首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A cAMP-dependent protein kinase (PKA) is localized in mammalian mitochondria with the catalytic site at the matrix side of the membrane where it phosphorylates a number of proteins. One of these is the 18 kDa(IP) subunit of the mammalian complex I of the respiratory chain, encoded by the nuclear NDUFS4 gene. Mitochondria have a Ca2+-inhibited phosphatase, which dephosphorylates the 18 kDa phosphoprotein of complex I. In fibroblast and myoblast cultures cAMP-dependent phosphorylation of the 18 kDa protein is associated with stimulation of complex I and overall respiratory activity with NAD-linked substrates. Mutations in the human NDUFS4 gene have been found, which in the homozygous state are associated with deficiency of complex I and fatal neurological syndrome.  相似文献   

2.
A study is presented on cyclic adenosine monophosphate- (cAMP-) dependent phosphorylation of mammalian mitochondrial proteins. Immunodetection with specific antibodies reveals the presence of the catalytic and the regulatory subunits of cAMP-dependent protein kinase (PKA) in the inner membrane and matrix of bovine heart mitochondria. The mitochondrial cAMP-dependent protein kinase phosphorylates mitochondrial proteins of 29, 18, and 6.5 kDa. With added histone as substrate, PKA exhibits affinities for ATP and cAMP and pH optimum comparable to those of the cytosolic PKA. Among the mitochondrial proteins phosphorylated by PKA, one is the nuclear-encoded (NDUFS4 gene) 18 kDa subunit of complex I, which has phosphorylation consensus sites in the C terminus and in the presequence. cAMP promotes phosphorylation of the 18 kDa subunit of complex I in myoblasts in culture and in their isolated mitoplast fraction. In both cases cAMP-dependent phosphorylation of the 18 kDa subunit of complex I is accompanied by enhancement of the activity of the complex. These results, and the finding of mutations in the NDUFS4 gene in patients with complex I deficiency, provide evidence showing that cAMP-dependent phosphorylation of the 18 kDa subunit of complex I plays a major role in the control of the mitochondrial respiratory activity.  相似文献   

3.
The subunits of complex I encoded by the mammalian nuclear genes NDUFS4 (AQDQ protein) and NDUFB11 (ESSS protein) contain serine/threonine consensus phosphorylation sequences (CPS) in their presequence, the first also in the C-terminus. We have studied the impact of PKA mediated phosphorylation on the mitochondrial import of in vitro and in vivo synthesized NDUFS4 protein. The intramitochondrial accumulation of the mature form of in vitro synthesized NDUFS4 protein, but not that of ESSS protein, was promoted by PKA and depressed by alkaline phosphatase (AP). In HeLa cells, control or transfected with the NDUFS4 cDNA construct, the mitochondrial level of mature NDUFS4 protein was promoted by 8-Br-cAMP and depressed by H89. Ser173Ala mutagenesis in the C-terminus CPS abolished the appearance in mitochondria of the mature form of NDUFS4 protein. The promoting effect of PKA on the mitochondrial accumulation of mature NDUFS4 protein appears to be due to inhibition of its retrograde diffusion into the cytosol.  相似文献   

4.
Results of studies on the role of the 18 kDa (IP) polypeptide subunit of complex I, encoded by the nuclear NDUFS4 gene, in isolated bovine heart mitochondria and human and murine cell cultures are presented.The mammalian 18 kDa subunit has in the carboxy-terminal sequence a conserved consensus site (RVS), which in isolated mitochondria is phosphorylated by cAMP-dependent protein kinase (PKA). The catalytic and regulatory subunits of PKA have been directly immunodetected in the inner membrane/matrix fraction of mammalian mitochondria. In the mitochondrial inner membrane a PP2Cgamma-type phosphatase has also been immunodetected, which dephosphorylates the 18 kDa subunit, phosphorylated by PKA. This phosphatase is Mg(2+)-dependent and inhibited by Ca(2+). In human and murine fibroblast and myoblast cultures "in vivo", elevation of intracellular cAMP level promotes phosphorylation of the 18 kDa subunit and stimulates the activity of complex I and NAD-linked mitochondrial respiration.Four families have been found with different mutations in the cDNA of the NDUFS4 gene. These mutations, transmitted by autosomal recessive inheritance, were associated in homozygous children with fatal neurological syndrome. All these mutations destroyed the phosphorylation consensus site in the C terminus of the 18 kDa subunit, abolished cAMP activation of complex I and impaired its normal assembly.  相似文献   

5.
Recent work has revealed cAMP-dependent phosphorylation of the 18-kDa IP subunit of the mammalian complex I of the respiratory chain, encoded by the nuclear NDUFS4 gene (chromosome 5). Phosphorylation of this protein has been shown to take place in fibroblast cultures in vivo, as well as in isolated mitochondria, which in addition to the cytosol also contain, in the inner-membrane matrix fraction, a cAMP-dependent protein kinase. Mitochondria appear to have a Ca2+-inhibited phosphatase, which dephosphorylates the 18-kDa phosphoprotein. In fibroblast and myoblast cultures cAMP-dependent phosphorylation of the 18-kDa protein is associated with potent stimulation of complex I and overall respiratory activity with NAD-linked substrates. Mutations in the human NDUFS4 gene have been found, which in the homozygous state are associated with deficiency of complex I and fatal neurological syndrome. In one case consisting of a 5 bp duplication, which destroyed the phosphorylation site, cAMP-dependent activation of complex I was abolished in the patient's fibroblast cultures. In another case consisting of a nonsense mutation, leading to termination of the protein after only 14 residues of the putative mitochondria targeting peptide, a defect in the assembly of complex I was found in fibroblast cultures.  相似文献   

6.
In this paper the regulatory features of complex I of mammalian and human mitochondria are reviewed. In a variety of mitotic cell-line cultures, activation in vivo of the cAMP cascade, or direct addition of cAMP, promotes the NADH-ubiquinone oxidoreductase activity of complex I and lower the cellular level of ROS. These effects of cAMP are found to be associated with PKA-mediated serine phosphorylation in the conserved C-terminus of the subunit of complex I encoded by the nuclear gene NDUFS4. PKA mediated phosphorylation of this Ser in the C-terminus of the protein promotes its mitochondrial import and maturation. Mass-spectrometry analysis of the phosphorylation pattern of complex I subunits is also reviewed.  相似文献   

7.
Evidence has been obtained for the occurrence of a cAMP-dependent serine protein kinase associated with the inner membrane/matrix of mammalian mitochondria. The catalytic site of this kinase is localized at the inner side of the inner membrane, where it phosphorylates a number of mitochondrial proteins. One of these has been identified as the AQDQ subunit of complex I. cAMP-dependent phosphorylation of this protein promotes the activity of complex I and mitochondrial respiration. A 5 bp duplication in the nuclear gene encoding this protein has been found in a human patient, which eliminates the phosphorylation site. PKA anchoring proteins have recently been identified in the outer membrane of mammalian mitochondria, which could direct phosphorylation of proteins at contact sites with other cell structures.  相似文献   

8.
Evidence is presented showing that in a patient with fatal neurological syndrome, the homozygous 5 bp duplication in the cDNA of the NDUFS4 18 kDa subunit of complex I abolishes cAMP-dependent phosphorylation of this protein and activation of the complex. These findings show for the first time that human complex I is regulated via phosphorylation of the subunit encoded by the NDUFS4 gene.  相似文献   

9.
Phosphorylation by cAMP-dependent protein kinase (PKA) increases the activity of class C L-type Ca(2+) channels which are clustered at postsynaptic sites and are important regulators of neuronal functions. We investigated a possible mechanism that could ensure rapid and efficient phosphorylation of these channels by PKA upon stimulation of cAMP-mediated signaling pathways. A kinase anchor proteins (AKAPs) bind to the regulatory R subunits of PKA and target the holoenzyme to defined subcellular compartments and substrates. Class C channels isolated from rat brain extracts by immunoprecipitation contain an endogenous kinase that phosphorylates kemptide, a classic PKA substrate peptide, and also the main phosphorylation site for PKA in the pore-forming alpha(1) subunit of the class C channel complex, serine 1928. The kinase activity is inhibited by the PKA inhibitory peptide PKI(5-24) and stimulated by cAMP. Physical association of the catalytic C subunit of PKA with the immunoisolated class C channel complex was confirmed by immunoblotting. A direct protein overlay binding assay performed with (32)P-labeled RIIbeta revealed a prominent AKAP with an M(r) of 280,000 in class C channel complexes. The protein was identified by immunoblotting as the microtubule-associated protein MAP2B, a well established AKAP. Class C channels did not contain tubulin and MAP2B association was not disrupted by dilution or addition of nocodazole, two treatments that cause dissociation of microtubules. In vitro experiments show that MAP2B can directly bind to the alpha(1) subunit of the class C channel. Our findings indicate that PKA is an integral part of neuronal class C L-type Ca(2+) channels and suggest that the AKAP MAP2B may mediate this interaction. Neither PKA nor MAP2B were detected in immunoprecipitates of alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid-type glutamate receptors or class B N-type Ca(2+) channels. Accordingly, MAP2B docked at class C Ca(2+) channels may be important for recruiting PKA to postsynaptic sites.  相似文献   

10.
Phosphorylation by cAMP-dependent protein kinase (PKA) regulates a vast number of cellular functions. An important target for PKA in brain and heart is the class C L-type Ca(2+) channel (Ca(v)1.2). PKA phosphorylates serine 1928 in the central, pore-forming alpha(1C) subunit of this channel. Regulation of channel activity by PKA requires a proper balance between phosphorylation and dephosphorylation. For fast and specific signaling, PKA is recruited to this channel by an protein kinase A anchor protein (Davare, M. A., Dong, F., Rubin, C. S., and Hell, J. W. (1999) J. Biol. Chem. 274, 30280-30287). A phosphatase may be associated with the channel to effectively balance serine 1928 phosphorylation by channel-bound PKA. Dephosphorylation of this site is mediated by a serine/threonine phosphatase that is inhibited by okadaic acid and microcystin. We show that immunoprecipitation of the channel complex from rat brain results in coprecipitation of PP2A. Stoichiometric analysis indicates that about 80% of the channel complexes contain PP2A. PP2A directly and stably binds to the C-terminal 557 amino acids of alpha(1C). This interaction does not depend on serine 1928 phosphorylation and is not altered by PP2A catalytic site inhibitors. These results indicate that the PP2A-alpha(1C) interaction constitutively recruits PP2A to the channel complex rather than being a transient substrate-catalytic site interaction. Functional assays with the immunoisolated class C channel complex showed that channel-associated PP2A effectively reverses serine 1928 phosphorylation by endogenous PKA. Our findings demonstrate that both PKA and PP2A are integral components of the class C L-type Ca(2+) channel that determine the phosphorylation level of serine 1928 and thereby channel activity.  相似文献   

11.
12.
13.
Labelling of Rhodobacter capsulatus cells with (32P)Pi in a phototrophic culture results in phosphorylation of a membrane-bound polypeptide identified as the subunit of the LHI antenna complex of the photosynthetic apparatus. Phosphorylation of the same polypeptide was also observed by incubation of chromatophores with (32P)ATP or under conditions of photophosphorylation with ADP and (32P)Pi. The identity of the phosphorylated LHI- subunit was demonstrated by N-terminal protein sequencing of the phosphorylated polypeptide and by failure of labelling in LHI-defective mutants. Pre-aeration of the samples or addition of the oxidant potassium ferrcyanide stimulated the kinase activity whereas the presence of soluble cytoplasmic proteins impaired phosphorylation in an in vitro assay. No effect resulted from addition of reductants to the assay medium. The results indicate the presence of a membrane-bound protein kinase in R. capsulatus that phosphorylates the subunit of the LHI antenna complex under redox control.Abbreviations Pi inorganic phosphate - SDS-PAGE sodium dodecyl-sulfate polyacrylamide gel electrophoresis  相似文献   

14.
Complex I is the first and largest enzyme of the oxidative phosphorylation system. It consists of at least 43 subunits. Recent studies have shown that the NDUFS4 subunit of complex I contributes to the activation of the complex through cAMP dependent phosphorylation of a conserved site (RVS) located at the C-terminal region of this protein. This report focuses on the NDUFS4 subunit. Summarized is the current knowledge of this subunit, from gene structure to function and pathology.  相似文献   

15.
In bovine heart mitochondria and in submitochondrial particles, membrane-associated proteins with apparent molecular masses of 18 and 10 kDa become strongly radiolabeled by [(32)P]ATP in a cAMP-dependent manner. The 18-kDa phosphorylated protein is subunit ESSS from complex I and not as previously reported the 18 k subunit (with the N-terminal sequence AQDQ). The phosphorylated residue in subunit ESSS is serine 20. In the 10 kDa band, the complex I subunit MWFE was phosphorylated on serine 55. In the presence of protein kinase A and cAMP, the same subunits of purified complex I were phosphorylated by [(32)P]ATP at the same sites. Subunits ESSS and MWFE both contribute to the membrane arm of complex I. Each has a single hydrophobic region probably folded into a membrane spanning alpha-helix. It is likely that the phosphorylation site of subunit ESSS lies in the mitochondrial matrix and that the site in subunit MWFE is in the intermembrane space. Subunit ESSS has no known role, but subunit MWFE is required for assembly into complex I of seven hydrophobic subunits encoded in the mitochondrial genome. The possible effects of phosphorylation of these subunits on the activity and/or the assembly of complex I remain to be explored.  相似文献   

16.
The Complex I NADH dehydrogenase–ubiquinone–FeS 4 (NDUFS4) subunit gene is involved in proper Complex I function such that the loss of NDUFS4 decreases Complex I activity resulting in mitochondrial disease. Therefore, a mouse model harboring a point mutation in the NDUFS4 gene was created. An embryonic lethal phenotype was observed in homozygous (NDUFS4?/?) mutant fetuses. Mitochondrial function was impaired in heterozygous animals based on oxygen consumption, and Complex I activity in NDUFS4 mouse mitochondria. Decreased Complex I activity with unaltered Complex II activity, along with an accumulation of lactate, were consistent with Complex I disorders in this mouse model.  相似文献   

17.
《BBA》2020,1861(8):148213
Mutations in NDUFS4, which encodes an accessory subunit of mitochondrial oxidative phosphorylation (OXPHOS) complex I (CI), induce Leigh syndrome (LS). LS is a poorly understood pediatric disorder featuring brain-specific anomalies and early death. To study the LS pathomechanism, we here compared OXPHOS proteomes between various Ndufs4−/− mouse tissues. Ndufs4−/− animals displayed significantly lower CI subunit levels in brain/diaphragm relative to other tissues (liver/heart/kidney/skeletal muscle), whereas other OXPHOS subunit levels were not reduced. Absence of NDUFS4 induced near complete absence of the NDUFA12 accessory subunit, a 50% reduction in other CI subunit levels, and an increase in specific CI assembly factors. Among the latter, NDUFAF2 was most highly increased. Regarding NDUFS4, NDUFA12 and NDUFAF2, identical results were obtained in Ndufs4−/− mouse embryonic fibroblasts (MEFs) and NDUFS4-mutated LS patient cells. Ndufs4−/− MEFs contained active CI in situ but blue-native-PAGE highlighted that NDUFAF2 attached to an inactive CI subcomplex (CI-830) and inactive assemblies of higher MW. In NDUFA12-mutated LS patient cells, NDUFA12 absence did not reduce NDUFS4 levels but triggered NDUFAF2 association to active CI. BN-PAGE revealed no such association in LS patient fibroblasts with mutations in other CI subunit-encoding genes where NDUFAF2 was attached to CI-830 (NDUFS1, NDUFV1 mutation) or not detected (NDUFS7 mutation). Supported by enzymological and CI in silico structural analysis, we conclude that absence of NDUFS4 induces near complete absence of NDUFA12 but not vice versa, and that NDUFAF2 stabilizes active CI in Ndufs4−/− mice and LS patient cells, perhaps in concert with mitochondrial inner membrane lipids.  相似文献   

18.
Nicotinamide adenine dinucleotide (NADH):ubiquinone oxidoreductase (complex I) is the largest multiprotein enzyme complex of the respiratory chain. The nuclear-encoded NDUFS8 (TYKY) subunit of complex I is highly conserved among eukaryotes and prokaryotes and contains two 4Fe4S ferredoxin consensus patterns, which have long been thought to provide the binding site for the iron-sulfur cluster N-2. The NDUFS8 cDNA contains an open reading frame of 633 bp, coding for 210 amino acids. Cycle sequencing of amplified NDUFS8 cDNA of 20 patients with isolated enzymatic complex I deficiency revealed two compound heterozygous transitions in a patient with neuropathologically proven Leigh syndrome. The first mutation was a C236T (P79L), and the second mutation was a G305A (R102H). Both mutations were absent in 70 control alleles and cosegregated within the family. A progressive clinical phenotype proceeding to death in the first months of life was expressed in the patient. In the 19 other patients with enzymatic complex I deficiency, no mutations were found in the NDUFS8 cDNA. This article describes the first molecular genetic link between a nuclear-encoded subunit of complex I and Leigh syndrome.  相似文献   

19.
The human NDUFS4 gene encodes an accessory subunit of the first mitochondrial oxidative phosphorylation complex (CI) and, when mutated, is associated with progressive neurological disorders. Here we analyzed primary muscle and skin fibroblasts from NDUFS4?/? mice with respect to reactive oxygen species (ROS) levels and mitochondrial morphology. NDUFS4?/? fibroblasts displayed an inactive CI subcomplex on native gels but proliferated normally and showed no obvious signs of apoptosis. Oxidation of the ROS sensor hydroethidium was increased and mitochondria were less branched and/or shorter in NDUFS4?/? fibroblasts. We discuss the relevance of these findings with respect to previous results and therapy development.  相似文献   

20.
Tonoplast intrinsic protein (TIP) is a member of a family of putative membrane channels found in bacteria, animals, and plants. Plants have seed-specific, vegetative/reproductive organ-specific, and water-stress-induced forms of TIP. Here, we report that the seed-specific TIP is a phosphoprotein whose phosphorylation can be monitored in vivo by allowing bean cotyledons to take up [32P]orthophosphate and in vitro by incubating purified tonoplasts with γ-labeled [32P]ATP. Characterization of the in vitro phosphorylation of TIP indicates that a membrane-bound protein kinase phosphorylates TIP in a Ca2+-dependent manner. The capacity of the isolated tonoplast membranes to phosphorylate TIP declined markedly during seed germination, and this decline occurred well before the development-mediated decrease in TIP occurs. Phosphoamino acid analysis of purified, radiolabeled TIP showed that serine is the major, if not only, phosphorylated residue, and cyanogen bromide cleavage yielded a single radioactive peptide peak on a reverse-phase high-performance liquid chromatogram. Estimation of the molecular mass of the cyanogen bromide phosphopeptide by laser desorption mass spectroscopy led to its identification as the hydrophilic N-terminal domain of TIP. The putative phosphate-accepting serine residue occurs in a consensus phosphorylation site for serine/threonine protein kinases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号