterranean specimens). All eggs develop without being damaged between 5 and 40 and 10 and 45 respectively. The optimal salinity-concentration for growth and egg-production is 10. Salinity-concentrations below and above these marks disturb the development. In one spawn-mass some eggs cleave normally, others become deformed, and again others do not cleave at all. This heterogeneous reaction points to the existence of something like a physiological polymorphism in regard to salinity-tolerance. The salinity-concentration of the blood of Ovatella was measured after a long-term acclimatisation. Ovatella is poikilosmotic and slightly hypertonic (3–4) throughout almost the whole range of salinities it tolerates. On extremely low concentrations it becomes more hypertonie; on extremely high concentrations it becomes nearly isotonic.
  相似文献   

7.
Summary During high salinity stress, -alanine accumulates to high levels in the sea anemone,Bunodosoma cavernata. Following a salinity increase from 26 to 40 -alanine increased 28-fold from 1.5 to 41.9 moles/g dry weight. Both whole animal studies and experiments with cell free homogenates indicate that under high salinity conditions an increase in the rate of -alanine synthesis from aspartic acid as well as a decrease in the rate of -alanine oxidation are responsible for the observed accumulation of -alanine. The rate of aspartic acid decarboxylation to -alanine is about 3 times greater in anemones acclimated to 40 than for those in normal salinity water (26). -alanine oxidation to CO2 and acetyl-CoA proceeds 2.5 to 3 times slower in high salinity adaptedB. cavernata than in those acclimated to normal salinity. There is always a rapid degradation of uracil to -alanine, but this does not change with salinity.Abbreviations CASF cold acid soluble fraction - FAA free amino acids - MES 2(N-morpholino) ethane sulfonic acid - NPS ninhydrin positive substances - PCA perchloric acid - TCA trichloroacetic acid  相似文献   

8.
Stable carbon (13C) and nitrogen (15N) isotopes were used to elucidate primary food sources and trophic relationships of organisms in Khung Krabaen Bay and adjacent offshore waters. The three separate sampling sites were mangroves, inner bay and offshore. The 13C values of mangrove leaves were –28.2 to –29.4, seagrass –10.5, macroalgae –14.9 to –18.2, plankton –20.0 to –21.8, benthic detritus –15.1 to –26.3, invertebrates –16.5 to –26.0, and fishes –13.4 to –26.3. The 15N values of mangrove leaves were 4.3 to 5.7, seagrass 4.3, macroalgae 2.2 to 4.4, plankton 5.7 to 6.4 , benthic detritus 5.1 to 5.3, invertebrates 7.2 to 12.2 , and fishes 6.3 to 15.9. The primary producers had distinct 13C values. The 13C values of animals collected from mangroves were more negative than those of animals collected far from shore. The primary carbon sources that support food webs clearly depended on location. The contribution of mangroves to food webs was confined only to mangroves, but a mixture of macroalgae and plankton was a major carbon source for organisms in the inner bay area. Offshore organisms clearly derived their carbon through the planktonic food web. The 15N values of consumers were enriched by 3–4 relative to their diets. The 15N data suggests that some of aquatic animals had capacity to change their feeding habits according to places and availability of foods and as a result, individuals of the same species could be assigned to different trophic levels at different places.  相似文献   

9.
Schmidt  Olaf  Scrimgeour  Charles M. 《Plant and Soil》2001,229(2):197-202
The use of 13C isotope tracer techniques in terrestrial ecology has been restricted by the technical requirements and high costs associated with the production of 13C enriched plant material by 13CO2 release in labelling chambers. We describe a novel, simple and relatively inexpensive method for the small-scale production of 13C and 15N labelled plant material. The method is based on foliar feeding of plants with a urea solution (97 atom% 13C, 2 atom% 15N) by daily misting. Maize was grown in a greenhouse in a compost–soil mixture and enclosed in clear polythene bags between urea applications. Final enrichment in 27 d old maize shoots was 211 13C (1.34 atom% 13C) and 434 15N (0.52 atom% 15N). Enrichments of hot-water extractable fractions (289 13C, 469 15N) were only slightly higher than those observed in plant bulk material, which suggests that daily urea applications ensured fairly uniform labelling of different biochemical fractions and plant tissues. Recovery of applied excess 13C and 15N in plant shoots was 22% and 42%, respectively. Roots were less enriched (21 13C and 277 15N), but no attempts were made to recover roots quantitatively.  相似文献   

10.
Zusammenfassung Enchytraeus albidus aus dem Anwurf mariner Algen an der Kieler Förde (Ostsee) erträgt als Nahrung die folgenden dort vorkommenden Pflanzen (Reihenfolge mit abnehmender Verträglichkeit): Fucus — Grünalgen —Seegras (Zostera) — Rotalgen (Delesseria). Diese Reihenfolge gilt für Nahrungsaufnahme, Fortpflanzungsrate und Überlebensdauer.Mit zunehmender Fäulnis des Nahrungssubstrates steigt die Zahl der Tiere, die aus ihm fliehen. Ihre Anzahl wird außerdem bestimmt durch den Salzgehalt des Substrates: Von 15–45 ist sie proportional der Substratsalinität. Bei 60 ist die Aktivität der Tiere bereits stark eingeschränkt.Bei Fucus-Nahrung ertragen auf Sand gehaltene Tiere eine Salinität von 60–70 länger als 4 Wochen, auf Filtrierpapier dagegen nur 50 für durchschnittlich 1 Woche. Die obere Fortpflanzungsgrenze liegt bei 40 Salzgehalt im Substrat. Bei 5 werden die meisten Kokons abgelegt. Die Sterblichkeit im Kokon ist bei 15 am geringsten. Auf den Substratsalinitäten 0–15 ist die Entwicklungsdauer im Kokon signifikant kürzer als auf Substraten von 30 und 40. Enchytraeus hat sich als Rückwanderer zum Meer mit einer sekundär erweiterten Poikilosmotie an den neuen Lebensraum angepaßt. Er kann eine Binnenkonzentration entsprechend etwa 72 längere Zeit ertragen. Auf niedrigen Salzgehalten besitzt er eine ausgeprägte Hypertonieregulation.
Summary Enchytraeus albidus was fed with Fucus, green algae, Zostera marina and Delesseria. Judging from absorption of food, rate of reproduction and duration of life, the animals preferred the plants in the sequence given above.As the putrefaction of a Fucus substrate advances, more and more enchytraeids leave it. A changing salinity of the substrate also influences the number of emigrating worms, increasing it from 15–45, but decreasing it towards 60. Fed with Fucus E. albidus tolerates a salinity of 60–70 on sand for more than 4 weeks, on filter paper only 50 for about one week.Reproduction is possible at salinities up to 40. Cocoon production is most frequent at 5. The mortality of young worms within the cocoons is lowest at 15. The incubation period is significantly shorter at salinities of 0–15 than at 30 and 40.As a terrestrial immigrant to the seashore Enchytraeus albidus secondarily enlarged its range of poikilosmosis, tolerating a concentration of 72 in its coelomic fluid for some time. At low salinities it maintains a remarkable degree of hyperosmosis.
  相似文献   

11.
The reactions of the starfish Asterias amurensis and Patiria pectinifera that live in Vostok Bay at the salinity of 32–33 to a salinity decrease were studied under laboratory conditions. The lower limits of the desalination tolerance range of A. amurensis and P. pectinifera were, respectively, 24 and 20. A. amurensis proved to be less resistant to desalination. Under experimental conditions, all specimens of this species survived the salinity of 22, while those of P. pectinifera tolerated 18. At the same time, A. amurensis responded more actively than P. pectinifera to unfavorable changes in the environment. Turned to their dorsal side and exposed to a salinity of 16 to 32, the former reverted to the normal position within a shorter time than the latter. Being a more euryhaline species, P. pectinifera endured a salinity decrease to 6 or 8 over, respectively, 21 or 28 h. However, only 30–40% of all specimens could recover locomotory activity 12 or 8.5 h after being placed into water of normal salinity.  相似文献   

12.
Summary Monhystera denticulata Timm, a free-living nematode present in the aufwuchs assemblages of several marine macrophytes located in North Sea Harbor, Southampton, New York, was isolated from Zostera marina and established in laboratory culture in order to study the influences of temperature and salinity on its life history. Under experimental conditions, M. denticulata has a generation time (Measured as the time elapsing between the first egg depositions of consecutive generations) of 10–12 days at 25° C and 26 S, which represent optimal growth conditions in the laboratory. The organism has a generation time of 20 days at 25° C and 13, 17 days at 25° C and 39, 18 days at 15° C and 26, 36 days at 15° C and 13 and 34 days at 15° C and 39. As conditions vary from the optimum of 25° C and 26 S, a decrease in temperature of 10° C and an increase or decrease in salinity of 13 results in a doubling of the generation time. At 5° C the generation time is about 180–197 days.Assuming optimum conditions and average generation time, about 15 generations of M. denticulata could occur in North Sea Harbor during the year. The number of generations occurring in reality is probably less, however, due to the fact that the females deposit their eggs over a period of several days.This work was supported by National Science Foundation Grant GB-19245.Contribution No. 04 from the Institute of Oceanography, City University of New York.  相似文献   

13.
Summary 1. Rates of growth (length increase of stolons) and of asexual reproduction (increase in number of polyps) were determined in secondaryClava multicornis colonies of a clone exposed to 12 different combinations of water temperature and salinity (12°, 17°, 22° C; 16 , 24 , 32 , 40 S). Sexual reproduction (via gonophores) has been observed only at 12° and 17° C; temperature and salinity ranges are narrower for sexual than for asexual reproduction.2. The data obtained are insufficient for a detailed analysis; they provide, however, interesting insights into the variability of growth and reproduction ofC. multicornis caused by different intensities of temperature and salinity.3. It appears that temperature requirements for maximum colony increase are reduced as the colony grows older.4. One feeding period per 24 hours seems insufficient for maximum growth and reproduction at the higher temperature levels, especially at 22° C.5. The different degrees of environmental stress endured during the initial period of transfer into the test combinations of temperature and salinity have affected the resulting colony size at least up to an age of 39 days. More appropriate criteria for assessment of rates of growth and reproduction are therefore the doubling times (number of days within which stolon length and polyp numbers taken 20 days after initiation of experiments have doubled).6. On the basis of doubling time values, increase in stolon length is progressively reduced with increasing water temperature (12°, 17°, 22° C). At 12° and 17° C stolons grow fastest in 32 , followed by 24 , 16 and 40 S; at 22° C stolon growth rates are identical in 32 and 24 S.7. Doubling times of polyp numbers per colony show a less obvious trend. In 56-day-old colonies, however, stolon length and polyp number are modified to similar degrees by the various temperatures and salinities offered. The sequence of temperatures causing fastest increase in polyp number is 12°>17°>22° C; the respective sequence of salinities reads: 24 , 32 , 16 , 40 S.8. Stolon length and polyp number per colony increase exponentially; most curves obtained exhibit undulations indicating endogenous growth rhythms.9. During the initial period of transfer into the final test media, asexual reproduction via budding seems to have been stimulated by a reduction in salinity.10. The doubling times obtained forC. multicornis are considerably longer than those found forCordylophora caspia and indicate that our culture conditions may have been suboptimal.
Wachstum und Reproduktion als Funktion von Temperatur und Salzgehalt beiClava multicornis (Cnidaria, Hydrozoa)
Kurzfassung Einzelpolypen eines Klons vonC. multicornis Forskål wurden schrittweise in 12 verschiedene Temperatur-Salzgehalts-Kombinationen überführt und — während sie zu neuen Kolonien heranwuchsen — das Längenwachstum ihrer Stolonen, die Geschwindigkeit ihrer asexuellen Vermehrung durch Knospung neuer Hydranthen sowie die Gonophorenausbildung (sexuelle Fortpflanzung) registriert. Die erhaltenen Daten sind unzureichend für eine detaillierte Analyse, gewähren jedoch interessante Einblicke in die Bedeutung der verschiedenen Temperatur- und Salzgehaltsbedingungen für Wachstum und Vermehrung. Die anfängliche, schrittweise Überführung in die Testmedien verursacht per se Leistungsunterschiede, deren Auswirkungen sich mindestens bis zu einem Alter von 39 Tagen verfolgen lassen. Doubling times stellen daher objektivere Kriterien dar als absolute Zuwachswerte. Die doubling times von Kolonien, welche länger als 20 Tage in den Testmedien gewachsen waren, zeigen eine Verringerung der Stolonenzuwachsrate mit steigender Temperatur (12°, 17°, 22° C). Die Reihenfolge der fördernden Wirkung der einzelnen Salzgehaltsstufen ergibt sich zu 32 , 24 , 16 , 40 S. Im Prinzip ähnliche Verhältnisse liegen hinsichtlich der asexuellen Vermehrungsrate vor. Bemessen an den getesteten Kriterien scheinen die Temperaturansprüche mit zunehmendem Koloniealter abzunehmen. Die errechneten doubling times sind wesentlich länger als beiCordylophora; möglicherweise deutet dieser Unterschied auf inadäquate Kulturbedingungen (Fütterung, Wasserbewegung) hin.
  相似文献   

14.
Kurz  E.  Schmid  V. 《Hydrobiologia》1991,212(1):11-17
Artemia sp (Tuticorin strain) was cultured at a density of 250 individuals 1–1 at 35, 45, 60, 75 salinity using five combinations of groundnut oil cake, decayed cabbage leaves, single superphosphate and Baker's yeast as feed. Effects on survival, growth, and fecundity were noted.  相似文献   

15.
Stable isotope ratio as a tracer of mangrove carbon in Malaysian ecosystems   总被引:10,自引:0,他引:10  
Summary The ratio of stable carbon isotopes (13C) in plants and animals from Malaysian mangrove swamps, coastal inlets, and offshore waters was determined. Vascular plants of the swamps were isotopically distinct ( x±s.d.=-27.1±1.2) from plankton (-21.0±0.3) and other algae (-18.7±2.2). Animals from the swamps (-20.9±4.1) and inlets (-19.8±2.5) had a wide range of isotope ratios (-28.6 to-15.4), indicating consumption of both mangrove and algal carbon. Several commercially important species of bivalves, shrimp, crabs, and fish obtained carbon from mangrove trees. Mangrove carbon was carried offshore as detritus and was isotopically distinguishable in suspended particulate matter and sediments. Animals collected from 2 to 18 km offshore, however, showed no isotopic evidence of mangrove carbon assimilation, with ratios (-16.5±1.1, range-19.1 to-13.1) virtually identical to those reported for similar animals from other plankton-based ecosystems. Within groups of animals, isotope ratios reflected intergencric and interspecific differences in feeding and trophic position. In particular, there was a trend to less negative ratios with increasing trophic level.  相似文献   

16.
The food-web structure of the Arctic deep Canada Basin was investigated in summer 2002 using carbon and nitrogen stable isotope tracers. Overall food-web length of the range of organisms sampled occupied four trophic levels, based on 3.8 trophic level enrichment (15N range: 5.3–17.7). It was, thus, 0.5–1 trophic levels longer than food webs in both Arctic shelf and temperate deep-sea systems. The food sources, pelagic particulate organic matter (POM) (13C=–25.8, 15N=5.3) and ice POM (13C=–26.9, 15N=4.1), were not significantly different. Organisms of all habitats, ice-associated, pelagic and benthic, covered a large range of 15N values. In general, ice-associated crustaceans (15N range 4.6–12.4, mean 6.9) and pelagic species (15N range 5.9–16.5, mean 11.5) were depleted relative to benthic invertebrates (15N range 4.6–17.7, mean 13.2). The predominantly herbivorous and predatory sympagic and pelagic species constitute a shorter food chain that is based on fresh material produced in the water column. Many benthic invertebrates were deposit feeders, relying on largely refractory material. However, sufficient fresh phytodetritus appeared to arrive at the seafloor to support some benthic suspension and surface deposit feeders on a low trophic level (e.g., crinoids, cumaceans). The enriched signatures of benthic deposit feeders and predators may be a consequence of low primary production in the high Arctic and the subsequent high degree of reworking of organic material.  相似文献   

17.
We analysed the stable isotope composition of emitted N2O in a one-year field experiment (June 1998 to April 1999) in unfertilized controls, and after adding nitrogen by applying slurry or mineral N (calcium ammonium nitrate). Emitted N2O was analysed every 2–4 weeks, with additional daily sampling for 10 days after each fertilizer application. In supplementary soil incubations, the isotopic composition of N2O was measured under defined conditions, favouring either denitrification or nitrification. Soil incubated for 48 h under conditions favouring nitrification emitted very little N2O (0.024 mol gdw –1) and still produced N2O from denitrification. Under denitrifying incubation conditions, much more N2O was formed (0.91 mol gdw –1 after 48 h). The isotope ratios of N2O emitted from denitrification stabilized at 15N = –40.8 ± 5.7 and 18O = 2.7 ± 6.3. In the field experiment, the N2O isotope data showed no clear seasonal trends or treatment effects. Annual means weighted by time and emission rate were 15N = –8.6 and 18O = 34.7 after slurry application, 15N = –4.6 and 18O = 24.0 after mineral fertilizer application and 15N = –6.4 and 18O = 35.6 in the control plots, respectively. So, in all treatments the emitted N2O was 15N-depleted compared to ambient air N2O (15N = 11.4 ± 11.6, 18O = 36.9 ± 10.7). Isotope analyses of the emitted N2O under field conditions per se allowed no unequivocal identification of the main N2O producing process. However, additional data on soil conditions and from laboratory experiments point to denitrification as the predominant N2O source. We concluded (1) that the isotope ratios of N2O emitted from the field soil were not only influenced by the source processes, but also by microbial reduction of N2O to N2 and (2) that N2O emission rates had to exceed 3.4 mol N2O m–2 h–1 to obtain reliable N2O isotope data.  相似文献   

18.
Summary Fifty-four species of the Chenopodiaceae in Israel were examined for their anatomical features, 13C values, habitat and phytogeographical distribution. 17 species have 13C values between -20 and -30and non-Kranz anatomy (NK) and are therefore considered as C3 plants. 37 species have 13C values between -10 and -18 and Kranz or C4-Suaeda type anatomy and are therefore considered as C4 plants. Some C4 plants have leaf structure which seems to be intermediate between the Kranz and the C4-Suaeda type of leaf anatomy.The segregation of the species into photosynthetic groups shows tribal and phytogeographical grouping. Most of the C3 Chenopods are either mesoruderal plants or coastal halophytes, with a distribution area which covers the Euro-Siberian as well as the Mediterranean phytogeographical regions. The C4 Chenopods are mainly desert or steppe xerohalophytes with a distribution area which includes the Saharo-Arabian and/or Irano-Turanian phytogeographical regions.  相似文献   

19.
Stable isotopes (13C, D) and radiocarbon weremeasured in methane bubbles emitted from rice paddies and swamps in southernThailand. Methane emitted from the Thai rice paddies was enriched in13C (mean 13C; –51.5 ±7.1 and–56.5 ± 4.6 for mineral soil and peat soil paddies,respectively)relative to the reported mean value of methane from temperate rice paddies(– 63 ± 5). Large seasonal variation was observed in13C(32) in the rice paddies, whereas variationinD was much more smaller (20), indicating that variation in13C is due mainly to changes in methane production pathways.Values of 13C were lower in swamps (–66.1 ±5.1)than in rice paddies. The calculated contribution of acetate fermentation from13C value was greater in rice paddies (mineral soils:62–81%, peat soils: 57–73%) than in swamps (27–42%). Din methane from Thai rice paddies (–324± 7 (n=46)) isrelativelyhigher than those from 14 stations in Japanese rice paddies ranging from–362 ± 5 (Mito: n=2) to –322 ± 8(Okinawa: n=3), due tohigher D in floodwaters. 14C content in methane produced fromThai rice paddies (127±1 pMC) show higher 14Cactivity compared with previous work in paddy fields and those from Thai swamps(110±2 pMC).  相似文献   

20.
The littoral benthos of 18 lakes in Alberta and Saskatchewan ranging in salinity from 3 to 126 (g1–1 TDS) were investigated twice, in the spring and in the summer of 1986. Multiple Ekman dredge samples were taken at water depths of about 0.5, 1.0 and 2 metres in each transect. Two to three transects were used in each lake according to its estimated limnological diversity for a total of 114 stations. A total of 76 species was present varying from 29–31 species in the three lakes of lowest salinity (means of 3.1–5.55) to only 2 species in lakes exceeding 100. Species richness decreased rapidly in salinities greater than 15.Biomass maximum mean of 10.91 g m–2 dry weight (maximum 63.0 g m–2) occurred in culturally eutrophic Humboldt Lake (3.1) but one third as great in other low salinity lakes. However, biomass again increased to about 4.5 gm–2 in two lakes of 15 As the salinity increased still further biomass declined steadily until a minimum of 0.0212 g m–2 was recorded in most saline Aroma Lake (mean 119). Summer biomass (11 lakes) was greater than spring biomass (4 lakes) because some groups such as amphipods, corixids and ostracods became more abundant in summer. Wet weight biomass averaged 15.8 of dry weight biomass.Seasonality (spring or summer), sediment texture and organic matter content, water depth, pH, salinity (TDS) and the presence of aquatic plants ( plant cover) were considered in the matrix involving species dry weight biomass at each of 117 stations. TWINSPAN classification of the samples yielded a dendrogram with 18 indicator species. Successive dichotomies divided these indicator species into four main lake groups based on salinity, i.e., Group I: 3–10 (Gammarus, Glyptotendipes I, Chironomus cf. plumosus), Group II: 10–38%. (Hyalella, Enallagma,Bezzia), Group III: 38–63 (Hygrotus salinarius, Cricotopus ornatus), Group IV: >63 (Dolichopodidae, Ephydra hians). Each of these main groups was subdivided into smaller groups of lakes based on factors such as pH, seasonality (spring or summer species dominance), organic matter and plant cover. Depth of samples played no apparent role.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号