首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Naftidrofuryl is a vasodilator medication used for treating cerebral and peripheral vascular diseases. In this study, two spectroscopical techniques, spectrofluorimetric and resonance Rayleigh scattering (RRS), were utilized to quantify naftidrofuryl in its pharmaceutical samples. The developed methodologies in this study rely on a facile process of forming an association complex between erythrosine B reagent and naftidrofuryl under acidic conditions. The fluorimetric assay is based on the ability of naftidrofuryl to quench and decrease the native fluorescence intensity of the reagent when measured at λ emis . = 550 nm ( λ excit . = 526 nm). Under similar reaction conditions, the RRS method relies on the observed amplification in the RRS spectrum of the reagent at a wavelength of 577 nm following its interaction with naftidrofuryl. The methods exhibited linearity within the ranges 0.2–1.6 μg/ml (r2 = 0.999) and 0.1–1.4 μg/ml (r2 = 0.9994), with limit of quantitation values of 0.146 and 0.099 μg/ml, and limit of detection values of 0.048 and 0.032 μg/ml, for the fluorometric and the RRS methods, respectively. Moreover, the quenching between the dye and naftidrofuryl was studied using Stern–Volmer analysis, and the methodologies were experimentally optimized and validated. Additionally, acceptable recoveries were achieved when the procedures were applied to determine naftidrofuryl in pharmaceutical samples.  相似文献   

2.
This article reports on the optical properties of Er3+ ions doped CdO–Bi2O3–B2O3 (CdBiB) glasses. The materials were characterized by optical absorption and emission spectra. By using Judd–Ofelt theory, the intensity parameters Ωλ (λ = 2, 4, 6) and also oscillatory strengths were calculated from the absorption spectra. The results were used to compute the radiative properties of Er3+:CdBiB glasses. The concentration quenching and energy transfer from Yb3+–Er3+ were explained. The stimulated emission cross‐section, full width at half maximum (FWHM) and FWHM × values are also calculated for all the Er3+:CdBiB glasses. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

3.
A series of controllable emissions SrWO4:Eu3+ and charge‐compensated SrWO4: (m = 0.01 or 0.20) phosphors was successfully prepared via a simple co‐precipitation method. The energy transfer mechanism was studied based on the Huang's theory. A low magnitude of Huang‐Rhys factor (10?2) was calculated using phonon sideband spectra. The Judd–Ofelt parameters Ωλ (λ = 2, 4 and 6) of Eu3+‐activated SrWO4 doped with charge compensation were obtained. The calculated Commission Internationale de l'Eclairage chromaticity coordinates were found to be about (0.67, 0.33) for SrWO4: and charge‐compensated SrWO4: phosphors, which coincided with the National Television Standard Committee system standard values for red. A white light emission was obtained under 362 nm excitation. The correlated color temperature was computed by a simple equation to characterize light sources. Thus, warm white light‐emitting diodes with higher Ra can be constructed by combining as‐prepared high efficiency, low correlated color temperature and high color purity phosphor.  相似文献   

4.
A series of 4‐alkoxyethoxy‐N‐octadecyl‐1,8‐naphthalimides with intense blue fluorescence were designed and synthesized as polarity and spectrofluorimetric probes for the determination of proteins. In solvents of different polarities, the Stokes shifts of two dyes increased with increasing solvent polarity and fluorescence quantum yields decreased significantly, suggesting that electronic transiting from ground to excited states was π–π* in character. Dipole moment changes were estimated from solvent‐dependent Stokes shift data using a solvatochromic method based on bulk solvent polarity functions and the microscopic solvent polarity parameter (). These results were generally consistent with semi‐empirical molecular orbital calculations and were found to be quite reliable based on the fact that the correlation of the solvatochromic Stokes shifts with was superior to that obtained using bulk solvent polarity functions. Fluorescence data revealed that the fluorescence quenching of human serum albumin (HSA) by dyes was the result of the formation of a Dye–HSA complex. The method was applied to the determination of total proteins (HSA + immunoglobulins) in human serum samples and results were in good agreement with those reported by the research institute. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

5.
We estimated local and metapopulation effective sizes ( and meta‐) for three coexisting salmonid species (Salmo salar, Salvelinus fontinalis, Salvelinus alpinus) inhabiting a freshwater system comprising seven interconnected lakes. First, we hypothesized that might be inversely related to within‐species population divergence as reported in an earlier study (i.e., FST: S. salar> S. fontinalis> S. alpinus). Using the approximate Bayesian computation method implemented in ONeSAMP, we found significant differences in () between species, consistent with a hierarchy of adult population sizes (). Using another method based on a measure of linkage disequilibrium (LDNE: ), we found more finite values for S. salar than for the other two salmonids, in line with the results above that indicate that S. salar exhibits the lowest among the three species. Considering subpopulations as open to migration (i.e., removing putative immigrants) led to only marginal and non‐significant changes in , suggesting that migration may be at equilibrium between genetically similar sources. Second, we hypothesized that meta‐ might be significantly smaller than the sum of local s (null model) if gene flow is asymmetric, varies among subpopulations, and is driven by common landscape features such as waterfalls. One ‘bottom‐up’ or numerical approach that explicitly incorporates variable and asymmetric migration rates showed this very pattern, while a number of analytical models provided meta‐ estimates that were not significantly different from the null model or from each other. Our study of three species inhabiting a shared environment highlights the importance and utility of differentiating species‐specific and landscape effects, not only on dispersal but also in the demography of wild populations as assessed through local s and meta‐s and their relevance in ecology, evolution and conservation.  相似文献   

6.
In an acidic buffered solution, erythrosine B can react with amiodarone to form an association complex, which not only generates great enhancement in resonance Rayleigh scattering (RRS) spectrum of erythrosine B at 346.5 nm but also results in quenching of fluorescence spectra of erythrosine B at λemission = 550.4 nm/λexcitation = 528.5 nm. In addition, the formed erythrosine B–amiodarone complex produces a new absorbance peak at 555 nm. The spectral characteristics of the RRS, absorbance, and fluorescence spectra, as well as the optimum analytical conditions, were studied and investigated. As a result, new spectroscopic methods were developed to determine amiodarone by utilizing erythrosine B as a probe. Moreover, the ICH guidelines were used to validate the developed RRS, photometric, and fluorimetric methods. The enhancements in the absorbance and the RRS intensity and the decrease in the fluorescence intensity of the used probe were proportional to the concentration of amiodarone in ranges of 2.5–20.0, 0.2–2.5, and 0.25–1.75 μg/mL, respectively. Furthermore, limit of detection values were 0.52 ng/mL for the spectrophotometric method, 0.051 μg/mL for the RRS method, and 0.075 μg/mL for the fluorimetric method. Moreover, with good recoveries, the developed spectroscopic procedures were applied to analyze amiodarone in its commercial tablets.  相似文献   

7.
A simple and selective spectrofluorimetric method for the detection of chlortetracycline (CTC) was studied. In pH 7.4 buffer medium l ‐tryptophan (l ‐Trp), applied as the fluorescence probe, interacted with CTC resulting in fluorescence quenching of the probe. CTC was detected with maximum excitation and emission wavelengths at λex/λem = 275/350 nm. Notably, quenching of fluorescence intensities was positively proportional to the CTC concentration over the range of 0.65–30 μmol L?1 and the limit of detection was 0.2 μmol L?1. Effect of temperature shown in Stern?Volmer plots, absorption spectra and fluorescence lifetime determination, indicated that fluorescence quenching of l ‐Trp by CTC was mainly by static quenching. The proposed study used practical samples analysis satisfactorily.  相似文献   

8.
The present paper reports the thermoluminescence (TL) of (ZnS)1‐x(MnTe)x nanophosphors that were prepared by a wet chemical synthesis method. The structure investigated by X‐ray diffraction patterns confirms the formation of a sphalerite phase whose space group was found to be F 3m. From XRD, TEM and SEM analyses the average sizes of the particles were found to be 12 nm, 11 nm and 15 nm, respectively. Initially the TL intensity increased with increasing values of x because the number of luminescence centres increased; however, for higher values of x the TL intensity decreased because of the concentration quenching. Thus the TL, mechanoluminescence and photoluminescence intensities are optimum for a particular value of x, that is for x = 0.05. Thermoluminescence of the (ZnS)1‐x (MnTe)x nanophosphor has not been reported previously. There were two peaks seen in the thermoluminescence glow curves in which the first peak lay at 105–100 °C and the second peak lay at 183.5–178.5 °C. The activation energies for the first and second peaks were found to be 0.45 eV and 0.75 eV, respectively.  相似文献   

9.
Photoinduced electron transfer (PET) is the most common mechanism proposed to account for quenching of fluorophores. Herein, the intrinsic fluorescence of dapoxetine (DPX) hydrochloride is in the “OFF” state, owing to the deactivation effect of PET. When the amine moiety is protonated, the fluorescence is restored. Protonation of the nitrogen atom of the tertiary amine moiety in DPX leads to “ON” state of fluorescence due to hindrance of the deactivating effect of PET by protonation of the amine moiety. This permits specific and sensitive determination of DPX in human plasma [lower limit of quantification (LLOQ) = 30.0  ng mL 1 ]. The suggested method adopts protonation of DPX using 0.25 M hydrochloric acid in anionic micelles [6.94 mM sodium dodecyl sulfate (SDS)] leads to a marked enhancement of DPX-fluorescence, after excitation at 290 nm.  相似文献   

10.
Free radical activity towards superoxide anion radical (), hydroxyl radical (HO?) and 2,2‐diphenyl‐1‐picrylhydrazyl (DPPH?) of a series of novel thiazolidine‐2,4‐dione derivatives (TSs) was examined using chemiluminescence, electron paramagnetic resonance (EPR) and EPR spin trapping techniques. 5,5‐Dimethyl‐1‐pyrroline‐N‐oxide (DMPO) was applied as the spin trap. Superoxide radical was produced in the potassium superoxide/18‐crown‐6 ether dissolved in dimethyl sulfoxide. Hydroxyl radical was generated in the Fenton reaction (Fe(II) + H2O2. It was found that TSs showed a slight scavenging effect (15–38% reduction at 2.5 mmol/L concentration) of the DPPH radical and a high scavenging effect of (41–88%). The tested compounds showed inhibition of HO? ‐dependent DMPO‐OH spin adduct formation (the amplitude of EPR signal decrease ranged from 20 to 76% at 2.5 mmol/L concentration. Our findings present new group compounds of relatively high reactivity towards free radicals. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

11.
Tigecycline (TIGE) is the newest tetracycline derivative antibiotic with low toxicity, it is used for management of infectious diseases caused by Gram‐positive and Gram‐negative bacteria. Hence, an efficient, selective and sensitive method was developed for analysis of TIGE in commercial formulations, human plasma and urine. The spectrofluorimetric technique based on the reaction of secondary amine moiety in TIGE with 4‐chloro‐7‐nitrobenzofurazan (NBD‐Cl) in slightly alkaline medium producing a highly fluorescent product measured at 540 nm (λex at 470 nm) after heating for 15 min at 75°C. The proposed strategy was upgraded and approved by ICH rules and bio‐analytical validated using US‐FDA recommendations. A linear relationship between fluorescence intensity and TIGE concentration was observed over the concentration range 40–500 ng mL?1 with limit of quantification (LOQ) 21.09 ng mL?1 and limit of detection (LOD) 6.96 ng mL?1.The ultra‐affectability and high selectivity of the proposed strategy permits analysis of TIGE in dosage form, human plasma and urine samples with good recovery ranged from 97.23% to 98.72% and from 99.36% to 99.80% respectively, without any interfering from matrix components. Also, the developed strategy was used to examine the stability of TIGE in human plasma and applied for pharmacokinetic investigation of TIGE.  相似文献   

12.
A rapid, novel and cost-effective spectrofluorimetric method developed to determine moxifloxacin (MFX) in pharmaceutical preparations because MFX in a pH 10 medium could reduce the fluorescence intensity of l -tryptophan. The maximum fluorescence excitation and emission wavelengths were found to be 280 and 363 nm respectively. A range of factors affecting fluorescence quenching and the effect of co-existing substances were investigated. Fluorescence quenching values (ΔF = FL-tryptophanFMoxi-L-tryptophan) displayed a strong linear relationship with the MFX concentration ranging from 0.2 to 8.0 μg/ml under optimum conditions. The limit of detection was found to be 6.1 × 10−4 μg/ml. The proposed method was shown to be suitable for MFX determination in pharmaceutical tablets and biological fluids by the linearity, recovery and limit of detection. The spectrofluorimetric approach that has been developed is extremely eco-friendly, as evidenced by the fact that all the experimental components and solvents were safe for the environment.  相似文献   

13.
A simple, highly sensitive and selective spectrofluorimetric method has been developed and fully validated for the determination of daclatasvir (DAC) and ledipasvir (LED) in tablets and human plasma. The method is based on measurement of the native fluorescence in methanol at λem 384 nm after excitation at λex 318 nm for DAC and in acetonitrile at λem 402 nm after excitation at λex 340 nm for LED. The fluorescence intensity (FI) concentration plot was rectilinear over the ranges 1.2–12, 0.1–18 ng ml?1 and 9–90, 1–100 ng ml?1 with a good correlation of r = 0.9994 to r = 0.9997 in standard solution and human plasma for DAC and LED, respectively. The extraction of analytes from plasma was performed using methanol and acetonitrile as a precipitating agent with lower limit of quantification (LLOQ) of 0.1 and 1.0 ng ml?1 for DAC and LED; respectively. The proposed method was validated according to the US Food and Drug Administration (FDA) guidelines and successfully applied for estimating the pharmacokinetic parameters of DAC and LED following oral administrations of their tablets.  相似文献   

14.
Luminescent LaF3–Ce3+/Tb3+ nanocrystals have been successfully prepared via a simple wet chemical technique. For the next bioapplication, these nanoparticles dispersed in cyclohexane have also been functionalized with poly(St‐co‐MAA), based on a designed oil‐in‐water microemulsion system. These polymer‐coated nanospheres are water‐soluble and bioconjugable. Unlike semiconductor quantum dots, the as‐prepared lanthanum fluoride nanocrystals possess non‐size‐dependent emissions and completely stable photocycles. With functionalized LaF3 nanospheres as fluorescence probes, a fluorescence method was developed for the rapid quantitative analysis of DNA, due to the quenching effect of fluorescence by the DNA. Under optimum conditions, the fluorescence intensity was proportional to the concentration of the introduced DNA over the range 2.5–35 µg/mL for calf thymus DNA (ctDNA) and 2.5–30 µg/mL for fish sperm DNA (fsDNA), respectively. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

15.
In pH 4.99‐6.06 Britton‐Robinson (BR) buffer medium, 6‐benzylaminopurine (6‐BA) reacted with Na2WO4 to form 1:1 anionic chelate (6‐BA·WO4)2‐, which further reacted with rhodamine 6G to form ternary ion complexes at room temperature. This resulted in a significant enhancement of resonance Rayleigh scattering (RRS) with a maximum RRS wavelength of 316 nm. Meanwhile, the fluorescence of the solution was quenched and excitation (λex) and emission (λem) wavelengths of the fluorescence were 290 and 559 nm, respectively. Intensities of RRS enhancing (ΔIRRS) and fluorescence quenching (ΔIF) were directly proportional to concentrations of 6‐BA. As a result, RRS and fluorescence quenching for determination of trace amounts of 6‐BA were developed. Under optimal conditions, linear ranges and detection limits of the two methods were 0.05‐15.00 µg/mL and 8.2 ng/mL (RRS), 0.50‐15.00 µg/mL and 17.0 ng/mL, respectively. It was found that the RRS method was superior to fluorescence quenching. The influence of these methods were investigated and results showed that RRS had good selectivity. RRS was applied to determine 6‐BA in vegetable samples with satisfactory results. Furthermore, the reaction mechanisms of the ternary ion‐association system are discussed. In addition, the polarization experiment revealed that the resonance light scattering (RLS) peak of Na2WO4‐6‐BA‐R6G consisted mainly of depolarized resonance fluorescence and resonance scattering. It was speculated that light emission fluorescence energy (EL) transformed into resonance light scattering energy (ERLS), which was a key reason for enhancement of RRS. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

16.
Coptisine (COP), one of the bioactive components in Rhizoma Coptidis, has many pharmacological effects. Meanwhile, the determination of COP is essential in pharmacological and clinical applications. Herein, we prepared carbon quantum dots (CQDs) by one-step oil-thermal method using paper mill sludge (PMS) as precursor, and developed a ratiometric fluorescence method for the determination of COP. The structural and optical properties of PMS-CQDs were evaluated through high-resolution transmission electron microscopy (HRTEM), Fourier-transform infrared (FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS), X-ray powder diffraction (XRD), ultraviolet-visible (UV-vis), fluorescence, zeta potential and fluorescence lifetime experiments. Fluorescence intensity ratio at 550 nm and 425 nm (I550/I425) was recorded as an index for quantitative detection of COP. The detection concentration of COP ranges from 0.1 to 50 μM in good linear correlation (R2 = 0.9974) with a limit of detection of 0.028 μM (3σ/k). The quenching mechanism was deduced to be inner filter effect and static quenching. The ratiometric fluorescent probe showed impressive selectivity and sensitivity towards COP, and was successfully applied to the detection of COP in human urine with expected recoveries (95.22–111.00%) and relative standard deviations (0.46–2.95%), indicating that our developed method has a great application prospect in actual sample detection.  相似文献   

17.
With recognition of the biological importance of hydrogen sulfide (H2S), we present a simple and effective fluorescent probe for H2S using a Tb3+ coordination polymer–Cu2+ compound (DPA/Tb/G–Cu2+). Dipicolinic acid (DPA) and guanosine (G) can coordinate with Tb3+ to form a macromolecular coordination polymer (DPA/Tb/G). DPA/Tb/G specifically binds to Cu2+ in the presence of coexisting cations, and obvious fluorescence quenching is observed. The quenched fluorescence can be exclusively recovered upon the addition of sulfide, which is measured in the mode of time‐resolved fluorescence. The fluorescence intensities of the DPA/Tb/G–Cu2+ compound enhance linearly with increasing sulfide concentrations from 1 to 30 μM. The detection limit for sulfide in aqueous solution is estimated to be 0.3 μM (at 3σ). The DPA/Tb/G–Cu2+ compound was successfully applied to sense H2S in human serum samples and exhibited a satisfactory result. It displays some desirable properties, such as fast detection procedure, high selectivity and excellent sensitivity. This method is very promising to be utilized for practical detection of H2S in biological and environmental samples.  相似文献   

18.
A new A–π–D–π–A phenothiazine derivative, 2,2′‐((10‐octyl‐10H‐phenothiazine‐3,7‐diyl)bis (ethene‐2,1‐diyl))bis(1‐ethyl‐3,3‐dimethyl‐3H‐indol‐1‐ium)iodide (PTZ‐BEI) was prepared and fully characterized using infra‐red (IR), 1H nuclear magnetic resonance (NMR), 13C NMR, ultraviolet–visible light and mass spectra. Electronic spectra of PTZ‐BEI solutions in solvents with different polarities displayed absorption bands (λmax) related to intramolecular charge transfer. In addition, the emission spectra of PTZ‐BEI solutions were strongly solvent dependent for both wavelength and intensity. Stokes’ shift ( increased with increasing solvent polarity up to 4105 cm?1 in the most polar solvent, dimethylformamide. The linear solvation‐energy relationship was utilized to investigate solvent dependency of the Stokes’ shifts. Relative quantum yield (φ ) of PTZ‐BEI was calculated. Finally, density functional theory was employed at the B3LYP level for geometrical optimization and simulation of electron spectra for the PTZ derivative in gaseous and solvated states to explore the solvent effect.  相似文献   

19.
A simple spectrofluorimetric method is described for the determination of DNA, based on its enhancement of the fluorescence intensity of prulifloxacin (PUFX)–Tb3+. The luminescence intensity of the PUFX–Tb3+ complex increased up to 10‐fold after adding DNA. The excitation and emission wavelengths were 345 and 545 nm, respectively. Under optimum conditions, variations in the fluorescence intensity showed a good linear relationship with the concentration of hsDNA in the range of 3.0 × 10‐9 to 1.0 × 10‐6 g/mL, with a correlation coefficient (R) of 0.997, and the detection limit was 2.1 × 10‐9 g/mL. The method was successfully applied to the determination of DNA in synthetic samples, and recoveries were in the range 97.3–102.0%. The mechanism of fluorescence enhancement of the PUFX–Tb3+ complex by DNA is also discussed. The mechanism may involve formation of a ternary complex mainly by intercalation binding together with weak electrostatic interaction, which will increase the energy transition from ligand to Tb3+, increasing the rigidity of the complex, and decreasing the radiationless energy loss through O–H vibration of the H2O molecule in the PUFX–Tb3+ compl+osed method is not only more robust and friendly to the environment, but also of relatively higher sensitivity. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

20.
Four series of borosilicate glasses modified by alkali oxides and doped with Tb3+ and Sm3+ ions were prepared using the conventional melt quenching technique, with the chemical composition 74.5B2O3 + 10SiO2 + 5MgO + R + 0.5(Tb2O3/Sm2O3) [where R = 10(Li2O /Na2O/K2O) for series A and C, and R = 5(Li2O + Na2O/Li2O + K2O/K2O + Na2O) for series B and D]. The X‐ray diffraction (XRD) patterns of all the prepared glasses indicate their amorphous nature. The spectroscopic properties of the prepared glasses were studied by optical absorption analysis, photoluminescence excitation (PLE) and photoluminescence (PL) analysis. A green emission corresponding to the 5D47F5 (543 nm) transition of the Tb3+ ions was registered under excitation at 379 nm for series A and B glasses. The emission spectra of the Sm3+ ions with the series C and D glasses showed strong reddish‐orange emission at 600 nm (4G5/26H7/2) with an excitation wavelength λexci = 404 nm (6H5/24F7/2). Furthermore, the change in the luminescence intensity with the addition of an alkali oxide and combinations of these alkali oxides to borosilicate glasses doped with Tb3+ and Sm3+ ions was studied to optimize the potential alkali‐oxide‐modified borosilicate glass.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号