首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Adeno-associated virus (AAV) codes for four closely related nonstructural proteins (Rep) required for AAV DNA replication and gene regulation. In vitro studies have revealed that either Rep78 or Rep68 alone is sufficient for AAV DNA replication. Rep52 and Rep40 are not required for DNA replication but have been reported to enhance the efficiency of accumulation of single-stranded progeny DNA. Previous studies on rep-expressing cell lines had indicated that only a subset of the four Rep proteins are required for the production of infectious AAV. We therefore set out to determine the minimal set of Rep proteins sufficient for the generation of infectious AAV. Transient cotransfections in HeLa cells of constructs for high-level expression of individual Rep proteins with a rep-negative AAV genome revealed that either Rep78 or Rep68 alone could complement for a full replication cycle yielding infectious virus. This result was confirmed by transfection studies in the cell line HeM2, which selectively expresses Rep78 at rather low levels under the control of the glucocorticoid-responsive mouse mammary tumor virus long terminal repeat (C. Hölscher, M. Hörer, J. A. Kleinschmidt, H. Zentgraf, A. Bürkle, and R. Heilbronn, J. Virol. 68:7169-7177, 1994). Increasing the level of Rep78 expression by transfection of a glucocorticoid receptor expression construct resulted in a higher level of DNA replication of a cotransfected rep-negative AAV genome and in the production of infectious rep-negative AAV particles. We further report on the generation of a new rep-expressing cell line, HeCM1, which was obtained by stable supertransfection of a construct for constitutive Rep40 expression into HeM1 cells (Hölscher et al., J. Virol. 68:7169-7177). Transfection of rather large amounts of rep-negative AAV DNA led to detectable virus production in HeCM1 cells even in the absence of the cotransfected glucocorticoid receptor expression construct, but higher yields were obtained after increasing the Rep78 level by coexpression of the glucocorticoid receptor. These data demonstrate that all Rep functions required for the productive replication of AAV in HeLa cells are contained within both Rep78 and Rep68.  相似文献   

2.
The Rep78 and Rep68 proteins of adeno-associated virus type 2 (AAV) are multifunctional proteins which are required for viral replication, regulation of AAV promoters, and preferential integration of the AAV genome into a region of human chromosome 19. These proteins bind the hairpin structures formed by the AAV inverted terminal repeat (ITR) origins of replication, make site- and strand-specific endonuclease cuts within the AAV ITRs, and display nucleoside triphosphate-dependent helicase activities. Additionally, several mutant Rep proteins display negative dominance in helicase and/or endonuclease assays when they are mixed with wild-type Rep78 or Rep68, suggesting that multimerization may be required for the helicase and endonuclease functions. Using overlap extension PCR mutagenesis, we introduced mutations within clusters of charged residues throughout the Rep68 moiety of a maltose binding protein-Rep68 fusion protein (MBP-Rep68Δ) expressed in Escherichia coli cells. Several mutations disrupted the endonuclease and helicase activities; however, only one amino-terminal-charge cluster mutant protein (D40A-D42A-D44A) completely lost AAV hairpin DNA binding activity. Charge cluster mutations within two other regions abolished both endonuclease and helicase activities. One region contains a predicted alpha-helical structure (amino acids 371 to 393), and the other contains a putative 3,4 heptad repeat (coiled-coil) structure (amino acids 441 to 483). The defects displayed by these mutant proteins correlated with a weaker association with wild-type Rep68 protein, as measured in coimmunoprecipitation assays. These experiments suggest that these regions of the Rep molecule are involved in Rep oligomerization events critical for both helicase and endonuclease activities.  相似文献   

3.
The mechanism of adeno-associated virus (AAV) DNA replication was characterized both genetically and biochemically. In this study, we used monoclonal and polyclonal antibodies to examine the AAV p5 (Rep78 and Rep68) and p19 (Rep52 and Rep40) proteins in infected cells. By overexpressing a truncated Rep78 protein in Escherichia coli, we obtained monoclonal antibody anti-78/68, which is specific for the p5 Rep proteins, and monoclonal antibody anti-52/40, which recognized both the p5 and p19 Rep proteins. In single-fluorochrome indirect immunofluorescence labeling experiments, the viral Rep proteins were localized in distinct intranuclear foci. Analysis of AAV proteins by double-fluorochrome indirect immunofluorescence experiments demonstrated that (i) all four AAV Rep proteins occupied the same intranuclear compartments and (ii) the Rep and capsid proteins colocalized in the nuclei of infected cells. These results suggest that replication centers similar to those established by other viruses exist for AAV. These reagents should provide a useful tool for further delineation of the mechanism of AAV replication in vitro.  相似文献   

4.
5.
Adeno-associated virus (AAV) Rep proteins mediate viral DNA replication and can regulate expression from AAV genes. We studied the kinetics of synthesis of the four Rep proteins, Rep78, Rep68, Rep52, and Rep40, during infection of human 293 or KB cells with AAV and helper adenovirus by in vivo labeling with [35S]methionine, immunoprecipitation, and immunoblotting analyses. Rep78 and Rep52 were readily detected concomitantly with detection of viral monomer duplex DNA replicating about 10 to 12 h after infection, and Rep68 and Rep40 were detected 2 h later. Rep78 and Rep52 were more abundant than Rep68 and Rep40 owing to a higher synthesis rate throughout the infectious cycle. In some experiments, very low levels of Rep78 could be detected as early as 4 h after infection. The synthesis rates of Rep proteins were maximal between 14 and 24 h and then decreased later after infection. Isotopic pulse-chase experiments showed that each of the Rep proteins was synthesized independently and was stable for at least 15 h. A slower-migrating, modified form of Rep78 was identified late after infection. AAV capsid protein synthesis was detected at 10 to 12 h after infection and also exhibited synthesis kinetics similar to those of the Rep proteins. AAV DNA replication showed at least two clearly defined stages. Bulk duplex replicating DNA accumulation began around 10 to 12 h and reached a maximum level at about 20 h when Rep and capsid protein synthesis was maximal. Progeny single-stranded DNA accumulation began about 12 to 13 h, but most of this DNA accumulated after 24 h when Rep and capsid protein synthesis had decreased.  相似文献   

6.
The Rep68 and Rep78 proteins of adeno-associated virus type 2 (AAV) are multifunctional proteins which contain overlapping amino acid sequences. They are required for viral replication and preferential integration of the AAV genome into a region of human chromosome 19. During the terminal resolution process of AAV DNA replication, these proteins make a site-specific and strand-specific endonuclease cut within the AAV inverted terminal repeat DNA. The Rep68 and Rep78 proteins also have helicase and DNA-binding activities. The endonuclease activity is believed to involve the covalent attachment of Rep68 or Rep78 at the cut site via a phosphotyrosine linkage. In an attempt to identify the active-site tyrosine residue of Rep78 and Rep68, tyrosine residues were site specifically mutated to phenylalanines by overlap extension PCR, and the resulting PCR fragments were cloned into a maltose binding protein-Rep68 fusion (MBP-Rep68delta) expression vector. The mutant MBP-Rep68delta proteins were expressed in Escherichia coli cells, purified with amylose resin, and assayed in vitro for Rep68-specific activities. Although several of the mutations disrupted the endonuclease activity, only the mutation of tyrosine 152 abrogated the endonuclease activity with no discernible effect on the helicase or DNA-binding activities. Our data therefore suggest that there are distinct active sites for the helicase and endonuclease activities.  相似文献   

7.
The subnuclear distribution of replication complex proteins is being recognized as an important factor for the control of DNA replication. Herpes simplex virus (HSV) single-strand (ss)DNA-binding protein, ICP8 (infected cell protein 8) accumulates in nuclear replication domains. ICP8 also serves as helper function for the replication of adeno-associated virus (AAV). Using quantitative 3D colocalization analysis we show that upon coinfection of AAV and HSV the AAV replication protein Rep and ICP8 co-reside in HSV replication domains. In contrast, Rep expressed by a recombinant HSV, in the absence of AAV DNA, displayed a nuclear distribution pattern distinct from that of ICP8. Colocal ization of Rep and ICP8 was restored by the reintroduction of single-stranded AAV vector genomes. In vitro, ICP8 displayed direct binding to Rep78. Single-stranded recombinant AAV DNA strongly stimulated this interaction, whereas double-stranded DNA was ineffective. Our findings suggest that ICP8 by its strong ssDNA-binding activity exploits the unique single-strandedness of the AAV genome to form a tripartite complex with Rep78 and AAV ssDNA. This novel mechanism for recruiting components of a functional replication complex directs AAV to subnuclear HSV replication compartments where the HSV replication complex can replicate the AAV genome.  相似文献   

8.
Adeno-associated virus (AAV) normally requires co-infection of a helper virus to complete its life cycle. However, under conditions of cellular stress, such as treatment with carcinogens or ultraviolet (UV) light, a permissive intracellular environment is established and AAV completes its replicative cycle producing low levels of progeny virus. AAV DNA replication is dependent upon viral replication proteins, Rep78 and Rep68. The detailed mechanism by which these proteins interact with host cell factors is unknown. We have used a cell line (Neo6) that inducibly expresses the AAV Rep proteins to study their effects on cells that have undergone UV-induced DNA damage. Induction of Rep protein expression immediately after a sub-lethal dose of UV irradiation resulted in rapid cell killing. Those cells that die had chromatin condensation while cellular membranes remained intact, suggesting that concurrent Rep expression and UV damage induces an apoptosis-like response. However, we did not observe any DNA degradation. Thus we believe that the combination of Rep expression and UV irradiation induces cell death that shares some of the characteristics of apoptosis. UV irradiation and Rep expression induced an increase in the level of the CDK inhibitor, p21Cip, and the appearance of modified forms of both p21Cip and Bcl-2. Alteration of normal expression of these cytostatic/apoptotic proteins provides insight into the intracellular targets of the AAV replication proteins.  相似文献   

9.
We performed live cell visualization assays to directly assess the interaction between competing adeno-associated virus (AAV) and herpes simplex virus type 1 (HSV-1) DNA replication. Our studies reveal the formation of separate AAV and HSV-1 replication compartments and the inhibition of HSV-1 replication compartment formation in the presence of AAV. AAV Rep is recruited into AAV replication compartments but not into those of HSV-1, while the single-stranded DNA-binding protein HSV-1 ICP8 is recruited into both AAV and HSV-1 replication compartments, although with differential staining patterns. Slot blot analysis of coinfected cells revealed a dose-dependent inhibition of HSV-1 DNA replication by wild-type AAV but not by rep-negative recombinant AAV. Consistent with this, Western blot analysis indicated that wild-type AAV affects the levels of the HSV-1 immediate-early protein ICP4 and the early protein ICP8 only modestly but strongly inhibits the accumulation of the late proteins VP16 and gC. Furthermore, we demonstrate that the presence of Rep in the absence of AAV DNA replication is sufficient for the inhibition of HSV-1. In particular, Rep68/78 proteins severely inhibit the formation of mature HSV-1 replication compartments and lead to the accumulation of ICP8 at sites of cellular DNA synthesis, a phenomenon previously observed in the presence of viral polymerase inhibitors. Taken together, our results suggest that AAV and HSV-1 replicate in separate compartments and that AAV Rep inhibits HSV-1 at the level of DNA replication.  相似文献   

10.
A subset of DNA replication proteins of herpes simplex virus (HSV) comprising the single-strand DNA-binding protein, ICP8 (UL29), and the helicase-primase complex (UL5, UL8, and UL52 proteins) has previously been shown to be sufficient for the replication of adeno-associated virus (AAV). We recently demonstrated complex formation between ICP8, AAV Rep78, and the single-stranded DNA AAV genome, both in vitro and in the nuclear HSV replication domains of coinfected cells. In this study the functional role(s) of HSV helicase and primase during AAV DNA replication were analyzed. To differentiate between their necessity as structural components of the HSV replication complex or as active enzymes, point mutations within the helicase and primase catalytic domains were analyzed. In two complementary approaches the remaining HSV helper functions were either provided by infection with HSV mutants or by plasmid transfection. We show here that upon cotransfection of the minimal four HSV proteins (i.e., the four proteins constituting the minimal requirements for basal AAV replication), UL52 primase catalytic activity was not required for AAV DNA replication. In contrast, UL5 helicase activity was necessary for fully efficient replication. Confocal microscopy confirmed that all mutants retained the ability to support formation of ICP8-positive nuclear replication foci, to which AAV Rep78 colocalized in a manner strictly dependent on the presence of AAV single-stranded DNA (ssDNA). The data indicate that recruitment of AAV Rep78 and ssDNA to nuclear replication sites by the four HSV helper proteins is maintained in the absence of catalytic primase or helicase activities and suggest an involvement of the HSV UL5 helicase activity during AAV DNA replication.  相似文献   

11.
12.
The Rep78 protein of adeno-associated virus (AAV) contains amino acid sequence motifs common to rolling-circle replication (RCR) initiator proteins. In this report, we describe RCR initiator-like activities of Rep78. We demonstrate that a maltose-binding protein (MBP)-Rep78 fusion protein can catalyze the cleavage and ligation of single-stranded DNA substrates derived from the AAV origin of replication. Rep-mediated single-stranded DNA cleavage was strictly dependent on the presence of certain divalent cations (e.g., Mn(2+) or Mg(2+)) but did not require the presence of a nucleoside triphosphate cofactor. Electrophoretic mobility shift assays demonstrated that binding of single-stranded DNA by MBP-Rep78 was influenced by the length of the substrate as well as the presence of potential single-stranded cis-acting sequence elements. Site-directed mutagenesis was used to examine the role of specific tyrosine residues within a conserved RCR motif (motif 3) of Rep78. Replacement of Tyr-156 with phenylalanine abolished the ability of MBP-Rep78 to mediate the cleavage and ligation of single-stranded DNA substrates but not the ability to stably bind single-stranded DNA. The cleaving-joining activity of Rep78 is consistent with the mechanism of replicative intermediate dimer resolution proposed for the autonomous parvoviruses and may have implications for targeted integration of recombinant AAV vectors.  相似文献   

13.
The adeno-associated virus (AAV) rep gene codes for a family of nonstructural proteins which are required for AAV gene regulation and DNA replication. In addition, rep has been implicated in a variety of activities outside the AAV life cycle which have been difficult to study, since attempts to achieve separate and constitutive expression of rep in stable cell lines have failed so far. Here we report the generation of two cell lines which inducibly express Rep78 under the control of the glucocorticoid-responsive mouse mammary tumor virus promoter. In addition, one of the cell lines constitutively expresses relatively high levels of Rep52. Both cell lines showed similar plating efficiencies with and without induction of Rep78 expression, which rules out cytotoxic effects of Rep78. The cell lines efficiently support DNA replication of a rep-negative AAV genome and initiate the formation of AAV particles. However, despite the correct sizes and stoichiometry of the three capsid proteins, the AAV particles were noninfectious. This was found to be due to a defect in the accumulation of single-stranded AAV DNA. Transient transfection of single expression constructs for constitutive, high-level expression of individual Rep proteins (either Rep78, Rep68, Rep52, or Rep40) complemented this defect. Infectious rep-negative AAV progeny was produced at varying efficiencies depending on the rep expression construct used. These data show that functional expression of full-length Rep in recombinant cell lines is possible and that the state of Rep expression is critical for the infectivity of AAV progeny produced.  相似文献   

14.
Mutational analysis of the adeno-associated virus rep gene.   总被引:5,自引:4,他引:1       下载免费PDF全文
Q Yang  A Kadam    J P Trempe 《Journal of virology》1992,66(10):6058-6069
  相似文献   

15.
Adeno-associated viruses (AAVs) are nonautonomous human parvoviruses in that they are dependent on helper functions supplied by other viruses or on genotoxic stimuli for conditions permissive for replication. In the absence of helper, AAV type 2 enters latency by integration into a specific site on human chromosome 19. This feature of AAV, in combination with a lack of pathogenicity, makes AAV an attractive candidate vector for human gene therapy. Goose parvovirus (GPV) is both autonomous and pathogenic yet is highly homologous to AAV. To address the molecular bases for the different viral lifestyles, we compare the AAV and GPV nonstructural proteins, Rep78 and Rep1, respectively. We find that Rep78 and Rep1 possess several biochemical activities in common, including (i) high-affinity DNA binding for sequences that constitute the minimal DNA replication origin; (ii) nucleoside triphosphate-dependent DNA helicase activity; and (iii) origin-specific replication of double-stranded linear DNA. These experiments also establish a specific 38-bp DNA sequence as the minimal GPV DNA replication origin. It is noteworthy that although the proposed Rep binding sites of GPV and AAV are highly similar, Rep1 and Rep78 show a high degree of specificity for their respective origins, in both binding and replication assays. One significant difference was observed; with the minimal replication origin in adenovirus-uninfected extracts, Rep78-mediated replication exhibited low processivity, as previously reported. In contrast, Rep1 efficiently replicated full-length template. Overall, our studies indicate that GPV Rep1 and AAV Rep78 support a comparable mode of replication. Thus, a comparison of the two proteins provides a model system with which to determine the contribution of Rep in the regulation of dependence and autonomy at the level of DNA replication.  相似文献   

16.
Prior genetic analysis provided evidence for trans-acting regulatory proteins (Rep) coded by the left-hand open reading frame (orf-1) of adeno-associated virus (AAV). We have used immunoblotting analysis to identify four protein products of orf-1. Antibodies elicited against an oligopeptide encoded by orf-1 were reacted with extracts of cells that were infected with AAV or transfected with AAV recombinant vectors in the presence or absence of helper adenovirus. The antibody recognized four polypeptides with apparent molecular weights of 78,000, 68,000, 52,000, and 40,000. The 78,000-dalton (78K) (Rep78) and 68K (Rep68) proteins appear to be encoded by the unspliced 4.2-kilobase (kb) and spliced 3.9-kb mRNAs, respectively, transcribed from the p5 promoter. The 52K (Rep52) and 40K (Rep40) proteins appear to be the products of the unspliced 3.6-kb and the spliced 3.3-kb mRNAs, respectively, transcribed from the p19 promoter. Rigorous identification of Rep68 as an AAV-coded protein is compromised by a cross-reacting cellular protein of similar size. All four proteins were expressed in the human cell lines 293, HeLa, HT29, and A549 infected with AAV together with adenovirus. Rep78 and Rep52 were detected at lower levels in cells infected with AAV at high multiplicity in the absence of adenovirus. Human 293 cells transfected with a recombinant AAV vector (pAV2) also expressed Rep proteins in the presence or absence of adenovirus. Mutations introduced into the Rep region of pAV2 further identified the Rep proteins. The amount of each Rep protein varied between nuclear and cytoplasmic extracts, but all four proteins accumulated during the lytic cycle of the viral infection. Other studies have indicated that the Rep proteins have independent trans-acting functions in viral DNA replication and negative and positive regulation of gene expression. Correlation of each trans-acting function with individual Rep proteins will be facilitated with the antibodies described herein.  相似文献   

17.
Four Rep proteins are encoded by the human parvovirus adeno-associated virus type 2 (AAV). The two largest proteins, Rep68 and Rep78, have been shown in vitro to perform several activities related to AAV DNA replication. The Rep78 and Rep68 proteins are likely to be involved in the targeted integration of the AAV DNA into human chromosome 19, and the full characterization of these proteins is important for exploiting this phenomenon for the use of AAV as a vector for gene therapy. To obtain sufficient quantities for facilitating the characterization of the biochemical properties of the Rep proteins, the AAV rep open reading frame was cloned and expressed in Escherichia coli as a fusion protein with maltose-binding protein (MBP). Recombinant MBP-Rep68 and MBP-Rep78 proteins displayed the following activities reported for wild-type Rep proteins when assayed in vitro: (i) binding to the AAV inverted terminal repeat (ITR), (ii) helicase activity, (iii) site-specific (terminal resolution site) endonuclease activity, (iv) binding to a sequence within the integration locus for AAV DNA on human chromosome 19, and (v) stimulation of radiolabeling of DNA containing the AAV ITR in a cell extract. These five activities have been described for wild-type Rep produced from mammalian cell extracts. Furthermore, we recharacterized the sequence requirements for Rep binding to the ITR and found that only the A and A' regions are necessary, not the hairpin form of the ITR.  相似文献   

18.
The adeno-associated virus (AAV) genome encodes four Rep proteins, all of which contain an SF3 helicase domain. The larger Rep proteins, Rep78 and Rep68, are required for viral replication, whereas Rep40 and Rep52 are needed to package AAV genomes into preformed capsids; these smaller proteins are missing the site-specific DNA-binding and endonuclease domain found in Rep68/78. Other viral SF3 helicases, such as the simian virus 40 large T antigen and the papillomavirus E1 protein, are active as hexameric assemblies. However, Rep40 and Rep52 have not been observed to form stable oligomers on their own or with DNA, suggesting that important determinants of helicase multimerization lie outside the helicase domain. Here, we report that when the 23-residue linker that connects the endonuclease and helicase domains is appended to the adeno-associated virus type 5 (AAV5) helicase domain, the resulting protein forms discrete complexes on DNA consistent with single or double hexamers. The formation of these complexes does not require the Rep binding site sequence, nor is it nucleotide dependent. These complexes have stimulated ATPase and helicase activities relative to the helicase domain alone, indicating that they are catalytically relevant, a result supported by negative-stain electron microscopy images of hexameric rings. Similarly, the addition of the linker region to the AAV5 Rep endonuclease domain also confers on it the ability to bind and multimerize on nonspecific double-stranded DNA. We conclude that the linker is likely a key contributor to Rep68/78 DNA-dependent oligomerization and may play an important role in mediating Rep68/78's conversion from site-specific DNA binding to nonspecific DNA unwinding.  相似文献   

19.
An adeno-associated virus (AAV) genome with a Lys-to-His (K340H) mutation in the consensus nucleotide triphosphate binding site of the rep gene has a dominant-negative DNA replication phenotype in vivo. We expressed both wild-type (Rep78) and mutant (Rep78NTP) proteins in two helper-free expression systems consisting of either recombinant baculoviruses in insect cells or the human immunodeficiency virus type 1 long terminal repeat promoter in human 293 cell transient transfections. We analyzed nuclear extracts from both expression systems for the ability to complement uninfected HeLa cell cytoplasmic extracts in an in vitro terminal resolution assay in which a covalently closed AAV terminal hairpin structure is converted to an extended linear duplex. Although both Rep78 and Rep78NTP bound to AAV terminal hairpin DNA in vitro, Rep78 but not Rep78NTP complemented the terminal resolution assay. Furthermore, Rep78NTP was trans dominant for AAV terminal resolution in vitro. We propose that the dominant-negative replication phenotype of AAV genomes carrying the K340H mutation is mediated by mutant Rep proteins binding to the terminal repeat hairpin.  相似文献   

20.
Adeno-associated virus (AAV) type 2 Rep78 is a multifunctional protein required for AAV DNA replication, integration, and gene regulation. The biochemical activities of Rep78 have been described, but the effects of Rep proteins on the cell have not been characterized. We have analyzed Rep-mediated cytotoxicity. We demonstrated that Rep78 expression is sufficient to induce cell death and disruption of the cell cycle. Cell death was found to be mediated by apoptosis. Rep78 expression resulted in the activation of caspase-3, a terminal caspase directly involved in the execution of cell death. A peptidic inhibitor of caspase-3, Z-Asp-Glu-Val-Asp-fluoromethylketone (Z-DEVD-FMK), abrogated Rep78-induced apoptosis, indicating that Rep78-mediated apoptosis is caspase-3 dependent. Rep78 induced apoptosis in wild-type p53-containing human embryonal carcinoma NT-2 cells and in p53-null promyelocytic human HL-60 cells, indicating that at least one pathway of Rep78-induced apoptosis is p53 independent. Apoptosis was shown to occur during the G(1) and early S phases of the cell cycle. By analyzing the effects of Rep78 mutations on cell viability, the cause of cell death was attributed in part to two biochemical activities of Rep78, DNA binding and ATPase/helicase activity. The endonuclease activity of Rep78 did not contribute to apoptosis induction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号