首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary In suspension cultured callus cells of tobacco (Nicotiana tabacum var. Samsun) the development of chloroplasts is strictly blue light-dependent. During this process chlorophylls and other pigments as well as membrane and stroma proteins are synthesized de-novo. Cloned chloroplast genes of mustard encoding the large subunit (LSU) of ribulosebisphosphate carboxylase/oxygenase (EC. 4.1.1.39; RuBPCase) and the precursor polypeptide of the 32-kD membrane protein were used to study the effect of blue light on the steady-state concentration of the complementary mRNA sequences. For both a rapid increase in dark-grown cells in response to blue light-irradiation was detected by RNA dot-hybridization technique. The time courses coincide with those previously elucidated for the synthesis rates of both LSU and the membrane protein. The results support the notion that blue light acts primarily through mRNA induction.  相似文献   

2.
Immunological tests with monospecific antisera to ribulosebisphosphate carboxylase (EC 4.1.1.39) and to its large and small subunits indicated the presence of a protein with antigenic properties of the small subunit in the absence of the large subunit in the leaves of young rye plants (Secale cereale L.) with a high-temperature-induced (32 °C) deficiency of 70 S plastid ribosomes. The small subunit-like protein was isolated from crude extracts of plastid ribosome-deficient 32 °C-grown leaf tissue by the use of columns with immobilized antibody. The main polypeptide retained by the immobilized antibodies had the same mobility after electrophoresis on sodium dodecyl sulfate-polyacrylamide gels as the small subunit of ribulosebisphosphate carboxylase and was also immunologically identical to the small subunit. The small subunit-like protein was present in the supernatant as well as in the membrane fraction of isolated 70 S ribosome-deficient plastids. At very young stages of normal leaves grown at a permissive temperature (22 °C) an excess of small subunit was observed that was also not integrated into the complete ribulosebisphosphate carboxylase molecule. From the results, we conclude that the synthesis of the small subunit occurs on cytoplasmic ribosomes and is not strictly coordinated with the translation of the large subunit in the chloroplast. During early leaf development, the formation of the large subunit seems to be the ratelimiting step in the synthesis of ribulosebisphosphate carboxylase.  相似文献   

3.
Intensely pigmented and spherical vesicles (anthocyanoplasts) were found in anthocyanin-containing cells of sweet potato (Ipomoea batatas) suspension cultures. Anthocyanin synthesis began to first occur 24–48 h after exposure to light, and then numerous small red vesicles were detected under a microscope. The frequency of anthocyanoplast-containing cells rapidly increased to finally about 80% of the total cultured cells after 5 days of irradiation. Fully developed anthocyanoplasts reached 10–15 m in diameter. On the other hand, neither anthocyanin synthesis nor development of anthocyanoplasts was induced in the dark-cultured cells. 2,4-D also inhibited anthocyanin synthesis and development of these vesicles. The results suggest that anthocyanoplasts might be a site of anthocyanin synthesis and/or accumulation.Abbreviation 2,4-D 2,4-dichlorophenoxyacetic acid  相似文献   

4.
Suspension cultured cells of the liverwort, Reboulia hemisphaerica and of the moss, Barbula unguiculata were independently subcultured in the medium containing 2% glucose in the dark or in the light for more than one year, and the photosynthetic activities of the final cultures were determined. Throughout the culture period light-grown cells of both species contained high amount of chlorophyll (4 to 34 g mg–1 dry weight) and showed a high photosynthetic activity (10 to 84 mol O2 mg–1 chlorophyll h–1). Dark-grown cells of R. hemisphaerica showed the same level of chlorophyll content and photosynthetic O2 evolving activity as light-grown cells. Although chlorophyll content in dark-grown B. unguiculata cells was ten-fold lower than that in light-grown cells, the photosynthetic activity of these dark-grown cells was higher than that of light-grown cells based on chlorophyll content.  相似文献   

5.
W. Hüsemann 《Protoplasma》1981,109(3-4):415-431
Summary This communication reports the photoautotrophic growth of hormone and vitamin independent cell suspension cultures ofChenopodium rubrum. The transfer of cells from stationary growth into fresh culture medium results in a high protein formation, followed by an exponential phase of cell division, whereas the onset of rapid chlorophyll formation is delayed for 4 days. At the stage of most rapid cell division there is no net synthesis of starch and sugar. When the cells enter stationary growth, there is a progressive accumulation of chlorophyll, sugar, and starch.Photoautotrophic cell cultures assimilate about 80–90 mol CO2/mg chlorophyll X hour. Dark CO2 fixation is about 3.7% to 2.2% of the light values during exponential and stationary growth, respectively. As shown by short-term14CO2 fixation, CO2 is predominantly assimilated through ribulosebisphosphate carboxylase via the Calvin pathway. There is a significant increase in the14C label of C4 carboxylic acids in exponentially dividing cells as compared to cells from stationary growth. Thein vitro activity of phosphoenolpyruvate carboxylase and ribulosebisphosphate carboxylase is almost equal during exponential cell division. A decrease in cell division activity is accompanied by a significant change in the specific activities of both carboxylation enzymes. In non dividing cells from stationary growth the activity of ribulosebisphosphate carboxylase is greately enhanced and that of phosphoenolpyruvate carboxylase is reduced, documenting the development of carboxylation capacities typical for C3-plants.The experimental results provide evidence that phosphoenolpyruvate carboxylase activity might be regulated by ammonia and could be involved in anaplerotic CO2 fixation which supplies carbon skeletons of the citric acid cycle.Abbreviations 2,4-D 2,4-dichlorophenoxyacetic acid - EDTA ethylene-diamine-tetraacetic acid - FDP fructose bisphosphate - F-6-P fructose-6-phosphate - G-6-P glucose-6-phosphate - HEPES N-2-hydroxyethylpiperazine-N-2-ethanesulfonic acid - PGA 3-phosphoglyceric acid - PEP phosphoenolpyruvate - RuDP ribulosebisphosphate  相似文献   

6.
M E Reith  R A Cattolico 《Biochemistry》1985,24(10):2556-2561
Information on the ctDNA protein coding profile of the Chlorophyta, Rhodophyta, and Chromophyta might provide clues to the evolutionary mechanism(s) by which plants diverged into these three phylogenetic groups. The purpose of this study was to examine the ctDNA protein coding profile of the chromophytic plant Olisthodiscus luteus. Whole cells were labeled in the presence of cycloheximide, an inhibitor of cytoplasmic protein synthesis. Control experiments demonstrate that the chloroplast proteins labeled in vivo by this technique form a distinct subset of the total proteins synthesized by the cell. Approximately 50 plastid proteins (35 soluble, 15 membrane) were detected after two-dimensional gel electrophoresis and fluorography. Three ctDNA-coded proteins, the large subunit of ribulosebisphosphate carboxylase, the apoprotein of the P700-chlorophyll a-protein complex, and the "photogene" were identified. These proteins are also coded by chlorophytic ctDNA. Unexpectedly, the ctDNA of Olisthodiscus was shown to code for the small subunit of ribulosebisphosphate carboxylase. The gene for this enzyme subunit is nuclear coded in all chlorophytic plants that have been analyzed.  相似文献   

7.
8.
E. Roscher  K. Zetsche 《Planta》1986,167(4):582-586
In the green alga Chlorogonium elongatum the promoting effect of light on the synthesis of ribulose bisphosphate carboxylase/oxygenase (RuBPCase) is mainly caused by blue light of wavelengths between 430 nm and 510 nm, with a maximum effect at about 460 nm. Blue light also causes an increase in the amounts of the mRNAs for the large and the small subunits of the enzyme. Furthermore, the concentration of RuBPCase is affected by the light energy fluence rate. The rate of synthesis as well as the maximal obtainable concentration of the enzyme are functions of the light energy fluence rate up to 26 W·m-2. No further increase occurs beyond that intensity. The quantity of irradiation also alters the concentrations of the subunit mRNAs. The results indicate that the changes in the mRNA levels are the major regulatory steps in the light-dependent synthesis of the RuBPCase enzyme.Abbreviations LSU large subunit - pSSU precursor of the small subunit - RuBPCase ribulose bisphosphate carboxylase/oxygenase EC 4.1.1.39 Dedicated to Prof. Dr. E. Bünning on the occasion of his 80 th birthday  相似文献   

9.
S. Frosch  R. Bergfeld  H. Mohr 《Planta》1976,133(1):53-56
We have studied the problem whether the phytochrome-mediated accumulation of ribulosebisphosphate carboxylase (carboxylase; EC 4.1.1.39) in the cotyledons of sinapis alba L. is related to size, ultrastructure, or organization of the plastid compartment. We have shown that under different light conditions (e.g. continuous far-red light, continuous white light) which lead to conspicuously different plastids the time course of the enzyme levels remains precisely the same. It is concluded that the onset and the rate of carboxylase accumulation is not related to the organizational state of the plastid compartment as discernible under the electron microscope.Abbreviations P tr far-red absorbing form of the phytochrome system - carboxylase ribulosebisphosphate carboxylase (EC 4.1.1.39)  相似文献   

10.
R. Oelmüller  G. Dietrich  G. Link  H. Mohr 《Planta》1986,169(2):260-266
Phytochrome-controlled appearance of ribulose-1,5-bisphosphate carboxylase (RuBP-Case) and its subunits (large subunit LSU, small subunit SSU) was studied in the cotyledons of the mustard (Sinapis alba L.) seedling. The main results were as follows: (i) Control of RuBPCase appearance by phytochrome is a modulation of a process which is turned on by an endogenous factor between 30 and 33 h after sowing (25° C). Only 12 h later the process begins to respond to phytochrome. (ii) The rise in the level of RuBP-Case is the consequence of a strictly coordinated synthesis de novo of the subunits. (iii) While the levels of translatable mRNA for SSU are compatible with the rate of SSU synthesis the relatively high LSU mRNA levels are not reflected in the rates of in-vivo LSU or RuBPCase syntheses. (iv) Gene expression is also abolished in the case of nuclear-encoded SSU if intraplastidic translation and concomitant plastidogenesis is inhibited by chloramphenicol, pointing to a plastidic factor as an indispensable prerequisite for expression of the SSU gene(s). (v) Regarding the control mechanism for SSU gene expression, three factors seem to be involved: an endogenous factor which turns on gene expression, phytochrome which modulates gene expression, and the plastidic factor which is an indispensable prerequisite for the appearance of translatable SSU mRNA.Abbreviations CAP chloramphenicol - cFR continuous farred light - LSU large subunit of RuBPCase - NADP-GPD NADPH-dependent glyceraldehyde-3-phosphate dehydrogenase (EC 1.2.1.13) - Pfr far-red-absorbing form of phytochrome - pSSU precursor of SSU - RuBPCase ribulose-1,5-bisphosphate carboxylase (EC 4.1.1.39) - SSU small subunit of RuBPCase  相似文献   

11.
B. Pineau 《Planta》1982,156(2):117-128
Light induction of chloroplast development in Euglena leads to quantitative changes in the protein composition of the soluble cell part. One major part of these is the observed accumulation of ribulose-1.5-bisphosphate carboxylase/oxygenase (RuBPCase) enzyme (EC 4.1.1.39). As measured by immunoelectrophoresis, a small amount of RuBPCase (about 10-6 pmol) is present in a dark-grown cell, whereas a greening cell (72h) contains 10–20 pmol enzyme. Both the cytoplasmic and chloroplastic translation inhibitors, cycloheximide and spectinomycin, have a strong inhibitory effect on the synthesis of the enzyme throughout the greening process of Euglena cells. Electrophoretic and immunological analyses of the soluble phase prepared from etiolated or greening cells do not show the presence of free subunits of the enzyme. For each antibiotic-treated greening cell, the syntheses of both subunits are blocked. Our data indicate that tight reciprocal control between the syntheses of the two classes of subunits occurs in Euglena. In particular, the RuBPCase small subunit synthesis in greening Euglena seems more dependent on the protein synthesis activity of the chloroplast than the syntheses of other stromal proteins from cytoplasmic origin.Abbreviations LSU large subunit of ribulose-1.5-bisphosphate carboxylase - RuBP ribulose-1.5-bisphosphate - RuBP-Case ribulose-1.5-bisphosphate carboxylase - SSU small subunit of ribulose-1.5-bisphosphate carboxylase  相似文献   

12.
Treatment of the mustard (Sinapis alba L.) seedling with the herbicide SAN 9789 inhibits synthesis of colored carotenoids and interferes with the formation of plastid membrane lipids without affecting growth and morphogenesis significantly. In farred light, which is hardly absorbed by chlorophyll, development of plastid ultrastructure, synthesis of ribulosebisphosphate carboxylase and synthesis of chlorophyll are not affected by SAN 9789. It is concluded that normal phytochrome actions on plastid structural development, protein and chlorophyll syntheses are not affected by the absence of carotenoids provided that there is no significant light absorption in chlorophyll. The findings show that the inhibition of synthesis of one set of plastid membrane components (the carotenoids) does not stop synthesis of other components such as chlorophyll and does not halt membrane assembly. Supplementary experiments with the closely related compound SAN 9785, which affects the amount and composition of plastid lipids but not carotenoid and chlorophyll syntheses, suggest that the effect of the herbicide SAN 9789 is due exclusively to its inhibition of synthesis of colored carotenoids. In the presence of SAN 9789 white or red light at high fluence rate causes photodestruction of chlorophyll and ribulosebisphosphate carboxylase and photodecomposition of thylakoids. These effects are interpreted as resulting exclusively from the self-photooxidation and photosensitizing action of chlorophyll once the protection by carotenoids of chlorophyll against self- and sensitized photooxidation is lost.Abbreviations Carboxylase ribulose-1,5-bisphosphate carboxylase (EC 4.1.1.39) - Chl chlorophyll a plus chlorophyll b - PAL phenylalanine ammonia-lyase (EC 4.3.1.5) - SAN 9789 -chloro-5-(methylamino)-2-(, , -trifluoro-m-tolyl)-3 (2H) pyridazinone - SAN 9785 4-chloro-5-(dimethylamino)-2-phenyl-3(2H)-pyridazione. SAN 9789 is sold commercially under the trade name Norflurazon - fr far red - wl white light  相似文献   

13.
A heterotrophic cotton (Gossypium hirsutum L. cv. Stoneville 825) cell suspension culture was adapted to grow photoautotrophically. After two years in continuous photoautotrophic culture at 5% CO2 (balance air), the maximum growth rate of the photoautotrophic cell line was a 400% fresh weight increase in eight days. The Chl concentration was approximately 500 g per g fresh weight.Elevated CO2 (1%–5%) was required for culture growth, while the ambient air of the culture room (600 to 700 ul CO2 1–1) or darkness were lethal. The cell line had no net photosynthesis at 350 ul 1–1 CO2, 2% O2, and dark respiration ranged from 29 to 44 mol CO2 mg–1 Chl h–1. Photosynthesis was inhibited by O2. The approximate 1:1 ratio of ribulose 1,5-bisphosphate carboxylase (RuBPcase) to phosphoenolpyruvate carboxylase (PEPcase) (normally about 6:1 in mature leaves of C3 plants) was due to low RuBPcase activity relative to that of C3 leaves, not to high PEPcase activity. The PEPcase activity per unit Chl in the cell line was identical to that of spinach leaves, while the RuBPcase activity was only 15% of the spinach leaf RuBPcase activity. RuBPcase activity in the photoautotrophic cells was not limited by a lack of activation in vivo, since the enzyme in a rapidly prepared cell extract was 73% activated. No evidence of enzyme inactivation by secondary compounds in the cells was found as can be found with cotton leaves. Low RuBPcase activity and high respiration rates are most likely important factors in the low photosynthetic efficiency of the cells at ambient CO2.Abbreviations Chl chlorophyll - COT heterotrophic cotton cell line - COT-P photoautotrophic cotton cell line - DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea - HEPES N-2-hydroxyethylpiperazine-N-2-ethanesulfonic acid - Rubisco ribulose 1,5-bisphosphate carboxylase/oxygenase - RuBP ribulose 1,5-bisphosphate - RuBPcase RuBP carboxylase - PEP phosphoenolpyruvate - PEPcase phosphoenolpyruvate carboxylase - MX Murashige and Skoog medium with 0.4 mg 1–1 2,4-D - KT photomixotrophic medium with 1% sucrose - KTo KT medium with no carbohydrate - KTPo KTo medium supplemented with 0.3 M Picloram - CER CO2 exchange rate - PCER CO2 exchange rate in the light  相似文献   

14.
Pseudomonas oxalaticus was grown in carbon- and energy-limited continuous cultures either with oxalte or formate or with mixtures of these substrates. During growth on the mixtures, simultaneous utilization of the two substrates occurred at all dilution rates tested. Under these conditions oxalate repressed the synthesis of ribulosebisphosphate carboxylase. The degree of this repression was dependent on the dilution rate and the ratio of oxalate and formate in the medium reservoir. At a fixed oxalate/formate ratio repression was greatest at intermediate dilution rates, whereas derepression occurred at both low and high dilution rates. Progressive depression of ribulosebisphosphate carboxylase synthesis and of autotrophic CO2 fixation at low dilution rates was attributed to the decreasing concentration of intracellular repressor molecule(s), parallel to the decreasing concentration of the growth-limiting substrates in the culture. To account for the derepression at higher dilution rates, it is proposed that the rate of oxalyl-CoA production from oxalate limits the supply of metabolic intermediates and that additional energy and reducing power generated from formate drains the pools of metabolic intermediates sufficiently to lower the intracellular concentration of the repressor(s). During growth of Pseudomonas oxalaticus on the heterotrophic substrate oxalate alone, at dilution rates below 10% of the maximum specific growth rate, derepression of ribulosebisphosphate carboxylase synthesis and of autotrophic CO2 fixation was observed to a level which was 50% of that observed during growth on formate alone at the same dilution rate. It is concluded that in Pseudomonas oxalaticus the synthesis of enzymes involved in autotrophic CO2 fixation via the Calvin cycle is regulated by a repression/derepression mechanism and that the contribution of autotrophic CO2 fixation to the biosynthesis of cell material in this organism is mainly controlled via the synthesis of these enzymes.Abbreviations RuBPCase ribulosebisphosphate carboxylase - PMS phenazine methosulphate - DCPIP 2,6-dichlorophenolindophenol - FDH formate dehydrogenase - SR concentration of growth-limiting substrate in reservoir  相似文献   

15.
W. Hüsemann  A. Plohr  W. Barz 《Protoplasma》1979,100(1):101-112
Summary Cell suspension cultures ofChenopodium rubrum have been grown for more than 2 years photoautotrophically with CO2 as sole carbon source. Average increase in fresh weight is appr. 600% within 14 days. The chlorophyll content of photoautotrophic cells (200 g/g fresh weight) is much higher than of photomixotrophic cells (50 g/g fresh weight). The photosynthetic activity of the cells (190 moles CO2×mg–1 chlorophyllXh–1) is comparable to the values found with intact leaves. As shown by short-term14CO2 photosynthesis, both, the photomixotrophic and the photoautotrophic cell suspension cultures assimilate CO2 predominantly via the Calvin pathway.Major differences were found with cells from either exponential or stationary phase of growth with regard to differential labelling of 3-phosphoglyceric acid, malate, sucrose and glucose/fructose.In vitro measurements of carboxylation reactions only partially corroborate our findings with14CO2 incorporation. The ratio of ribulosebisphosphate to phosphoenolpyruvate carboxylase activity is 4.7 for leaves of C.rubrum, 1.2 for photoautotrophic cells during stationary growth and 0.5 for cells during exponential growth phase, however, 0.18 was found for photomixotrophic cells. Though the14CO2 incorporation into 3-phosphoglyceric acid is clearly higher than into malate, thein vitro activity of phosphoenolpyruvatecarboxylase is 2–6 fold higher than that of ribulosebisphosphate carboxylase. We postulate that anaplerotic reactions of the tricarboxylic acid cycle are involved in the regulation of phosphoenolpyruvate carboxylase.Abbreviations 2,4-D didilorophenoxyacetic acid - EDTA ethylene-diamine-tetraacetic acid - fr. w. fresh weight - HEPES N-2-hydroxyethylpiperazine-N-2-ethanesulfonic acid - PGA 3-phosphoglyceric acid - PPO 2,5-diphenyloxazole - PEP phosphoenolpyruvate - RuBP nbulosebisphosphate  相似文献   

16.
Jens Thielmann  Paul Galland 《Planta》1991,183(3):340-346
Photosynthetic adaptation of the unicellular green alga Scenedemus obliquus to different light conditions was investigated with respect to chlorophyll synthesis. Cultures were grown under white light (20 W · m–2) from fluorescent lamps and were then transferred and subjected to the actual adaptation regime which consisted of a 24-h irradiation by different fluence rates and wavelengths. Fluence rate-response curves for chlorophyll synthesis were measured between 4 · 10–2 and 1 · 102 W · m–2. In white light from incandescent lamps, in blue and red light the fluence rate-response curves for chlorophyll (Chl) a and also for Chl b were bell-shaped. In red light the threshold was about the same as under blue light. The maximal amounts of Chl a and b were about twofold increased under blue light relative to the values obtained with red light. Action spectra for the stimulation of chlorophyll synthesis (Chl a + Chl b) as well as those for the separate chlorophylls showed two maxima near 450 and 500 nm. However, the action spectrum for Chl b synthesis demonstrated a considerably higher value in the 450-nm peak. Experiments with the photosynthesis inhibitor 3-(3,4-dichlorphenyl)-1,1-dimethylurea (DCMU) indicated that photosynthetic energy supply supported the photostimulation of chlorophyll synthesis. The action spectra indicate the cooperation of two photoreceptors. The 460-nm peak is attributed to the typical blue-light receptor, being more active in Chl b formation. The peak at 500 nm may represent carotenoproteins acting as an accessory pigment system.Abbreviations PCV packed cell volume - Chl total amount of chlorophyll - Chl a, b chlorophyll a, b - DCMU 3-(3,4-dichlorphenyl)-1,1-dimethylurea This project was supported by the Deutsche Forschungsgemeinschaft. We thank Ms. K. Bölte for technical assistance.  相似文献   

17.
In a preceding paper (Oelmüller and Mohr 1986, Planta 167, 106–113) it was shown that in the cotyledons of the mustard (Sinapis alba L.) seedling the integrity of the plastid is a necessary prerequisite for phytochrome-controlled appearance of translatable mRNA for the nuclear-encoded small subunit (SSU) of ribulose-1,5-bisphosphate carboxylase and the light-harvesting chlorophyll a/b-binding protein of photosystem II (LHCP). It was concluded that a signal from the plastid is essential for the expression of nuclear genes involved in plastidogenesis. The present study was undertaken to characterize this postulated signal. Chloramphenicol, an inhibitor of intraplastidic protein synthesis and Norflurazon, an inhibitor of carotenoid synthesis (to bring about photooxidative sensitivity of the plastids) were applied. We obtained the following major results. (i) After a brief period of photooxidative damage a rapid decrease of the above translatable mRNAs was observed. Conclusion: the signal is short-lived and thus required continually. (ii) Once the plastids became damaged by photooxidation, no recovery with regard to nuclear gene expression was observed after a transfer to non-damaging light conditions. Conclusion: even a brief period of damage suffices to prevent production of the signal. (iii) Chloramphenicol inhibited nuclear gene expression (SSU, LHCP) and plastidic development when applied during the early stages of plastidogenesis. Once a certain stage had been reached (between 36–48 h after sowing at 25° C) nuclear gene expression became remarkably insensitive toward inhibition of intraplastidic translation. Conclusion: a certain developmental stage of the plastid must be reached before the signal is released by the plastid. (iv) Under the growth conditions we adopted in our experiments the plastids in the mesophyll cells of mustard cotyledons developed essentially between 36 and 120 (-144) h after sowing. Only during this period could translatable mRNAs for SSU and LHCP be detected. Conclusion: the signal is released by the plastids only during this time span.Abbreviations CAP Chloramphenicol (D-threo) - cFR continuous far-red light - FR far-red light (3.5 W·m-2) - GPD glyceraldehyde-3-phosphate dehydrogenase - LHCP light-harvesting chlorophyll a/b-binding protein of photosystem II - LSU large subunit of RuBPCase - MDH malate dehydrogenase - NF Norflurazon - NIR nitrite reductase - Pfr physiologically active form of phytochrome - R red light (6.8 W·m-2) - RG9-light long-wavelength far-red light (10 W·m-2) - RuBPCase ribulose-1,5-bisphosphate carboxylase - SSU small subunit of RuBPCase - WLs strong white light (28 W·m-2) - photoequilibrium of phytochrome at wavelength   相似文献   

18.
Summary The fine structural characteristics of normal rat corticotrophs stained with anti-porcine ACTH1–39 serum were studied. At the ultrastructure level immunoreactive corticotrophs appear to comprise four distinct cell types: (1) large stellate cells (Siperstein cells) containing granules (170–250 nm in diameter) arranged in a peripheral row and usually embracing an acidophil; (2) elongate spindle-shaped cells (Moriarty cells) in which the secretory granules (170–250 nm in diameter) are distributed in a row or in small clusters in the peripheral cytoplasm; (3) oval or polygonal cells filled only with small secretory granules (130–170 nm in diameter), resembling the acidophil of small granules type (Yoshimura et al. 1974); and (4) polygonal or stellate cells filled with secretory granules of varying diameters (180–300 nm in diameter) and occasionally embracing an acidophil. The first type is the most common, but the others are infrequent. It is concluded that the criteria of Siperstein and Miller (1970) do not necessarily include all categories of rat corticotrophs.  相似文献   

19.
In supension cultured tobacco cells only blue light induces and maintains chlorophyll synthesis if the liquid nutrient medium is supplemented with sucrose. The yield per gram fresh weight is closely correlated with the energy fluence rate of blue light, but not with the initial amount of sucrose added to the medium (3–12 g/l). The uptake of sucrose by the cells proceeds with a constant rate over the growth period independently of the initial amount leading within 10–25 days to sucrose-free media. Under these conditions the cells continue to synthesize chlorophyll for about 10 days. This limitation is overcome by adding sucrose to the medium at equal time intervals thus establishing a constant sugar level beyond the growth period. In contrast, glucose as carbon source cannot adequately replace sucrose in inducing and maintaining blue light-induced chlorophyll synthesis. Depending on the initial amount (3–10 g/l) this sugar is rapidly disappearing from the medium within 1–5 days after inoculation of the cells. It apparently serves as a preferential source of energy and carbon skeletons thus suppressing chlorophyll synthesis. On the other hand, glucose combined with sucrose in the medium brings about the characteristic induction and accumulation of chlorophyll in blue light which is observed with sucrose as the sole carbon source.Abbreviation EFR energy fluence rate - FW fresh weight - MS-medium Murashige-Skoog medium (Murashige and Skoog 1962)  相似文献   

20.
Protoplasts of the nicotinamide-deficient Hyoscyamus muticus cell line nic IVH2 and of the nitrate reductase-deficient Nicotiana tabacum cell line NR cnx 68 were induced to fuse. Selection for putative interspecific hybrid clones was via auxotroph complementation. Controls included tests for cross-feeding, cross inhibition, PEG-induced variation, culture-induced variation, reversion, viability, delayed selection. Protrotrophic cell lines were recovered exclusively from PEG-treated mixtures of both protoplast types. The putative hybrid clones grew independent of exogenously supplied auxins and cytokinins, and at a faster rate than either parent. The morphogenic potential of different clones varied from non-morphogenic to regeneration of fertile plants. Indirect evidence for the hybrid nature of the clones is provided from a) tight selection, b) hormone-independent growth, c) hybrid vigour, d) extreme morphological variation, e) isoenzyme bands from both parents, f) morphogenic potential. Definite proof for the hybrid nature was, however, provided from species-specific DNA hybridization. Chimerism could be excluded since only the large subunit of Hyoscyamus muticus ribulose bisphosphate carboxylase was found and since species-specific DNA hybridization identified clones which gave no Nicotiana tabacum signal.Abbreviations 2,4-D 2,4-Dichlorophenoxyacetic acid - NAA Naphthaleneacetic acid - BAP 6-Benzylaminopurine - PEG Polyethyleneglykol - MES (2[N-morpholino]ethane sulfonic acid - Tris-HCl Tris(hydroxymethyl)-aminoethane-HCl % is given throughout in w/v - FMI Friedrich Miescher-Institut  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号